

INTEGRAL TRANSFORMS OF FUNCTIONS WITH RESTRICTED DERIVATIVES

JOHNNY E. BROWN

ABSTRACT. In this paper we show that functions whose derivatives lie in a half-plane are preserved under the Pommerenke, Chandra-Singh, Libera, Alexander and Bernardi Integral Transforms. We determine precisely how these transforms act on such functions. We prove that if the derivative of a function lies in a convex region then the derivative of its Pommerenke, Chandra-Singh, Libera, Alexander and Bernardi Transforms lie in a strickly smaller convex region which can be determined. We also consider iterates of these transforms. Best possible results are obtained.

1. INTRODUCTION

Let $A(\mathbb{D})$ denote the class of functions f which are analytic in the unit disk \mathbb{D} and normalized by $f(0) = 0$ and $f'(0) = 1$. The classical family of univalent functions in $A(\mathbb{D})$ is denoted by S . The following are well-known integral transforms on $A(\mathbb{D})$:

$$\mathbf{A}f(z) = \int_0^z \frac{f(\zeta)}{\zeta} d\zeta \quad (\text{Alexander Transform [1]})$$

$$\mathbf{L}f(z) = \frac{2}{z} \int_0^z f(\zeta) d\zeta \quad (\text{Libera Transform [9]})$$

$$\mathbf{B}_c f(z) = (c+1) \int_0^1 t^{c-1} f(tz) dt, c > -1 \quad (\text{Bernardi Transform [2]}).$$

The Alexander and Libera Transforms are special cases of the Bernardi Transform with $c = 0$ and $c = 1$, respectively.

Biernacki [3] claimed that the Alexander Transform preserved the class S , however a counterexample to this was constructed by Krzyż and Lewandowski

2000 *Mathematics Subject Classification.* Primary 30C45; Secondary 30C75.

Key words and phrases. bounded turning, integral transforms, extreme points.

[8]. Campbell and Singh [4] later showed that S is not preserved under the Libera Transform either. Hence it was of interest to determine which subclasses of S and, more generally, of $A(\mathbb{D})$ are preserved under these and other transforms. It is known that the subclasses of S consisting of convex, starlike and close-to-convex functions (denoted by K, S^* and C , respectively) are each preserved under the Alexander and Libera transforms and also under the Bernardi Transform for $c = 0, 1, 2, \dots$ (see [2] for example). Ruscheweyh and Sheil-Small [13] also proved these same results using the theory of convolutions.

Another interesting integral transform was first introduced by Pommerenke [11]:

$$(1.1) \quad \mathbf{P}f(z) = \int_0^z \frac{f(z_1\zeta) - f(z_2\zeta)}{z_1\zeta - z_2\zeta} d\zeta,$$

for fixed $|z_1| \leq 1$ and $|z_2| \leq 1$. He proved that if $f \in C(\alpha)$ for $0 \leq \alpha \leq 1$, the class of strongly close-to-convex functions of order α (i.e., $|\arg\{f'(z)/h'(z)\}| \leq \pi\alpha/2$ for some convex function h), then $\mathbf{P}f \in C(\alpha)$. Note that $\alpha = 0$ and $\alpha = 1$ correspond to the class of convex and close-to-convex functions, respectively. Recall that a function f is close-to-convex of order α if $\Re\{f'(z)/h'(z)\} > \alpha$.

Later, and apparently unaware of this result, Chandra and Singh [5] introduced a special case of the transform (1.1) defined by

$$(1.2) \quad \mathbf{P}_{\nu_1, \nu_2}f(z) = \frac{1}{e^{i\nu_1} - e^{i\nu_2}} \int_0^z \frac{f(te^{i\nu_1}) - f(te^{i\nu_2})}{t} dt,$$

where $0 \leq \nu_1 < \nu_2 < 2\pi$ and proved that convex, starlike and close-to-convex functions of order α as well as strongly close-to-convex functions of order α are all preserved under the transform $\mathbf{P}_{\nu_1, \nu_2}$. Since integral transforms tend to smooth functions these results are not too surprising. In this paper we shall study these transforms on classes of functions in $A(\mathbb{D})$ with restricted derivatives.

A function $f \in A(\mathbb{D})$ is said to be of *bounded turning* of order β , where $0 \leq \beta < 1$, if $\Re\{f'(z)\} > \beta$ for all $z \in \mathbb{D}$. We denote this class by R_β . By the Noshiro-Warszawski Theorem we know that R_β is a subclass of S and is in fact a subclass of close-to-convex functions (see Duren [6]). It is easy

to see that the Bernardi Transform maps R_β into R_β :

$$\Re e\{(\mathbf{B}_c f)'(z)\} = (c+1) \int_0^1 t^c \Re e\{f'(tz)\} dt > (c+1) \int_0^1 t^c \beta dt = \beta.$$

Moreover, it is also known for example that if $f \in R_0$ then $\mathbf{A}f \in S^*$ (see [14]).

