INTEGRAL TRANSFORMS OF FUNCTIONS WITH
RESTRICTED DERIVATIVES

JOHNNY E. BROWN

ABSTRACT. In this paper we show that functions whose derivatives lie
in a half-plane are preserved under the Pommerenke, Chandra-Singh,
Libera, Alexander and Bernardi Integral Transforms. We determine pre-
cisely how these transforms act on such functions. We prove that if the
derivative of a function lies in a convex region then the derivative of its
Pommerenke, Chandra-Singh, Libera, Alexander and Bernardi Trans-
forms lie in a strickly smaller convex region which can be determined.
We also consider iterates of these transforms. Best possible results are

obtained.

1. INTRODUCTION

Let A(D) denote the class of functions f which are analytic in the unit
disk D and normalized by f(0) = 0 and f'(0) = 1. The classical family of
univalent functions in A(D) is denoted by S. The following are well-known
integral transforms on A(D):

Af(z) = /OZ @ d¢ (Alexander Transform [1])

2

Lf(z) = 2 /OZ f(¢) d¢ (Libera Transform [9])

B.f(z) =(c+1) /01 t"'f(tz)dt ,c > —1 (Bernardi Transform [2]).

The Alexander and Libera Transforms are special cases of the Bernardi
Transform with ¢ = 0 and ¢ = 1, respectively.
Biernacki [3] claimed that the Alexander Transform preserved the class S,
however a counterexample to this was constructed by Krzyz and Lewandowski
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[8]. Campbell and Singh [4] later showed that S is not preserved under the
Libera Transform either. Hence it was of interest to determine which sub-
classes of S and, more generally, of A(D) are preserved under these and
other transforms. It is known that the subclasses of S consisting of convex,
starlike and close-to-convex functions (denoted by K,S* and C, respec-
tively) are each preserved under the Alexander and Libera transforms and
also under the Bernardi Transform for ¢ = 0,1,2,--- (see [2] for example).
Ruscheweyh and Sheil-Small [13] also proved these same results using the
theory of convolutions.
Another interesting integral transform was first introduced by Pommerenke

[11]):

f21C Z2C)
) 0= | e

for fixed |z;] < 1 and |z3| < 1. He proved that if f € C(a) for 0 <
a < 1, the class of strongly close-to-convex functions of order « (i.e.,
|arg{f'(z)/h'(2)}| < ma/2 for some convex function h), then Pf € C(a).
Note that a = 0 and a = 1 correspond to the class of convex and close-to-
convex functions, respectively. Recall that a function f is close-to-convex
of order o if Re{ f'(2)/1(2)} > a.

Later, and apparently unaware of this result, Chandra and Singh [5] in-
troduced a special case of the transform (1.1) defined by

(1'2) Pylwa(z) _ - ieiw /Oz f(tei’fl) ; f(teiuz) .

where 0 < 1, < vy < 27 and proved that convex, starlike and close-to-
convex functions of order « as well as strongly close-to-convex functions of
order « are all preserved under the transform P,, ,,. Since integral trans-
forms tend to smooth functions these results are not too surprising. In this
paper we shall study these transforms on classes of functions in A(D) with
restricted derivatives.

A function f € A(D) is said to be of bounded turning of order f, where
0< B <1, if Re{f'(2)} > B for all z € D. We denote this class by Rg. By
the Noshiro-Warshawski Theorem we know that Ig is a subclass of S and
is in fact a subclass of close-to-convex functions (see Duren [6]). It is easy
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to see that the Bernardi Transform maps g into Rg:

Re{(B.f)(2)} = (¢ +1) /01 R (t2)} dt > (c + 1) /01 £ Bdt =5,
Moreover, it is also known for example that if f € Ry then Af € S* (see
[14]).

