
INTEGRAL TRANSFORMS OF FUNCTIONS WITHRESTRICTED DERIVATIVESJOHNNY E. BROWNAbstra
t. In this paper we show that fun
tions whose derivatives liein a half-plane are preserved under the Pommerenke, Chandra-Singh,Libera, Alexander and Bernardi Integral Transforms. We determine pre-
isely how these transforms a
t on su
h fun
tions. We prove that if thederivative of a fun
tion lies in a 
onvex region then the derivative of itsPommerenke, Chandra-Singh, Libera, Alexander and Bernardi Trans-forms lie in a stri
kly smaller 
onvex region whi
h 
an be determined.We also 
onsider iterates of these transforms. Best possible results areobtained. 1. Introdu
tionLet A(D ) denote the 
lass of fun
tions f whi
h are analyti
 in the unitdisk D and normalized by f(0) = 0 and f 0(0) = 1. The 
lassi
al family ofunivalent fun
tions in A(D ) is denoted by S. The following are well-knownintegral transforms on A(D ):Af(z) = Z z0 f(�)� d� (Alexander Transform [1℄)Lf(z) = 2z Z z0 f(�) d� (LiberaTransform [9℄)B
f(z) = (
+ 1) Z 10 t
�1f(tz) dt ; 
 > �1 (Bernardi Transform [2℄) :The Alexander and Libera Transforms are spe
ial 
ases of the BernardiTransform with 
 = 0 and 
 = 1, respe
tively.Bierna
ki [3℄ 
laimed that the Alexander Transform preserved the 
lass S,however a 
ounterexample to this was 
onstru
ted by Krzy_z and Lewandowski2000 Mathemati
s Subje
t Classi�
ation. Primary 30C45; Se
ondary 30C75.Key words and phrases. bounded turning, integral transforms, extreme points.1



2 JOHNNY E. BROWN[8℄. Campbell and Singh [4℄ later showed that S is not preserved under theLibera Transform either. Hen
e it was of interest to determine whi
h sub-
lasses of S and, more generally, of A(D ) are preserved under these andother transforms. It is known that the sub
lasses of S 
onsisting of 
onvex,starlike and 
lose-to-
onvex fun
tions (denoted by K;S� and C, respe
-tively) are ea
h preserved under the Alexander and Libera transforms andalso under the Bernardi Transform for 
 = 0; 1; 2; � � � (see [2℄ for example).Rus
heweyh and Sheil-Small [13℄ also proved these same results using thetheory of 
onvolutions.Another interesting integral transform was �rst introdu
ed by Pommerenke[11℄: Pf(z) = Z z0 f(z1�)� f(z2�)z1� � z2� d� ;(1.1)for �xed jz1j � 1 and jz2j � 1. He proved that if f 2 C(�) for 0 �� � 1, the 
lass of strongly 
lose-to-
onvex fun
tions of order � (i.e.,j argff 0(z)=h0(z)gj � ��=2 for some 
onvex fun
tion h), then Pf 2 C(�).Note that � = 0 and � = 1 
orrespond to the 
lass of 
onvex and 
lose-to-
onvex fun
tions, respe
tively. Re
all that a fun
tion f is 
lose-to-
onvexof order � if <eff 0(z)=h0(z)g > �.Later, and apparently unaware of this result, Chandra and Singh [5℄ in-trodu
ed a spe
ial 
ase of the transform (1.1) de�ned byP�1;�2f(z) = 1ei�1 � ei�2 Z z0 f(tei�1)� f(tei�2)t dt;(1.2)where 0 � �1 < �2 < 2� and proved that 
onvex, starlike and 
lose-to-
onvex fun
tions of order � as well as strongly 
lose-to-
onvex fun
tions oforder � are all preserved under the transform P�1;�2. Sin
e integral trans-forms tend to smooth fun
tions these results are not too surprising. In thispaper we shall study these transforms on 
lasses of fun
tions in A(D ) withrestri
ted derivatives.A fun
tion f 2 A(D ) is said to be of bounded turning of order �, where0 � � < 1, if <eff 0(z)g > � for all z 2 D . We denote this 
lass by R�. Bythe Noshiro-Warshawski Theorem we know that R� is a sub
lass of S andis in fa
t a sub
lass of 
lose-to-
onvex fun
tions (see Duren [6℄). It is easy