Ponnusamy and Ronning [12] generalized R_β and studied the Bernardi Transform of functions in $A(\mathbb{D})$ whose derivatives lie in an arbitrary half-plane. They define this class of functions as

$$\mathcal{P}_\beta = \{f \in A(\mathbb{D}) : \exists \alpha \in \mathbb{R}, \Re e[e^{i\alpha}(f'(z) - \beta)] > 0, \forall z \in \mathbb{D}\},$$

where $\beta \in \mathbb{R}$, and proved a number of sharp results including finding the largest $\beta = \beta(c, \gamma)$ such that if $f \in \mathcal{P}_\beta$, then its Bernardi Transform $\mathbf{B}_c f(z)$ is starlike of order γ , generalizing the result in [14]. We should point out that unlike R_β , the class \mathcal{P}_β may contain nonunivalent functions as can be shown by the function $f(z) = z + z^2$ which belongs to every \mathcal{P}_β for $\beta < -1$, but does not belong to S .

We define the class of functions R_β^α as follows:

$$(1.3) \quad R_\beta^\alpha = \{f \in A(\mathbb{D}) : \Re e[e^{i\alpha}(f'(z) - \beta)] > 0, \forall z \in \mathbb{D}\}.$$

It is clear that if $f \in R_\beta^\alpha$ then $f'(0) = 1$ and so necessarily we must have

$$(1.4) \quad (1 - \beta) \cos \alpha > 0.$$

Note that for a fixed β , we have $R_\beta^\alpha \subset \mathcal{P}_\beta$. As above, it is easy to see that the Bernardi Transform also maps R_β^α into R_β^α . It is natural to ask if the class R_β^α is preserved under the Chandra-Singh Transform (1.2) and more generally the Pommerenke Transform (1.1). We prove that this is indeed the case and also show that all these transforms actually map R_β^α into strictly smaller subclasses which can be determined.

We can now state our main results.

Theorem 1. *Let $\alpha, \beta \in \mathbb{R}$ satisfy (1.4). If $f \in R_\beta^\alpha$, then*

(a) $\mathbf{P}f \in R_{\beta_{\mathbf{P}}}^\alpha$, where

$$\mathbf{P}f(z) = \int_0^z \frac{f(z_1\zeta) - f(z_2\zeta)}{z_1\zeta - z_2\zeta} d\zeta \quad (z_1, z_2 \in \overline{\mathbb{D}}),$$

$$(1.5) \quad \beta_{\mathbf{P}} = (2\beta - 1) + (1 - \beta) \left(\frac{3 + \delta}{2 + 2\delta} \right)$$

$$\text{and } \delta = \max \left\{ \min\{|z_1|, |z_2|\}, \frac{|z_1 + z_2|}{2} \right\}$$

(b) $\mathbf{P}_{\nu_1, \nu_2} f \in R_{\beta_*}^\alpha$, where

$$\mathbf{P}_{\nu_1, \nu_2} f(z) = \frac{1}{e^{i\nu_1} - e^{i\nu_2}} \int_0^z \frac{f(te^{i\nu_1}) - f(te^{i\nu_2})}{t} dt \quad (0 \leq \nu_1 < \nu_2 < 2\pi),$$

$$(1.6) \quad \beta_* = (2\beta - 1) + (1 - \beta) \left(\frac{\nu}{\sin \nu} \right)$$

$$\text{and } \nu = \frac{1}{2} \min\{(\nu_2 - \nu_1), 2\pi - (\nu_2 - \nu_1)\} \in (0, \frac{\pi}{2}].$$

This result is best possible.

(c) $\mathbf{B}_c f \in R_{\beta_c}^\alpha$, for $c = 0, 1, 2, \dots$, where

$$\mathbf{B}_c f(z) = (c+1) \int_0^1 t^{c-1} f(tz) dt,$$

$$(1.7) \quad \beta_c = (2\beta - 1) + (1 - \beta) \gamma_c$$

with $\gamma_0 = \log 4$,

$$(1.8) \quad \gamma_c = 2(c+1)(-1)^c \left[\log 2 - \sum_{k=1}^c \frac{(-1)^{k+1}}{k} \right], \quad c = 1, 2, \dots$$

and $1 < \gamma_c < 2$. This result is best possible.

Remark 1. If both z_1 and z_2 lie on $|z| = 1$, then the Pommerenke Transform (1.1) reduces to the Chandra-Singh Transform (1.2). Consequently, without loss of generality, we shall henceforth assume when referring to the Pommerenke Transform that at most one of z_1 and z_2 lies on $|z| = 1$. Thus we then have $0 \leq \delta < 1$.

The proof of this main theorem is given in the next section. We first state and prove some applications.

Corollary 1. If $f \in R_\beta^\alpha$, then

(i) $\mathbf{P} f \in R_{\beta_{\mathbf{P}}}^\alpha \subset R_\beta^\alpha$, where $\beta_{\mathbf{P}}$ is given by (1.5).

(ii) $\mathbf{P}_{\nu_1, \nu_2} f \in R_{\beta_*}^\alpha \subset R_\beta^\alpha$, where β_* is given by (1.6).

(iii) $\mathbf{B}_c f \in R_{\beta_c}^\alpha \subset R_\beta^\alpha$, for $c = 0, 1, 2, \dots$, where β_c is given by (1.7).

Proof. Let α and β be fixed and let

$$\beta^{**} = (2\beta - 1) + M(1 - \beta),$$

where $M > 1$ is fixed. We assert that $R_{\beta^{**}}^\alpha \subset R_\beta^\alpha$. The corollary then follows because if $f \in R_\beta^\alpha$ then from the theorem in each of the cases (i)-(iii) we simply let $M = \frac{3+\delta}{2+2\delta}$, $\frac{\nu}{\sin \nu}$, γ_c , respectively, to conclude that the corresponding transform F belongs to $R_{\beta^{**}}^\alpha$.