Ponnusamy and Ronning [12] generalized Rz and studied the Bernardi
Transform of functions in A(D) whose derivatives lie in an arbitrary half-
plane. They define this class of functions as

Ps={f € AD) : Ja € R, Rel[e"*(f'(z) — B)] >0, Vz € D},
where 8 € R, and proved a number of sharp results including finding the
largest 5 = f(c, v) such that if f € Pg, then its Bernardi Transform B, f(z)
is starlike of order v, generalizing the result in [14]. We should point out
that unlike Rg, the class Ps may contain nonunivalent functions as can be
shown by the function f(z) = 2+ 2% which belongs to every Pg for < —1,
but does not belong to S.
We define the class of functions Rj as follows:

(1.3) R ={f € AD) : Re[e"(f'(2) — B)] >0, Vz € D}.
It is clear that if f € R§ then f'(0) = 1 and so necessarily we must have
(1.4) (1—p3)cosa > 0.

Note that for a fixed 3, we have R C Pg. As above, it is easy to see that
the Bernardi Transform also maps Rj into Rf. It is natural to ask if the
class Rf is preserved under the Chandra-Singh Transform (1.2) and more
generally the Pommerenke Transform (1.1). We prove that this is indeed the
case and also show that all these transforms actually map Rj into strictly
smaller subclasses which can be determined.

We can now state our main results.

Theorem 1. Let «, f € R satisfy (1.4). If f € R, then
(a) Pf € Rg,, where

f ZlC ZzC)
210 — 22€

d¢ (21,2 € D),

L9 o= (9= 1+ 0= ) (55
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|21 + ZQ|}

and § = max {min{|21|, |22|}, 5

(b) Py, ., f € R§ , where

Priin(2) = e i et /oz e ; fde™) dt (0 <y <1y <2m),
(L6) Bo=8-1)+(1-5) ()

and v = min{(vy — 1), 2 — (v, —11)} € (0, Z].
This result is best possible.

(c) Bof € Rf, forc=0,1,2,---, where

B.f(z) = (c+1) /01 t f(t2) dt,

(1.7) Pe=026-1)+ 1 -0
with vo = log4,

(18)  7e=2(c+1)(=1)° llog2 =S (_IT)M

] ,e=1,2.--
k=1
and 1 < . < 2. This result is best possible.

Remark 1. If both z; and 25 lie on |z| = 1, then the Pommerenke Trans-
form (1.1) reduces to the Chandra-Singh Transform (1.2). Consequently,
without loss of generality, we shall henceforth assume when referring to the
Pommerenke Transform that at most one of z; and 2, lies on |z| = 1. Thus
we then have 0 < ¢§ < 1.

The proof of this main theorem is given in the next section. We first state
and prove some applications.

Corollary 1. If f € Rj, then
(i) Pf e R, C Rf, where fp is given by (1.5).
(i) Py, ., f € R C Rf, where B, is given by (1.6).
(49i) Bef € Rg C Rf, for c=0,1,2,---, where . is given by (1.7).
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Proof. Let o and S be fixed and let

pr=20-1)+M(1-p),

where M > 1 is fixed. We assert that R3.. C Rj. The corollary then
follows because if f € R then from the theorem in each of the cases (i)-
3+0 v

2+ 20 sinv
corresponding transform F’ belongs to Rf...

(iii) we simply let M = , Ve, Tespectively, to conclude that the

To prove our assertion that Rf.. C Rf we consider cases. Suppose F' €
R§.. and recall that (1 — ) cosa > 0.

Case 1. —oo < 8 < 1. In this case we have cosa > 0 and we obtain
fr=20-1)+M1-p5)>p.
Since F' € Rj.., i.e., Re{e"*[F'(z) — ]} > 0, we obtain
Re{eF'(2)} > B cosa > Beosa,
which implies that I € Rj.

Case 2. 1 < 8 < oo. Here cosa < 0 and observe that g** < . Thus we
have Re{e"*F'(2)} > ** cosa > fcos and hence F € R§. ||

In the above result, these transforms map Rf into strickly smaller sub-
classes and, since the values given by (1.6) and (1.7) are best possible,
the Chandra-Singh and Bernardi Transforms do not map Rf into any class
smaller than the corresponding Rj...

