HW # 11

This is due by 11:59pm, Sunday, April 21

1 Use the **Gram-Schmidt Process (GSP)** to find an *orthonormal basis* for \mathbb{R}^3 , using this (nonstandard) basis for \mathbb{R}^3 :

$$\mathcal{B} = \left\{ \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}.$$

- **2** If **c** is a fixed vector in \mathbb{R}^n and $W = \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \cdot \mathbf{c} = 0 \right\}$, show that W is a subspace of \mathbb{R}^n . (W is the set of all vectors in \mathbb{R}^n orthogonal to **c**.)
- **3** Find a basis for W^{\perp} , the *orthogonal complement* of W, when

$$W = \mathbf{Span} \left\{ \begin{bmatrix} 2\\1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 8\\5\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-2\\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\2\\0 \end{bmatrix} \right\}.$$

4 Let
$$W =$$
Span $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix} \right\}$. Find the *projection* of the vector $\mathbf{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$

onto the subspace W, i.e. compute $\mathbf{proj}_W \mathbf{v}$.

5 Given the following data in the table below, use the **Least Squares Method** for a best

(a) **<u>Linear fit</u>**: y = mx + b. Use to predict the population at year 5.

(b) **Quadratic fit** : $y = ax^2 + bx + c$. Use to predict the population at year 5.

(For (b), you may use the computer to do some of the calculations since the numbers get big.)