To prove our assertion that $R_{\beta^{**}}^\alpha \subset R_\beta^\alpha$ we consider cases. Suppose $F \in R_{\beta^{**}}^\alpha$ and recall that $(1 - \beta) \cos \alpha > 0$.

Case 1: $-\infty < \beta < 1$. In this case we have $\cos \alpha > 0$ and we obtain

$$\beta^{**} = (2\beta - 1) + M(1 - \beta) > \beta.$$

Since $F \in R_{\beta^{**}}^\alpha$, i.e., $\Re e\{e^{i\alpha}[F'(z) - \beta^{**}]\} > 0$, we obtain

$$\Re e\{e^{i\alpha}F'(z)\} > \beta^{**} \cos \alpha > \beta \cos \alpha,$$

which implies that $F \in R_\beta^\alpha$.

Case 2: $1 < \beta < \infty$. Here $\cos \alpha < 0$ and observe that $\beta^{**} < \beta$. Thus we have $\Re e\{e^{i\alpha}F'(z)\} > \beta^{**} \cos \alpha > \beta \cos \alpha$ and hence $F \in R_\beta^\alpha$. \blacksquare

In the above result, these transforms map R_β^α into strictly smaller subclasses and, since the values given by (1.6) and (1.7) are best possible, the Chandra-Singh and Bernardi Transforms do not map R_β^α into any class smaller than the corresponding $R_{\beta^{**}}^\alpha$.

If the derivative of an arbitrary function in $A(\mathbb{D})$ lies in a region, then one might expect the region in which the derivative of its integral transform lies should be related. We obtain the following result:

Theorem 2. *Let $f \in A(\mathbb{D})$ and let F be its Pommerenke, Chandra-Singh or Bernardi Transform with $c = 0, 1, 2, \dots$. If $\Delta(f) = \{f'(z) : z \in \mathbb{D}\}$ lies in a convex region Ω , then $\Delta(F) = \{F'(z) : z \in \mathbb{D}\}$ also lies in Ω .*

Proof. Note that $f \in R_\beta^\alpha$ if and only if $f(rz)/r \in R_\beta^\alpha$ for any $0 < r < 1$. Hence, without loss of generality, we may assume that $\Omega \subset \mathbb{C}$ is bounded. Furthermore, we may assume that Ω is a convex polygonal region. Consequently it is sufficient to prove the theorem when Ω is a bounded convex polygonal region with m sides. Necessarily we have $1 \in \Omega$.

Let $f \in A(\mathbb{D})$ and suppose that $\Delta(f) = \{f'(z) : z \in \mathbb{D}\} \subset \Omega$. Assume first that $\partial\Omega$ contains no horizontal segments. Because $\overline{\Omega}$ may be obtained as the intersection of m closed half-planes, each containing 1, it follows that

$$f \in \bigcap_{j=1}^m R_{\beta_j}^{\alpha_j}$$

for suitable choices of α_j and β_j , each satisfying $(1 - \beta_j) \cos \alpha_j > 0$. To see this, we let L_j be the line bounding a side of Ω , β_j its intersection with the real axis and μ_j ($0 < \mu_j < \pi$) the angle L_j makes with the positive real axis. If $\beta_j > 1$, choose $\alpha_j = \frac{3\pi}{2} - \mu_j$; while if $\beta_j < 1$, set $\alpha_j = \frac{\pi}{2} - \mu_j$. Hence $f \in R_{\beta_j}^{\alpha_j}$ for each j and by Corollary 1 the same holds for F . Thus $F \in \bigcap_{j=1}^m R_{\beta_j}^{\alpha_j}$ and so we conclude that $\Delta(F) \subset \Omega$.

If a side of $\overline{\Omega}$ is a horizontal segment then we construct a larger convex polygonal region containing all non-horizontal sides of Ω but replace each horizontal side by two non-horizontal sides as follows. Let $0 < \epsilon < 1$ and define the convex set $\Omega(\epsilon)$ to be bounded by all the lines bounding $\overline{\Omega}$ except the horizontal lines. Each horizontal line is to be replaced by two intersecting lines. In particular, if say Ω is bounded by the horizontal line L_h through the vertices $\omega_1 = a + i\lambda$ and $\omega_2 = b + i\lambda$ with $a < b$ and $\lambda > 0$, then instead of bounding $\Omega(\epsilon)$ by L_h , we bound it by the two lines $L_h^{(1)}$ and $L_h^{(2)}$ which pass through the pair ω_1 and $\omega_\epsilon = \frac{b+a}{2} + i[\lambda + \epsilon(b-a)]$ and the pair ω_2 and ω_ϵ , respectively. With this construction, it is clear that $\Omega \subset \Omega(\epsilon)$ for all $0 < \epsilon < 1$ and that $\Omega(\epsilon)$ has no horizontal lines bounding it. A similar construction holds for $\lambda < 0$. Apply the above argument to $\Omega(\epsilon)$ and let $\epsilon \rightarrow 0$ to complete the proof of the theorem. \blacksquare

Remark 2. It should be pointed out that by Corollary 1, since the transforms maps R_β^α strickly into itself, we actually have $\Delta(F) \subset \Omega' \subset \Omega$, where Ω' is a convex region strickly inside Ω . The convex region Ω' can be determined, once Ω is known.