If the derivative of an arbitrary function in A(D) lies in a region, then
one might expect the region in which the derivative of its integral transform
lies should be related. We obtain the following result:

Theorem 2. Let f € A(D) and let F be its Pommerenke, Chandra-Singh
or Bernardi Transform with ¢ = 0,1,2,---. If A(f) = {f'(2) : z € D} lies
in a convex region 2, then A(F) = {F'(z) : z € D} also lies in Q.

Proof. Note that f € Rf if and only if f(rz)/r € R§ for any 0 <7 < 1.
Hence, without loss of generality, we may assume that 2 C C is bounded.
Furthermore, we may assume that €2 is a convex polygonal region. Conse-
quently it is sufficient to prove the theorem when €2 is a bounded convex
polygonal region with m sides. Necessarily we have 1 € (2.
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Let f € A(D) and suppose that A(f) = {f'(z) : z € D} C Q. Assume
first that 0 contains no horizontal segments. Because {2 may be obtained
as the intersection of m closed half-planes, each containing 1, it follows that

fe Ry
j=1

for suitable choices of a; and f3;, each satisfying (1 — f3;) cosa;; > 0. To see
this, we let L; be the line bounding a side of €2, 3; its intersection with the
real axis and p; (0 < p; < m) the angle L; makes with the positive real
axis. If 8; > 1, choose o; = 37” — pj; while if 8; < 1, set ay = 5 — py.
Hence f € jo for each j and by Corollary 1 the same holds for F'. Thus
F e ML, Ry and so we conclude that A(F) C Q.

If a side of €2 is a horizontal segment then we construct a larger convex
polygonal region containing all non-horizontal sides of {2 but replace each
horizontal side by two non-horizontal sides as follows. Let 0 < e < 1
and define the convex set () to be bounded by all the lines bounding
except the horizontal lines. Each horizontal line is to be replaced by two
intersecting lines. In particular, if say €2 is bounded by the horizontal line
L, through the vertices w; = a + A and wy = b+ 2\ with @ < b and A > 0,
then instead of bounding €(e) by Ly, we bound it by the two lines L;Ll)
and L,(f) which pass through the pair w; and w, = %52 +i[A + ¢(b — a)] and
the pair wy and w,, respectively. With this construction, it is clear that
Q C Qe) for all 0 < € < 1 and that Q(e) has no horizontal lines bounding
it. A similar construction holds for A < 0. Apply the above argument to
Q(e) and let € — 0 to complete the proof of the theorem. |

Remark 2. [t should be pointed out that by Corollary 1, since the trans-
forms maps Rf strickly into itself, we actually have A(F) C € C €, where
(2 is a convex region strickly inside 2. The convex region €2’ can be deter-
mined, once 2 is known.

Finally we consider iterates of integral transforms. Because these inte-
gral transforms map Rj into strickly smaller subclasses the following result
obtains:
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Theorem 3. If f is any arbitrary function in R§ and Tf is its Pom-

merenke, Chandra-Singh or Bernardi Transform with ¢ =0,1,2,---, then
i (n) -
nlggo T f(Z) =z,

where T = T o T--- 0T is the n' iterate of T and the convergence is
uniform on compact subsets in D.

We shall also prove this theorem in the next section.

2. PROOF OF THE MAIN RESULTS

We begin with a few preliminaries about the class R§. Assume throughout
that o and [ are fixed and satisfy (1.4).
It is clear that the function K defined by

(2.1) K(z) = e "[Az + Blog(l — 2)],
where

A = —)Acosa+isina
(2.2) B =—(1+X)cosa

A =1-28

belongs to the class R§ and so it is nonempty. The class Rj is convex: if
frg € R then tf + (1 —t)g € R for all 0 <t < 1. It is also rotationally
invariant: f € R§ if and only if e™* f(e'*2) € R} for p € R.