INTEGRAL TRANSFORMS OF FUNCTIONS WITH RESTRICTED DERIVATIVES 3to see that the Bernardi Transform maps R� into R�:<ef(B
f)0(z)g = (
+ 1) Z 10 t
<eff 0(tz)g dt > (
+ 1) Z 10 t
 � dt = � :Moreover, it is also known for example that if f 2 R0 then Af 2 S� (see[14℄).Ponnusamy and Ronning [12℄ generalized R� and studied the BernardiTransform of fun
tions in A(D ) whose derivatives lie in an arbitrary half-plane. They de�ne this 
lass of fun
tions asP� = ff 2 A(D ) : 9� 2 R; <e[ei�(f 0(z)� �)℄ > 0; 8z 2 D g ;where � 2 R, and proved a number of sharp results in
luding �nding thelargest � = �(
; 
) su
h that if f 2 P�, then its Bernardi Transform B
f(z)is starlike of order 
, generalizing the result in [14℄. We should point outthat unlike R�, the 
lass P� may 
ontain nonunivalent fun
tions as 
an beshown by the fun
tion f(z) = z+ z2 whi
h belongs to every P� for � < �1,but does not belong to S.We de�ne the 
lass of fun
tions R�� as follows:R�� = ff 2 A(D ) : <e[ei�(f 0(z)� �)℄ > 0; 8z 2 D g :(1.3)It is 
lear that if f 2 R�� then f 0(0) = 1 and so ne
essarily we must have(1� �) 
os� > 0 :(1.4)Note that for a �xed �, we have R�� � P�. As above, it is easy to see thatthe Bernardi Transform also maps R�� into R�� . It is natural to ask if the
lass R�� is preserved under the Chandra-Singh Transform (1.2) and moregenerally the Pommerenke Transform (1.1). We prove that this is indeed the
ase and also show that all these transforms a
tually map R�� into stri
tlysmaller sub
lasses whi
h 
an be determined.We 
an now state our main results.Theorem 1. Let �; � 2 R satisfy (1:4). If f 2 R�� , then(a) Pf 2 R��P, wherePf(z) = Z z0 f(z1�)� f(z2�)z1� � z2� d� (z1; z2 2 D );�P = (2� � 1) + (1� �) 3 + Æ2 + 2Æ!(1.5)



4 JOHNNY E. BROWNand Æ = max(minfjz1j; jz2jg; jz1 + z2j2 )(b) P�1;�2f 2 R���, whereP�1;�2f(z) = 1ei�1 � ei�2 Z z0 f(tei�1)� f(tei�2)t dt (0 � �1 < �2 < 2�);�� = (2� � 1) + (1� �)� �sin ��(1.6) and � = 12 minf(�2 � �1); 2� � (�2 � �1)g 2 (0; �2 ℄ :This result is best possible.(
) B
f 2 R��
, for 
 = 0; 1; 2; � � � , whereB
f(z) = (
+ 1) Z 10 t
�1f(tz) dt;�
 = (2� � 1) + (1� �)

(1.7) with 
0 = log 4,

 = 2(
+ 1)(�1)
 "log 2� 
Xk=1 (�1)k+1k # ; 
 = 1; 2; � � �(1.8) and 1 < 

 < 2. This result is best possible.Remark 1. If both z1 and z2 lie on jzj = 1, then the Pommerenke Trans-form (1.1) redu
es to the Chandra-Singh Transform (1.2). Consequently,without loss of generality, we shall hen
eforth assume when referring to thePommerenke Transform that at most one of z1 and z2 lies on jzj = 1. Thuswe then have 0 � Æ < 1.The proof of this main theorem is given in the next se
tion. We �rst stateand prove some appli
ations.Corollary 1. If f 2 R�� , then(i) Pf 2 R��P � R�� , where �P is given by (1:5).(ii) P�1;�2f 2 R��� � R�� , where �� is given by (1:6).(iii) B
f 2 R��
 � R�� , for 
 = 0; 1; 2; � � � , where �
 is given by (1:7).