Finally we consider iterates of integral transforms. Because these integral transforms map R_β^α into strickly smaller subclasses the following result obtains:

Theorem 3. *If f is any arbitrary function in R_β^α and $\mathbf{T}f$ is its Pommerenke, Chandra-Singh or Bernardi Transform with $c = 0, 1, 2, \dots$, then*

$$\lim_{n \rightarrow \infty} \mathbf{T}^{(n)} f(z) = z,$$

where $\mathbf{T}^{(n)} = \mathbf{T} \circ \mathbf{T} \cdots \circ \mathbf{T}$ is the n^{th} iterate of \mathbf{T} and the convergence is uniform on compact subsets in \mathbb{D} .

We shall also prove this theorem in the next section.

2. PROOF OF THE MAIN RESULTS

We begin with a few preliminaries about the class R_β^α . Assume throughout that α and β are fixed and satisfy (1.4).

It is clear that the function K defined by

$$(2.1) \quad K(z) = e^{-i\alpha}[Az + B \log(1 - z)],$$

where

$$(2.2) \quad \begin{aligned} A &= -\lambda \cos \alpha + i \sin \alpha \\ B &= -(1 + \lambda) \cos \alpha \\ \lambda &= 1 - 2\beta \end{aligned}$$

belongs to the class R_β^α and so it is nonempty. The class R_β^α is convex: if $f, g \in R_\beta^\alpha$ then $tf + (1 - t)g \in R_\beta^\alpha$ for all $0 \leq t \leq 1$. It is also rotationally invariant: $f \in R_\beta^\alpha$ if and only if $e^{-i\mu} f(e^{i\mu} z) \in R_\beta^\alpha$ for $\mu \in \mathbb{R}$.

The Carathéodory class \mathfrak{P} consists of all functions p which are analytic in \mathbb{D} with $\Re p(z) > 0$ and normalized by $p(0) = 1$. Observe that $g \in R_\beta^\alpha$ if and only if

$$(2.3) \quad p(z) = \frac{e^{i\alpha}(g'(z) - \beta) - i(1 - \beta) \sin \alpha}{(1 - \beta) \cos \alpha}$$

belongs to \mathfrak{P} . From this and the distortion theorems for $p \in \mathfrak{P}$ (see [6] or [7] for example), we see that if $g \in R_\beta^\alpha$, then $|g'(z)|$ and hence $|g(z)|$ are bounded on all compact sets in \mathbb{D} and so the normalization for functions in R_β^α makes it a compact family.

The extreme points of the Carathéodory class \mathfrak{P} are well-known [7]:

$$(2.4) \quad \mathcal{E}(\mathfrak{P}) = \left\{ \frac{1 + xz}{1 - xz} : |x| = 1 \right\}.$$

From (2.3) and (2.4) it follows that the extreme points for the class R_β^α are precisely

$$(2.5) \quad \mathcal{E}(R_\beta^\alpha) = \{\bar{x}K(xz) : |x| = 1\}$$

where K is defined by (2.1) and (2.2).

We will make use of the following result which is essentially due to Marx [10].

Lemma 1. *If $H(\theta, \mu) = \Im m \left\{ -e^{-i\theta} \log \left(\frac{1 - e^{i(\theta+\mu)}}{1 - e^{i(\theta-\mu)}} \right) \right\}$, $0 \leq \theta \leq \pi$ and $0 \leq \mu \leq \pi$, then*

$$\min_{0 \leq \theta \leq \pi} H(\theta, \mu) = \begin{cases} \mu & , 0 \leq \mu \leq \frac{\pi}{2} \\ \pi - \mu & , \frac{\pi}{2} < \mu \leq \pi \end{cases} .$$

Proof. Observe that if $\theta \neq \mu$ then

$$H(\theta, \mu) = \frac{\sin \theta}{2} \log \left(\frac{1 - \cos(\theta + \mu)}{1 - \cos(\theta - \mu)} \right) - \gamma \cos \theta ,$$

where

$$\gamma = \begin{cases} \mu & , 0 \leq \mu < \theta \leq \pi \\ \mu - \pi & , 0 \leq \theta < \mu \leq \pi \end{cases} .$$

After a calculation we obtain

$$\frac{\partial H}{\partial \theta} = \left(\frac{\cos \theta}{2} \right) \log \left(\frac{1 - \cos(\theta + \mu)}{1 - \cos(\theta - \mu)} \right) + \frac{\sin \theta \sin \mu}{\cos \theta - \cos \mu} + \gamma \sin \theta .$$

A further calculation leads to the following:

(2.6)

$$\begin{aligned} \frac{\partial}{\partial \mu} \left(\frac{\partial H}{\partial \theta} \right) &= \frac{\sin \theta}{(\cos \theta - \cos \mu)^2} (2 \cos \theta \cos \mu - \cos^2 \theta - 1) \\ &\leq -\frac{(\sin \theta) (1 - |\cos \theta|)^2}{(\cos \theta - \cos \mu)^2} . \end{aligned}$$

Consequently for fixed $0 \leq \theta_0 \leq \pi$, the function $\frac{\partial H}{\partial \theta}$ is nonincreasing with μ .

