HW \# 4

1 Which subsets \mathcal{W} of $V(\mathcal{W} \subset V)$ are actually subspaces of V ?
(a) $\mathcal{W}=\left\{\left[\begin{array}{cc}x & 0 \\ 0 & x^{2}\end{array}\right]: x \in \mathbb{R}\right\} ; \quad V=M(2,2)$
(b) $\mathcal{W}=\left\{\left[\begin{array}{ll}a & b \\ c & c\end{array}\right]: a+b+c=0\right\} ; \quad V=M(2,2)$
(c) $\mathcal{W}=\left\{p(x)=a+b x^{3}+c x^{4}: p(-2)=0\right\} ; \quad V=\mathcal{P}_{4}$

2 TRUE or FALSE Question: Page 85: \# 1.25.

3 Given the 4×5 matrix $A=\left[\begin{array}{ccccc}1 & 0 & 3 & 2 & 1 \\ 2 & 0 & 5 & 3 & 5 \\ 3 & 0 & 7 & 4 & 9 \\ 2 & 0 & 4 & 2 & 8\end{array}\right]$, then $A^{t}=\left[\begin{array}{cccc}1 & 2 & 3 & 2 \\ 0 & 0 & 0 & 0 \\ 3 & 5 & 7 & 4 \\ 2 & 3 & 4 & 2 \\ 1 & 5 & 9 & 8\end{array}\right]$ and

$$
\boldsymbol{\operatorname { R R E F }}(A)=\left[\begin{array}{rrrrr}
1 & 0 & 0 & -1 & 10 \\
0 & 0 & 1 & 1 & -3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad \boldsymbol{\operatorname { R E F }}\left(A^{t}\right)=\left[\begin{array}{rrrr}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Find a spanning set of linearly independent vectors for each of the four Fundamental Subspaces associated with A :
(a) $\operatorname{Col}(A)$
(b) Row (A)
(c) Null (A)
(d) $\operatorname{Null}\left(A^{t}\right)$