INTEGRAL TRANSFORMS OF FUNCTIONS WITH RESTRICTED DERIVATIVES 5Proof. Let � and � be �xed and let��� = (2� � 1) +M(1� �) ;where M > 1 is �xed. We assert that R���� � R�� . The 
orollary thenfollows be
ause if f 2 R�� then from the theorem in ea
h of the 
ases (i)-(iii) we simply let M = 3 + Æ2 + 2Æ ; �sin � ; 

, respe
tively, to 
on
lude that the
orresponding transform F belongs to R����.To prove our assertion that R���� � R�� we 
onsider 
ases. Suppose F 2R���� and re
all that (1� �) 
os� > 0.Case 1: �1 < � < 1. In this 
ase we have 
os� > 0 and we obtain��� = (2� � 1) +M(1� �) > � :Sin
e F 2 R����, i.e., <efei�[F 0(z)� ���℄g > 0, we obtain<efei�F 0(z)g > ��� 
os� > � 
os�;whi
h implies that F 2 R�� .Case 2: 1 < � < 1. Here 
os� < 0 and observe that ��� < �. Thus wehave <efei�F 0(z)g > ��� 
os� > � 
os� and hen
e F 2 R�� .In the above result, these transforms map R�� into stri
kly smaller sub-
lasses and, sin
e the values given by (1.6) and (1.7) are best possible,the Chandra-Singh and Bernardi Transforms do not map R�� into any 
lasssmaller than the 
orresponding R����.If the derivative of an arbitrary fun
tion in A(D ) lies in a region, thenone might expe
t the region in whi
h the derivative of its integral transformlies should be related. We obtain the following result:Theorem 2. Let f 2 A(D ) and let F be its Pommerenke, Chandra-Singhor Bernardi Transform with 
 = 0; 1; 2; � � � . If �(f) = ff 0(z) : z 2 D g liesin a 
onvex region 
, then �(F ) = fF 0(z) : z 2 D g also lies in 
.Proof. Note that f 2 R�� if and only if f(rz)=r 2 R�� for any 0 < r < 1.Hen
e, without loss of generality, we may assume that 
 � C is bounded.Furthermore, we may assume that 
 is a 
onvex polygonal region. Conse-quently it is suÆ
ient to prove the theorem when 
 is a bounded 
onvexpolygonal region with m sides. Ne
essarily we have 1 2 
.



6 JOHNNY E. BROWNLet f 2 A(D ) and suppose that �(f) = ff 0(z) : z 2 D g � 
. Assume�rst that �
 
ontains no horizontal segments. Be
ause 
 may be obtainedas the interse
tion of m 
losed half-planes, ea
h 
ontaining 1, it follows thatf 2 m\j=1R�j�jfor suitable 
hoi
es of �j and �j, ea
h satisfying (1� �j) 
os�j > 0. To seethis, we let Lj be the line bounding a side of 
, �j its interse
tion with thereal axis and �j (0 < �j < �) the angle Lj makes with the positive realaxis. If �j > 1, 
hoose �j = 3�2 � �j; while if �j < 1, set �j = �2 � �j.Hen
e f 2 R�j�j for ea
h j and by Corollary 1 the same holds for F . ThusF 2 Tmj=1R�j�j and so we 
on
lude that �(F ) � 
.If a side of 
 is a horizontal segment then we 
onstru
t a larger 
onvexpolygonal region 
ontaining all non-horizontal sides of 
 but repla
e ea
hhorizontal side by two non-horizontal sides as follows. Let 0 < � < 1and de�ne the 
onvex set 
(�) to be bounded by all the lines bounding 
ex
ept the horizontal lines. Ea
h horizontal line is to be repla
ed by twointerse
ting lines. In parti
ular, if say 
 is bounded by the horizontal lineLh through the verti
es !1 = a+ i� and !2 = b+ i� with a < b and � > 0,then instead of bounding 
(�) by Lh, we bound it by the two lines L(1)hand L(2)h whi
h pass through the pair !1 and !� = b+a2 + i[�+ �(b� a)℄ andthe pair !2 and !�, respe
tively. With this 
onstru
tion, it is 
lear that
 � 
(�) for all 0 < � < 1 and that 
(�) has no horizontal lines boundingit. A similar 
onstru
tion holds for � < 0. Apply the above argument to
(�) and let �! 0 to 
omplete the proof of the theorem.Remark 2. It should be pointed out that by Corollary 1, sin
e the trans-forms maps R�� stri
kly into itself, we a
tually have �(F ) � 
0 � 
, where
0 is a 
onvex region stri
kly inside 
. The 
onvex region 
0 
an be deter-mined, on
e 
 is known.Finally we 
onsider iterates of integral transforms. Be
ause these inte-gral transforms map R�� into stri
kly smaller sub
lasses the following resultobtains:



INTEGRAL TRANSFORMS OF FUNCTIONS WITH RESTRICTED DERIVATIVES 7Theorem 3. If f is any arbitrary fun
tion in R�� and Tf is its Pom-merenke, Chandra-Singh or Bernardi Transform with 
 = 0; 1; 2; � � � , thenlimn!1T(n)f(z) = z ;where T(n) = T Æ T � � � Æ T is the nth iterate of T and the 
onvergen
e isuniform on 
ompa
t subsets in D .We shall also prove this theorem in the next se
tion.2. Proof of the Main ResultsWe begin with a few preliminaries about the 
lassR�� . Assume throughoutthat � and � are �xed and satisfy (1.4).It is 
lear that the fun
tion K de�ned byK(z) = e�i�[Az +B log(1� z)℄;(2.1)where A = �� 
os� + i sin�B = �(1 + �) 
os�� = 1� 2�(2.2)belongs to the 
lass R�� and so it is nonempty. The 
lass R�� is 
onvex: iff; g 2 R�� then tf + (1� t)g 2 R�� for all 0 � t � 1. It is also rotationallyinvariant: f 2 R�� if and only if e�i�f(ei�z) 2 R�� for � 2 R.The Carath�eodory 
lass P 
onsists of all fun
tions p whi
h are analyti
in D with <e p(z) > 0 and normalized by p(0) = 1. Observe that g 2 R�� ifand only if p(z) = ei�(g0(z)� �)� i(1� �) sin�(1� �) 
os�(2.3)belongs to P. From this and the distortion theorems for p 2 P (see [6℄ or[7℄ for example), we see that if g 2 R�� , then jg0(z)j and hen
e jg(z)j arebounded on all 
ompa
t sets in D and so the normalization for fun
tions inR�� makes it a 
ompa
t family.The extreme points of the Carath�eodory 
lass P are well-known [7℄:E(P) = �1 + xz1� xz : jxj = 1� :(2.4)



8 JOHNNY E. BROWNFrom (2.3) and (2.4) it follows that the extreme points for the 
lass R�� arepre
isely E(R��) = fxK(xz) : jxj = 1g(2.5)where K is de�ned by (2.1) and (2.2).We will make use of the following result whi
h is essentially due to Marx[10℄.Lemma 1. If H(�; �) = =m(�e�i� log 1� ei(�+�)1� ei(���)!) ; 0 � � � � and0 � � � �, then min0����H(�; �) = 8><>: � ; 0 � � � �2� � � ; �2 < � � � :Proof. Observe that if � 6= � thenH(�; �) = sin �2 log 1� 
os(� + �)1� 
os(� � �)!� 
 
os � ;where 
 = ( � ; 0 � � < � � ��� � ; 0 � � < � � � :After a 
al
ulation we obtain�H�� =  
os �2 ! log 1� 
os(� + �)1� 
os(� � �)!+ sin � sin�
os � � 
os� + 
 sin � :A further 
al
ulation leads to the following:���  �H�� ! = sin �(
os � � 
os �)2 (2 
os � 
os �� 
os2 � � 1)� �(sin �) (1� j 
os �j)2(
os � � 
os�)2 :
(2.6)
Consequently for �xed 0 � �0 � �, the fun
tion �H�� is nonin
reasing with�. Suppose �rst that 0 � �0 < � � �. Then we see that�H�� (�0; �) � �H�� (�0; �) = 0