Suppose first that $0 \leq \theta_0 < \mu \leq \pi$. Then we see that

$$\frac{\partial H}{\partial \theta}(\theta_0, \mu) \geq \frac{\partial H}{\partial \theta}(\theta_0, \pi) = 0$$

and so for $0 \leq \theta < \mu \leq \pi$, we see that H is an nondecreasing function of θ and thus

$$H(\theta, \mu) \geq H(0, \mu) = \pi - \mu.$$

Next, if $0 \leq \mu < \theta_0 \leq \pi$ then

$$\frac{\partial H}{\partial \theta}(\theta_0, \mu) \leq \frac{\partial H}{\partial \theta}(\theta_0, 0) = 0.$$

In this case, H is a nonincreasing function of θ and hence for $0 \leq \mu < \theta \leq \pi$ we get

$$H(\theta, \mu) \geq H(\pi, \mu) = \mu.$$

Thus if $\theta \neq \mu$ then $H(\theta, \mu) \geq \min\{\mu, (\pi - \mu)\}$ and the function is unbounded as $\theta \rightarrow \mu$. This proves the lemma. \blacksquare

It should be pointed out that there is a typo in formula (65) in Marx[10]. It should read:

$$\frac{\partial}{\partial \phi} \left(4 \sin \phi \frac{\partial p(\phi, \theta)}{\partial \theta} \right) = \frac{(2 \sin \theta)(2 \cos \theta \cos \phi - \cos^2 \theta - 1)}{(\cos \theta - \cos \phi)^2}.$$

Fortunately, his conclusion that the function on the left is nonpositive still holds as our (2.6) shows.

Lemma 2. *If $\Phi(\zeta_1, \zeta_2) = \frac{1}{\zeta_2 - \zeta_1} \log \left(\frac{1 - \zeta_1}{1 - \zeta_2} \right)$ and $\zeta_1, \zeta_2 \in \overline{\mathbb{D}}$ ($\zeta_1 \neq \zeta_2$), then*

$$\Re e \Phi(\zeta_1, \zeta_2) \geq \frac{3 + \delta}{4 + 4\delta}$$

where $\delta = \max \left\{ \min\{|\zeta_1|, |\zeta_2|\}, \frac{|\zeta_1 + \zeta_2|}{2} \right\}$.

Proof. Let $\omega(t) = \zeta_1 + (\zeta_2 - \zeta_1)t$, $0 \leq t \leq 1$, be the line segment from ζ_1 to ζ_2 in $\overline{\mathbb{D}}$. It follows that $|\omega(t)| \leq \delta$ for $0 \leq t \leq \frac{1}{2}$ or $\frac{1}{2} \leq t \leq 1$. To see this, suppose say $\delta = |\zeta_1|$ then

$$\left| \omega \left(\frac{1}{2} \right) \right| = \frac{|\zeta_1 + \zeta_2|}{2} \leq |\zeta_1| = |\omega(0)| = \delta$$

and hence $|\omega(t)| \leq \delta$ for $0 \leq t \leq \frac{1}{2}$. The proof of the other cases follows similarly. Using this we conclude that

$$\begin{aligned}\Re e \Phi(\zeta_1, \zeta_2) &= \Re e \left\{ \frac{1}{\zeta_2 - \zeta_1} \int_{\zeta_1}^{\zeta_2} \frac{1}{1-z} dz \right\} \\ &= \Re e \int_0^1 \frac{1}{1 - \omega(t)} dt \\ &\geq \int_0^1 \frac{1}{1 + |\omega(t)|} dt \\ &\geq \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{1 + \delta} \right) = \frac{3 + \delta}{4 + 4\delta}. \quad \blacksquare\end{aligned}$$

We can now prove the main results.

Proof of Theorem 1. We consider each transform separately.

(a): Let $F = \mathbf{P}f$. Now for fixed $z_0 \in \mathbb{D}$ we have

$$\Re e \{e^{i\alpha} F'(z_0)\} = \Re e \left\{ e^{i\alpha} \left[\frac{f(z_1 z_0) - f(z_2 z_0)}{z_1 z_0 - z_2 z_0} \right] \right\}.$$

The linear functional $L(f) = e^{i\alpha} \left[\frac{f(z_1 z_0) - f(z_2 z_0)}{z_1 z_0 - z_2 z_0} \right]$ attains its minimum real part over the set of extreme points of R_β^α . (This follows for example from Thm 4.5, p.44, in [7] by observing that $-\min \Re e \{L(f)\} = \max \Re e \{J(f)\}$, where $J(f) = -L(f)$.) It follows that

$$\Re e \{e^{i\alpha} F'(z_0)\} \geq \min_{|x|=1} \Re e \left\{ e^{i\alpha} \left[\frac{K(x z_1 z_0) - K(x z_2 z_0)}{x z_1 z_0 - x z_2 z_0} \right] \right\},$$

where K is given by (2.1). Using (2.1) and (2.2) we obtain

$$\Re e \{e^{i\alpha} F'(z_0)\} \geq \min_{|x|=1} \Re e \left\{ A + B \frac{1}{(x z_1 z_0 - x z_2 z_0)} \log \left(\frac{1 - x z_1 z_0}{1 - x z_2 z_0} \right) \right\}.$$