The Carathéodory class P consists of all functions p which are analytic
in D with %e p(z) > 0 and normalized by p(0) = 1. Observe that g € RS if
and only if
e (g'(z) — B) —i(1 — B)sina

(1 —p)cosa
belongs to B. From this and the distortion theorems for p € P (see [6] or
[7] for example), we see that if g € Rf, then |¢'(2)| and hence |g(z)| are

(2.3) p(z) =

bounded on all compact sets in D and so the normalization for functions in
Rj§ makes it a compact family.
The extreme points of the Carathéodory class P are well-known [7]:

(2.4) £(p) = {H‘“ ] = 1} |

1—2xzz
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From (2.3) and (2.4) it follows that the extreme points for the class Rf are
precisely

(2.5) E(Rg) = {TK(zz) : |z| =1}
where K is defined by (2.1) and (2.2).

We will make use of the following result which is essentially due to Marx
[10].
1 — ei0+m)

Lemma 1. If H(0, ) = %m{—ew log (m
_ 67/ —

0<u<m, then

>},O§9§7rand

min H (0, p) =

poo 03
0<0<m

Proof. Observe that if 8 # p then

sin 0 1 —cos(f + p)
log
2 1 —cos(f — )

H(0, p) = )-—76%9,

where
_ poo L, 0<pu<f<r
7= p—m ,0<f0<pu<mw

After a calculation we obtain

OH _ (cost o 1 — cos(0 + ) N sin 0 sin
00\ 2 1 —cos(d — ) cosf — cos p

A further calculation leads to the following:

+ ysinf .

(2.6)

0 (0H sin f
o ( 06 ) (cos B — cos )2 (2 cos §cos pu = cos )

(sin ) (1 — | cos 6])*
(cosf — cos )2

Consequently for fixed 0 < 0y < 7, the function 20 is nonincreasing with

L.
Suppose first that 0 < 6y < p < 7. Then we see that
oOH 0H

el > 2 =
89 (907u) - 89 (9077r) 0
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and so for 0 < 6 < u < 7, we see that H is an nondecreasing function of 6
and thus

H(0,p) > HO,p) =7 — .
Next, if 0 < p < 0y < 7 then

OH OH
— (0 < —(0y,0) =0.
ag(&“)— 60(07 )
In this case, H is a nonincreasing function of § and hence for 0 < p <0 <n
we get
H(0, 1) 2 H(m,p) = .

Thus if 6 # p then H (6, 1) > min{y, (7—p)} and the function is unbounded
as # — p. This proves the lemma. |

It should be pointed out that there is a typo in formula (65) in Marx[10].
It should read:

9, _ 0p(,0)\  (2sin6)(2cosfcos p — cos? O — 1)
¢ <4s1n¢ o0 > B (cosf — cos ¢)? '

Fortunately, his conclusion that the function on the left is nonpositive still
holds as our (2.6) shows.

Lemma 2. If ®((;,() = L 1 (1 _<1> and (1,G € D (G # ),

G- P\1-G
then
3+9
%GCI)(CIJCQ) Z 4:45
where § = max{min{|§1|, |Cal}, |C1;C2|}.

Proof. Let w(t) = ( + (o — (1)t, 0 <t < 1, be the line segment from (;
to ¢y in D. It follows that |w(t)| < 6 for 0 < ¢t < % or % <t < 1. To see

this, suppose say § = |(;] then

“" (%)‘ - Kl;@' < 1G] = |w(0)] =6
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and hence |w(t)| < 6 for 0 < ¢ < 1. The proof of the other cases follows
similarly. Using this we conclude that

1 ¢ o1
%B(D(CDC?) :%6{4_2_(1 /Cl 1_Zdz}

1 1
—%e/o T=o) dt

()3 () 255 o
2 2\1+6/) 4+46°

We can now prove the main results.

Proof of Theorem 1. We consider each transform separately.

