HW \# 11

This is due by 11:59pm, Sunday, April 21

1 Use the Gram-Schmidt Process (GSP) to find an orthonormal basis for \mathbb{R}^{3}, using this (nonstandard) basis for \mathbb{R}^{3} :

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

2 If \mathbf{c} is a fixed vector in \mathbb{R}^{n} and $W=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x} \bullet \mathbf{c}=0\right\}$, show that W is a subspace of \mathbb{R}^{n}. (W is the set of all vectors in \mathbb{R}^{n} orthogonal to \mathbf{c}.)

3 Find a basis for W^{\perp}, the orthogonal complement of W, when

$$
W=\operatorname{Span}\left\{\left[\begin{array}{r}
2 \\
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
8 \\
5 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
2 \\
0
\end{array}\right]\right\}
$$

0 Let $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]\right\}$. Find the projection of the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
onto the subspace W, i.e. compute $\mathbf{p r o j}_{W} \mathbf{v}$.

5 Given the following data in the table below, use the Least Squares Method for a best
(a) Linear fit: $y=m x+b$. Use to predict the population at year 5 .
(b) Quadratic fit : $y=a x^{2}+b x+c$. Use to predict the population at year 5 .
(For (b), you may use the computer to do some of the calculations since the numbers get big.)

Year	Population (millions)
x	y
$\mathbf{1}$	1
$\mathbf{2}$	3
$\mathbf{3}$	7
$\mathbf{4}$	6