The above function is analytic in the variable $z = x z_0$ and hence by the minimum principle and Lemma 2 we may conclude that

$$\begin{aligned}
\Re e\{e^{i\alpha}F'(z_0)\} &> (2\beta-1)\cos\alpha + 2(1-\beta)(\cos\alpha) \min_{|z|=1} \Re e\{\Phi(\{zz_1\}, \{zz_2\})\} \\
&\geq (2\beta-1)\cos\alpha + 2(1-\beta)(\cos\alpha) \left(\frac{3+\delta}{4+4\delta} \right) \\
&= \beta_{\mathbf{P}} \cos\alpha.
\end{aligned}$$

Thus for any $z_0 \in \mathbb{D}$, we get $\Re e\{e^{i\alpha}[F'(z_0) - \beta_{\mathbf{P}}]\} > 0$ and hence $F = \mathbf{P}f \in R_{\beta_{\mathbf{P}}}^{\alpha}$.

(b): Let $F = \mathbf{P}_{\nu_1, \nu_2}f$. Note that the function $F \in R_{\beta_*}^{\alpha}$ if and only if $G(z) = e^{-i\mu}F(e^{i\mu}z) \in R_{\beta_*}^{\alpha}$ for any $\mu \in \mathbb{R}$. Hence we see that

(2.7)

$$G(z) = \frac{1}{e^{i(\nu_1+\mu)} - e^{i(\nu_2+\mu)}} \int_0^z \frac{f(se^{i(\nu_1+\mu)}) - f(se^{i(\nu_2+\mu)})}{s} ds.$$

If $\nu = \frac{(\nu_2-\nu_1)}{2}$ then setting $\mu = -\frac{(\nu_1+\nu_2)}{2}$ in (2.8) gives

$$G(z) = \frac{1}{e^{i\nu} - e^{-i\nu}} \int_0^z \frac{f(se^{i\nu}) - f(se^{-i\nu})}{s} ds.$$

On the other hand if $\nu = \pi - \frac{(\nu_2-\nu_1)}{2}$, set $\mu = \pi - \frac{(\nu_1+\nu_2)}{2}$ to obtain the same form of $G(z)$. Thus it is sufficient to show that if $f \in R_{\beta}^{\alpha}$, then $G \in R_{\beta_*}^{\alpha}$ where

$$(2.8) \quad G(z) = \frac{1}{e^{i\nu} - e^{-i\nu}} \int_0^z \frac{f(se^{i\nu}) - f(se^{-i\nu})}{s} ds$$

with $0 < \nu \leq \frac{\pi}{2}$ and

$$\beta_* = (2\beta-1) + (1-\beta) \left(\frac{\nu}{\sin \nu} \right).$$

For fixed $0 < \nu \leq \frac{\pi}{2}$ we see from (2.8) that

$$\Re e\{e^{i\alpha}G'(z)\} = \Re e\left\{ \frac{e^{i\alpha}}{2i \sin \nu} \left[\frac{f(ze^{i\nu}) - f(ze^{-i\nu})}{z} \right] \right\}.$$

Now fix $z_0 \in \mathbb{D}$ and consider the linear functional on $A(\mathbb{D})$ defined by

$$L(f) = \frac{e^{i\alpha}}{2i \sin \nu} \left\{ \frac{f(z_0 e^{i\nu}) - f(z_0 e^{-i\nu})}{z_0} \right\}.$$

The minimum real part of L is achieved at an extreme point of R_{β}^{α} . Hence we have

$$\Re e\{e^{i\alpha}G'(z_0)\} \geq \min_{|x|=1} \Re e\{L(\bar{x}K(xz))\},$$

where K is given by (2.1). A calculation shows that

$$\{L(\bar{x}K(xz))\} = A + \frac{B}{2i \sin \nu} \left\{ \frac{1}{xz_0} \log \left(\frac{1 - e^{i\nu} xz_0}{1 - e^{-i\nu} xz_0} \right) \right\}.$$

This is an analytic function of $\omega = xz_0$. Using (2.2) it follows from the minimum principle and symmetry that

$$\Re e\{e^{i\alpha}G'(z_0)\} \geq \min_{|x|=1} \Re e\{L(\bar{x}K(xz))\} > (2\beta - 1) \cos \alpha + \frac{(1 - \beta) \cos \alpha}{\sin \nu} \left[\min_{0 \leq \theta \leq \pi} H(\theta, \nu) \right]$$

where

$$H(\theta, \nu) = \Im m \left\{ -e^{-i\theta} \log \left(\frac{1 - e^{i(\theta+\nu)}}{1 - e^{i(\theta-\nu)}} \right) \right\}.$$

We may now apply Lemma 1 with $\mu = \nu$ and $0 < \nu \leq \frac{\pi}{2}$ to see that

$$\Re e\{e^{i\alpha}G'(z_0)\} \geq (2\beta - 1) \cos \alpha + (1 - \beta) \cos \alpha \left(\frac{\nu}{\sin \nu} \right) = \beta_* \cos \alpha.$$

Hence $\Re e\{e^{i\alpha}[G'(z_0) - \beta_*]\} > 0$ for any $z_0 \in \mathbb{D}$ and so $G \in R_{\beta_*}^\alpha$.