(a): Let F=Pf. Now for fixed zy € D we have

Re{c®F' ()} = Re {eia [f(zlzo) - f(Z2Zo)] } '

Z12) — 2220

f(leo) - f(Zzzo)

R1R20 — #2220

real part over the set of extreme points of R§. (This follows for example from
Thm 4.5, p.44, in [7] by observing that —minRe{L(f)} = maxRe{J(f)},
where J(f) = —L(f).) It follows that

The linear functional L(f) = €™ l attains its minimum

Re(@F ()} > i e {6 [K(:rzlzo) — K(%zo)] } ,

TZ120 — TZ9Ry

where K is given by (2.1). Using (2.1) and (2.2) we obtain

, ‘ 1 1—zz12
Rel o > minRe{ A+ B lo ( > } '
e{e (ZO)} = g‘lzri 6{ ($2’120 — xzzzo) &

1 —x2929

The above function is analytic in the variable z = xz; and hence by the
minimum principle and Lemma 2 we may conclude that
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Re{e“F'(z)} > (28 —1)cosa + 2(1 — ()(cos a) ‘11‘11}% Re {P({zz1}, {222})}

> (26 —1)cosa+2(1— B)(cos ) (f%fg)

= fpcosa.
Thus for any 2o € D, we get Re{e"*[F'(z9) — fp|} > 0 and hence F = Pf €
RY..
(b):  Let F =P, ,,f. Note that the function F' € R§ if and only if

G(z) = e "F(e™z) € Rf, for any p € R. Hence we see that
(2.7)

1 /’Z f(Sei(Vl+’u)) — f(Sei(V2+u))
0

etvitn) — gi(vatu) S

G(z) = ds .

Ifv= @ then Setting n= —% in (28) giVeS
1 2 wY _ —iv
G(z) = = ./f(se) F57) 4.
e —e " Jo s

On the other hand if v =7 — ("22;”1), set u=m— % to obtain the same

form of G(z). Thus it is sufficient to show that if f € Rf, then G € Rj
where

(2.8) Glz) = — A flse®) = f(se™) 4

e — e*il/ s
with 0 <v < 7 and

fo= 8-+ (1-5) ().

sin v
For fixed 0 < v < 7 we see from (2.8) that

Re eiaG'(z)}=§Re{ o [f (") ~ (Zei”)”.

2isinv z

Now fix zp € D and consider the linear functional on A(D) defined by

1) - o fea) e )

21sin v 20

The minimum real part of L is achieved at an extreme point of Rj. Hence
we have
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Rel{e G (%)} > \g\ll:q Re {L(TK (z2))},

where K is given by (2.1). A calculation shows that

(LEK(@2)} = A+ —2 {i log (1_67“0” |

2isinv | xz 1—e"xz

This is an analytic function of w = xz,. Using (2.2) it follows from the
minimum principle and symmetry that

Re{e"“C/ ()} 2 minRe {L(7K (22))} > (26-1) cos o+ L= P)cosa

) 1 — ez'(0+1/)
_ _ i
H(O,v) —\sm{ e 10g<1_€i(0—1/)>} :

We may now apply Lemma 1 with y = v and 0 <v < 7 to see that

min H(6,v)

0<f<w

sin v

where

Re{e G (20)} > (28 — 1) cosa + (1 — B) cosa < d > = [, cos .

sin v

Hence Re{e'*[G"(20) — B.|} > 0 for any 2 € D and so G € Rj, .
To show that [, is best possible, consider the function f = K given by
(2.1) and let z = —r. A calculation gives

Refeoc (=)} = |28 - 1) + L= B gy {1 log (i> H cos

sin v r 1+ rew

and hence
lny Re (e[ (—) = ]} = 0.

(c): Let F = B,. For zy € D arbitrary but fixed, the linear functional

1
L(f)=(c+1) / e'“t°f'(tzp) dt assumes its minimum real part over the set

of extreme points of R§ and hence

(2.9) Rel{eF'(%)} > ‘g‘lI:I} Re {(c +1) /01 et K’ (xtz) dt}
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where K is given by (2.1) and (2.2). Next, by the minimum principle, we
see that

1 t° 1 tc
min/ §Re{ } dt > min / Re {7} dt
lz|=1Jo 1 —txz —m<0<m Jo 1 — tet

14
> dt
o 1+1¢
c —1 k+1
= (—-1)° [log?—z( ) ] .
=k

Using (2.9) and this estimate we obtain after a calculation

k=1

%@mﬁww}>{@B—U+2u—@®+1w4yP%z—iﬁi%i%}@%@

={(28-1)+ (1 = B)7e} (cos @)
= f.cos .