INTEGRAL TRANSFORMS OF FUNCTIONS WITH RESTRICTED DERIVATIVES 9and so for 0 � � < � � �, we see that H is an nonde
reasing fun
tion of �and thus H(�; �) � H(0; �) = � � � :Next, if 0 � � < �0 � � then�H�� (�0; �) � �H�� (�0; 0) = 0 :In this 
ase, H is a nonin
reasing fun
tion of � and hen
e for 0 � � < � � �we get H(�; �) � H(�; �) = � :Thus if � 6= � thenH(�; �) � minf�; (���)g and the fun
tion is unboundedas � ! �. This proves the lemma.It should be pointed out that there is a typo in formula (65) in Marx[10℄.It should read:���  4 sin� �p(�; �)�� ! = (2 sin �)(2 
os � 
os �� 
os2 � � 1)(
os � � 
os�)2 :Fortunately, his 
on
lusion that the fun
tion on the left is nonpositive stillholds as our (2.6) shows.Lemma 2. If �(�1; �2) = 1�2 � �1 log 1� �11� �2! and �1; �2 2 D (�1 6= �2),then <e�(�1; �2) � 3 + Æ4 + 4Æwhere Æ = max(minfj�1j; j�2jg; j�1 + �2j2 ).Proof. Let !(t) = �1 + (�2 � �1)t; 0 � t � 1, be the line segment from �1to �2 in D . It follows that j!(t)j � Æ for 0 � t � 12 or 12 � t � 1. To seethis, suppose say Æ = j�1j then����! �12����� = j�1 + �2j2 � j�1j = j!(0)j = Æ



10 JOHNNY E. BROWNand hen
e j!(t)j � Æ for 0 � t � 12 . The proof of the other 
ases followssimilarly. Using this we 
on
lude that<e�(�1; �2) = <e( 1�2 � �1 Z �2�1 11� z dz)= <e Z 10 11� !(t) dt� Z 10 11 + j!(t)j dt� 12 �12�+ 12 � 11 + Æ� = 3 + Æ4 + 4Æ :We 
an now prove the main results.Proof of Theorem 1. We 
onsider ea
h transform separately.(a): Let F = Pf . Now for �xed z0 2 D we have<efei�F 0(z0)g = <e(ei� "f(z1z0)� f(z2z0)z1z0 � z2z0 #) :The linear fun
tional L(f) = ei� "f(z1z0)� f(z2z0)z1z0 � z2z0 # attains its minimumreal part over the set of extreme points ofR�� . (This follows for example fromThm 4.5, p.44, in [7℄ by observing that �min<efL(f)g = max<efJ(f)g,where J(f) = �L(f).) It follows that<efei�F 0(z0)g � minjxj=1<e(ei� "K(xz1z0)�K(xz2z0)xz1z0 � xz2z0 #) ;where K is given by (2.1). Using (2.1) and (2.2) we obtain<efei�F 0(z0)g � minjxj=1<e(A+B 1(xz1z0 � xz2z0) log�1� xz1z01� xz2z0�) :The above fun
tion is analyti
 in the variable z = xz0 and hen
e by theminimum prin
iple and Lemma 2 we may 
on
lude that