To show that β_* is best possible, consider the function $f = K$ given by (2.1) and let $z = -r$. A calculation gives

$$\Re e\{e^{i\alpha}G'(-r)\} = \left[(2\beta - 1) + \frac{(1 - \beta)}{\sin \nu} \Im m \left\{ \frac{1}{r} \log \left(\frac{1 + re^{i\nu}}{1 + re^{-i\nu}} \right) \right\} \right] \cos \alpha$$

and hence

$$\lim_{r \rightarrow 1} \Re e\{e^{i\alpha}[G'(-r) - \beta_*]\} = 0.$$

(c): Let $F = \mathbf{B}_c$. For $z_0 \in \mathbb{D}$ arbitrary but fixed, the linear functional $L(f) = (c + 1) \int_0^1 e^{i\alpha} t^c f'(tz_0) dt$ assumes its minimum real part over the set of extreme points of R_β^α and hence

$$(2.9) \quad \Re e\{e^{i\alpha}F'(z_0)\} \geq \min_{|x|=1} \Re e \left\{ (c + 1) \int_0^1 e^{i\alpha} t^c K'(xtz_0) dt \right\}$$

where K is given by (2.1) and (2.2). Next, by the minimum principle, we see that

$$\begin{aligned} \min_{|x|=1} \int_0^1 \Re e \left\{ \frac{t^c}{1-tx z_0} \right\} dt &> \min_{-\pi < \theta \leq \pi} \int_0^1 \Re e \left\{ \frac{t^c}{1-te^{i\theta}} \right\} dt \\ &\geq \int_0^1 \frac{t^c}{1+t} dt \\ &= (-1)^c \left[\log 2 - \sum_{k=1}^c \frac{(-1)^{k+1}}{k} \right]. \end{aligned}$$

Using (2.9) and this estimate we obtain after a calculation

$$\begin{aligned} \Re \{e^{i\alpha} F'(z_0)\} &> \left\{ (2\beta - 1) + 2(1 - \beta)(c + 1)(-1)^c \left[\log 2 - \sum_{k=1}^c \frac{(-1)^{k+1}}{k} \right] \right\} (\cos \alpha) \\ &= \{(2\beta - 1) + (1 - \beta)\gamma_c\} (\cos \alpha) \\ &= \beta_c \cos \alpha. \end{aligned}$$

(If $c = 0$, then $\int_0^1 \Re e \left\{ \frac{1}{1-te^{i\theta}} \right\} dt \geq \log 2$ and from (2.9) we get the above result with $\gamma_0 = \log 4$.) Thus we get $\Re e \{e^{i\alpha} [F'(z_0) - \beta_c]\} > 0$ and hence we conclude that $F \in R_{\beta_c}^\alpha$. Because

$$\frac{1}{2(c+1)} = \int_0^1 \frac{t^c}{2} dt < \int_0^1 \frac{t^c}{1+t} dt < \int_0^1 t^c dt = \frac{1}{c+1}$$

and

$$\int_0^1 \frac{t^c}{1+t} dt = (-1)^c \left[\log 2 - \sum_{k=1}^c \frac{(-1)^{k+1}}{k} \right] = \frac{\gamma_c}{2(c+1)}$$

we must have

$$1 < \gamma_c < 2.$$

To show that β_c is best possible we consider the function $f = K$ given by (2.1) and let $z = -r$:

$$\begin{aligned} \Re e \{e^{i\alpha} F'(-r)\} &= (c+1) \int_0^1 \Re e \left\{ e^{i\alpha} K'(-tr) \right\} dt \\ &= \left[(2\beta - 1) + 2(1 - \beta)(c + 1) \int_0^1 \frac{t^c}{1+rt} dt \right] \cos \alpha. \end{aligned}$$

From this and (1.7) we let $r \rightarrow 1$ to obtain that $\Re e\{e^{i\alpha}[F'(-r) - \beta_c]\} \rightarrow 0$ and hence β_c is best possible. This completes the proof of the theorem. \blacksquare

Proof of Theorem 3. Fix α and β satisfying (1.4). By Corollary 1, we conclude that each of the transforms \mathbf{P} , $\mathbf{P}_{\nu_1, \nu_2}$ or \mathbf{B}_c (for $c = 0, 1, 2, \dots$) map R_β^α into $R_{\beta^{**}}^\alpha$, where

$$(2.10) \quad \beta^{**} = (2\beta - 1) + M(1 - \beta) = \beta(2 - M) + (M - 1)$$

and $M = \frac{3 + \delta}{2 + 2\delta}$, $M = \frac{\nu}{\sin \nu}$ or $M = \gamma_c$, respectively. Recall that $0 \leq \delta < 1$ (see Remark 1) and $0 < \nu \leq \frac{\pi}{2}$. Consequently in each case we have $1 < M < 2$. Now let

$$\begin{aligned} F_0 &= f \\ F_1 &= \mathbf{T}f \\ &\vdots \\ F_n &= (\mathbf{T} \circ \mathbf{T} \cdots \circ \mathbf{T})f, \end{aligned}$$

where \mathbf{T} is the Pommerenke Transform \mathbf{P} , the Chandra-Singh Transform $\mathbf{P}_{\nu_1, \nu_2}$ or the Bernardi Transform \mathbf{B}_c . For convenience, set $x = (2 - M)$ in (2.10). From Corollary 1, we may apply an induction argument to show that $F_n \in R_{\beta(n)}^\alpha \subset R_\beta^\alpha$ where