(If ¢ = 0, then [ %e{ﬁ} dt > log?2 gnd from (2.9) we get the above
result with vy = log4.) Thus we get Re{e'*[F'(29) — B:]} > 0 and hence we
conclude that F' € Rj . Because

1 1 ge Loge

= —dt <
2(c+1) 0 2 o 1+1¢

1
ﬁ</fﬁ:
0 c+1

and

Altccn:(—nckg2—§jbﬁfﬂlz2¢ﬁl)

1+¢ 1

we must have

1< <2.

To show that [, is best possible we consider the function f = K given by
(2.1) and let z = —r:

mq&pemp:@+n£m4mewﬁm

tC
1+t

dt

COoS «v.

::{@6—D+2u—5mﬂd)él
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From this and (1.7) we let 7 — 1 to obtain that Re{e"*[F'(—r) — B.]} — 0
and hence [, is best possible. This completes the proof of the theorem. |}

Proof of Theorem 3. Fix « and f satisfying (1.4). By Corollary 1, we
conclude that each of the transforms P,P,, ,, or B, (for ¢ = 0,1,2,---)
map RF into Rj.., where
(210) B = (28— 1)+ M(1— )= B2 — M)+ (M —1)

3+9 v

and M = ——, M = — or M = 7., respectively. Recall that 0 <
2426 sin v

6 < 1 (see Remark 1) and 0 < v < 7. Consequently in each case we have
1< M <2. Now let

Fo=f
F]_:Tf

F,=(ToT:---0T)f,
where T is the Pommerenke Transform P, the Chandra-Singh Transform
P,, ., or the Bernardi Transform B,.. For convenience, set © = (2 — M)
in (2.10). From Corollary 1, we may apply an induction argument to show
that F, € Rj,,) C B where

f(n) = pa™ +1—a".

Let € > 0 be given. It suffices to show that |F),(z) — 2| < e for all

|2 <r < 1andalln> N(e). Since F, € Rf,, it follows from (2.3) that

(2.11) F!(2) = e7™{p(z) — 1}(1 — B(n)) cosa + 1

for some p € P. Using (2.11) and the estimate |p(re?)| < (1 +7r)/(1 —r)
for any p € P, we obtain the following:

Fae) = 2| = [ e {p(6) = 131 = B(m) cosal dc]

e (1 — B(n)) cosa/ol{p(tz) 1 dt‘

<r(1 —ﬁ(n))cosoz/ol{1 —27“75} dt

=2"{-2(1 — B)(cos ) log(1 — 1)} .
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Hence,

since 0 < x < 1, by choosing n sufficiently large we obtain the

desired estimate and this completes the proof of the theorem. |

(1)

3. REMARKS

Our results show that the Pommerenke, Chandra-Singh and Bernardi
Transforms map Rj into strickly smaller classes. It is not too dif-
ficult to see that these transforms map K,S* and C into smaller
classes but these subclasses are not given explicitly as we have for
RZ. Tt is known however that the Alexander Transform maps S*
one-to-one and onto K i.e., f € S* if and only if Af € K. This is
in fact Alexander’s original theorem in [1].

The search for invariant subclasses under these transforms stemmed
from the fact that S was not preserved under L or A. The Chandra-
Singh Transform does not preserve S either. In fact, simply consider
the spirallike function in S given in [8]:

fz) =

z
(1 —iz)t=t’

where the principal branch of (1 —4z)'~ is chosen. If we let v; = 0
and v, = 7 and apply (1.2) to this f, then

1 . ) ) .
F(Z) _ PO,ﬂf(z) _ _ {ezLog(lfzz) . ezLog(1+zz)} )

2
A check shows that for all £ € N, we get F'(z;) = 0 where

) 1— e—27rk

w (1 + 62”) '

This shows that the Chandra-Singh Transform of the univalent func-
tion f is of infinite valence.
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