INTEGRAL TRANSFORMS OF FUNCTIONS WITH RESTRICTED DERIVATIVES 11<efei�F 0(z0)g > (2� � 1) 
os� + 2(1� �)(
os�)minjzj=1<e f�(fzz1g; fzz2g)g� (2� � 1) 
os� + 2(1� �)(
os�) 3 + Æ4 + 4Æ!= �P 
os� :Thus for any z0 2 D , we get <efei�[F 0(z0)� �P℄g > 0 and hen
e F = Pf 2R��P.(b): Let F = P�1;�2f . Note that the fun
tion F 2 R��� if and only ifG(z) = e�i�F (ei�z) 2 R��� for any � 2 R. Hen
e we see thatG(z) = 1ei(�1+�) � ei(�2+�) Z z0 f(sei(�1+�))� f(sei(�2+�))s ds :(2.7)If � = (�2��1)2 then setting � = � (�1+�2)2 in (2.8) givesG(z) = 1ei� � e�i� Z z0 f(sei�)� f(se�i�)s ds :On the other hand if � = �� (�2��1)2 , set � = �� (�1+�2)2 to obtain the sameform of G(z). Thus it is suÆ
ient to show that if f 2 R�� , then G 2 R���where G(z) = 1ei� � e�i� Z z0 f(sei�)� f(se�i�)s ds(2.8)with 0 < � � �2 and �� = (2� � 1) + (1� �)� �sin �� :For �xed 0 < � � �2 we see from (2.8) that<ef ei�G0(z)g = <e( ei�2i sin � "f(zei�)� f(ze�i�)z #) :Now �x z0 2 D and 
onsider the linear fun
tional on A(D ) de�ned byL(f) = ei�2i sin � (f(z0ei�)� f(z0e�i�)z0 ) :The minimum real part of L is a
hieved at an extreme point of R�� . Hen
ewe have



12 JOHNNY E. BROWN<efei�G0(z0)g � minjxj=1<e fL(xK(xz))g ;where K is given by (2.1). A 
al
ulation shows thatfL(xK(xz))g = A + B2i sin � ( 1xz0 log 1� ei�xz01� e�i�xz0!) :This is an analyti
 fun
tion of ! = xz0. Using (2.2) it follows from theminimum prin
iple and symmetry that<efei�G0(z0)g � minjxj=1<e fL(xK(xz))g > (2��1) 
os�+(1� �) 
os�sin � � min0����H(�; �)�where H(�; �) = =m(�e�i� log 1� ei(�+�)1� ei(���)!) :We may now apply Lemma 1 with � = � and 0 < � � �2 to see that<efei�G0(z0)g � (2� � 1) 
os�+ (1� �) 
os�� �sin �� = �� 
os� :Hen
e <efei�[G0(z0)� ��℄g > 0 for any z0 2 D and so G 2 R���.To show that �� is best possible, 
onsider the fun
tion f = K given by(2.1) and let z = �r. A 
al
ulation gives<efei�G0(�r)g = "(2� � 1) + (1� �)sin � =m(1r log 1 + rei�1 + re�i�!)# 
os�and hen
e limr!1<efei�[G0(�r)� ��℄g = 0 :(
): Let F = B
 . For z0 2 D arbitrary but �xed, the linear fun
tionalL(f) = (
+1) Z 10 ei�t
f 0(tz0) dt assumes its minimum real part over the setof extreme points of R�� and hen
e<efei�F 0(z0)g � minjxj=1<e�(
+ 1) Z 10 ei�t
K 0(xtz0) dt�(2.9)



INTEGRAL TRANSFORMS OF FUNCTIONS WITH RESTRICTED DERIVATIVES 13where K is given by (2.1) and (2.2). Next, by the minimum prin
iple, wesee thatminjxj=1 Z 10 <e� t
1� txz0� dt > min��<��� Z 10 <e� t
1� tei�� dt� Z 10 t
1 + t dt= (�1)
 "log 2� 
Xk=1 (�1)k+1k # :Using (2.9) and this estimate we obtain after a 
al
ulation<fei�F 0(z0)g > ((2� � 1) + 2(1� �)(
+ 1)(�1)
 "log 2� 
Xk=1 (�1)k+1k #) (
os�)= f(2� � 1) + (1� �)

g (
os�)= �
 
os� :(If 
 = 0, then R 10 <e n 11�tei�o dt � log 2 and from (2.9) we get the aboveresult with 
0 = log 4.) Thus we get <efei�[F 0(z0)� �
℄g > 0 and hen
e we
on
lude that F 2 R��
. Be
ause12(
+ 1) = Z 10 t
2 dt < Z 10 t
1 + t dt < Z 10 t
 dt = 1
+ 1and Z 10 t
1 + t dt = (�1)
 "log 2� 
Xk=1 (�1)k+1k # = 