$$\beta(n) = \beta x^n + 1 - x^n.$$

Let $\epsilon > 0$ be given. It suffices to show that $|F_n(z) - z| < \epsilon$ for all $|z| \leq r < 1$ and all $n > N(\epsilon)$. Since $F_n \in R_{\beta(n)}^\alpha$, it follows from (2.3) that

$$(2.11) \quad F'_n(z) = e^{-i\alpha}\{p(z) - 1\}(1 - \beta(n)) \cos \alpha + 1$$

for some $p \in \mathfrak{P}$. Using (2.11) and the estimate $|p(re^{i\theta})| \leq (1 + r)/(1 - r)$ for any $p \in \mathfrak{P}$, we obtain the following:

$$\begin{aligned} |F_n(z) - z| &= \left| \int_0^z [e^{-i\alpha}\{p(\zeta) - 1\}(1 - \beta(n)) \cos \alpha] d\zeta \right| \\ &= \left| ze^{-i\alpha}(1 - \beta(n)) \cos \alpha \int_0^1 \{p(tz) - 1\} dt \right| \\ &\leq r(1 - \beta(n)) \cos \alpha \int_0^1 \left\{ \frac{2}{1 - rt} \right\} dt \\ &= x^n \{-2(1 - \beta)(\cos \alpha) \log(1 - r)\}. \end{aligned}$$

Hence, since $0 < x < 1$, by choosing n sufficiently large we obtain the desired estimate and this completes the proof of the theorem. \blacksquare

3. REMARKS

- (1) Our results show that the Pommerenke, Chandra-Singh and Bernardi Transforms map R_β^α into strickly smaller classes. It is not too difficult to see that these transforms map K, S^* and C into smaller classes but these subclasses are not given explicitly as we have for R_β^α . It is known however that the Alexander Transform maps S^* one-to-one and onto K i.e., $f \in S^*$ if and only if $\mathbf{A}f \in K$. This is in fact Alexander's original theorem in [1].
- (2) The search for invariant subclasses under these transforms stemmed from the fact that S was not preserved under \mathbf{L} or \mathbf{A} . The Chandra-Singh Transform does not preserve S either. In fact, simply consider the spirallike function in S given in [8]:

$$f(z) = \frac{z}{(1 - iz)^{1-i}},$$

where the principal branch of $(1 - iz)^{1-i}$ is chosen. If we let $\nu_1 = 0$ and $\nu_2 = \pi$ and apply (1.2) to this f , then

$$F(z) = \mathbf{P}_{0,\pi} f(z) = \frac{1}{2} \left\{ e^{i \operatorname{Log}(1-iz)} - e^{i \operatorname{Log}(1+iz)} \right\}.$$

A check shows that for all $k \in \mathbb{N}$, we get $F(z_k) = 0$ where

$$z_k = i \left(\frac{1 - e^{-2\pi k}}{1 + e^{-2\pi k}} \right).$$

This shows that the Chandra-Singh Transform of the univalent function f is of *infinite* valence.

REFERENCES

- [1] Alexander, J. W., *Functions Which Map the Interior of the Unit disk Upon Simple Regions*, Ann. of Math. **17**(1915), 12-22.
- [2] Bernardi, S.D., *Convex and Starlike Univalent Functions*, Trans. Amer. Math. Soc. **135**(1969), 429-466.

- [3] Biernacki, M., *Sur l'intégrale des fonctions univalentes*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. **8**(1960), 29-34.
- [4] Campbell, D.M. and Singh, V., *Valence Properties of the Solution of a Differential Equation*, Pacific J. Math. **84**(1979), 29-33.
- [5] Chandra, S. and Singh, P., *An Integral Transformation of Some Classes of regular Univalent Functions*, Indian J. Pure Appl. Math. **6**(1975), 1270-1275.
- [6] P. L. Duren, *Univalent Functions*, Springer-Verlag, Berlin and New York, 1983.
- [7] D. J. Hallenbeck and T. H. MacGregor, *Linear Problems and Convexity Techniques in Geometric Function Theory*, Monographs and Studies in Mathematics 22, Pitman, 1984.
- [8] Krzyż, J. and Lewandowski, Z., *On the Integral of Univalent Functions*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. **11**(1963), 447-448.
- [9] Libera, R.J., *Some Classes of Regular Univalent Functions*, Proc. Amer. Math. Soc. **16**(1965), 755-758.
- [10] Marx, A., *Untersuchungen über Schlichte Abbildungen*, Math. Ann. **107**(1933), 40-67.
- [11] Pommerenke, Ch., *On Close-to-Convex Analytic Functions*, Trans. Amer. Math. Soc. **114**(1965), 176-186.
- [12] Ponnusamy, S. and Ronning, F., *Integral Transforms of Functions With the Derivative in a Halfplane*, Israel J. Math. **114**(1999), 177-188.
- [13] Ruscheweyh, St. and Sheil-Small, T., *Hadamard Products of Schlicht Functions and the Pólya-Schoenberg Conjecture*, Comment. Math. Helv. **48**(1973), 119-135.
- [14] Singh, R. and Singh, S., *Starlikeness and Convexity of Certain Integrals*, Ann. Univ. Mariae Curie-Sklod. Sect. A **35**(1981), 145-148.

Current address: Department of Mathematics, Purdue University, West Lafayette, IN 47907