2(
+ 1)we must have 1 < 

 < 2 :To show that �
 is best possible we 
onsider the fun
tion f = K given by(2.1) and let z = �r:<efei�F 0(�r)g = (
+ 1) Z 10 <e nei�K 0(�tr)o dt= �(2� � 1) + 2(1� �)(
+ 1) Z 10 t
1 + rt dt� 
os� :



14 JOHNNY E. BROWNFrom this and (1.7) we let r ! 1 to obtain that <efei�[F 0(�r)� �
℄g ! 0and hen
e �
 is best possible. This 
ompletes the proof of the theorem.Proof of Theorem 3. Fix � and � satisfying (1.4). By Corollary 1, we
on
lude that ea
h of the transforms P;P�1;�2 or B
 (for 
 = 0; 1; 2; � � � )map R�� into R����, where��� = (2� � 1) +M(1� �) = �(2�M) + (M � 1)(2.10)and M = 3 + Æ2 + 2Æ , M = �sin � or M = 

, respe
tively. Re
all that 0 �Æ < 1 (see Remark 1) and 0 < � � �2 . Consequently in ea
h 
ase we have1 < M < 2 . Now let F0 = fF1 = Tf...Fn = (T ÆT � � � ÆT)f ;where T is the Pommerenke Transform P, the Chandra-Singh TransformP�1;�2 or the Bernardi Transform B
. For 
onvenien
e, set x = (2 � M)in (2.10). From Corollary 1, we may apply an indu
tion argument to showthat Fn 2 R��(n) � R�� where�(n) = �xn + 1� xn :Let � > 0 be given. It suÆ
es to show that jFn(z) � zj < � for alljzj � r < 1 and all n > N(�). Sin
e Fn 2 R��(n), it follows from (2.3) thatF 0n(z) = e�i�fp(z)� 1g(1� �(n)) 
os� + 1(2.11)for some p 2 P. Using (2.11) and the estimate jp(rei�)j � (1 + r)=(1� r)for any p 2 P, we obtain the following:jFn(z)� zj = ����Z z0 [e�i�fp(�)� 1g(1� �(n)) 
os�℄ d�����= ����ze�i�(1� �(n)) 
os� Z 10 fp(tz)� 1g dt����� r(1� �(n)) 
os� Z 10 � 21� rt� dt= xn f�2(1� �)(
os�) log(1� r)g :
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e, sin
e 0 < x < 1, by 
hoosing n suÆ
iently large we obtain thedesired estimate and this 
ompletes the proof of the theorem.
3. Remarks(1) Our results show that the Pommerenke, Chandra-Singh and BernardiTransforms map R�� into stri
kly smaller 
lasses. It is not too dif-�
ult to see that these transforms map K;S� and C into smaller
lasses but these sub
lasses are not given expli
itly as we have forR�� . It is known however that the Alexander Transform maps S�one-to-one and onto K i.e., f 2 S� if and only if Af 2 K. This isin fa
t Alexander's original theorem in [1℄.(2) The sear
h for invariant sub
lasses under these transforms stemmedfrom the fa
t that S was not preserved under L or A. The Chandra-Singh Transform does not preserve S either. In fa
t, simply 
onsiderthe spirallike fun
tion in S given in [8℄:f(z) = z(1� iz)1�i ;where the prin
ipal bran
h of (1� iz)1�i is 
hosen. If we let �1 = 0and �2 = � and apply (1.2) to this f , thenF (z) = P0;�f(z) = 12 neiLog(1�iz) � eiLog(1+iz)o :A 
he
k shows that for all k 2 N , we get F (zk) = 0 wherezk = i 1� e�2�k1 + e�2�k! :This shows that the Chandra-Singh Transform of the univalent fun
-tion f is of in�nite valen
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