A RESULT ON REAL POLYNOMIALS WITH REAL CRITICAL
POINTS

J. E. BROWN AND V. F. POWELL

ABSTRACT. Let p(z) = (2 — z1)(2 — 22) - - - (2 — zp) be a polynomial whose zeros
2y, all lie in the closed unit disk |z| < 1. It is known that there exists d,, > 0 such
that if a zero z; satisfies |z;| < 4, then the disk |z — z;| < 1 contains a critical
point of p(z). The Sendov Conjecture asserts that §,, = 1 for all n > 2. We improve
the known values of §,, for the case when p(z) has only real critical points and real
coeflicients.

1. INTRODUCTION AND MAIN RESULTS

Let P(n) denote the class of all monic polynomials of degree n with zeros z; which
all lie in the closed unit disk |z| < 1:

n
p(z)=[[(z—2), =z€C, |z <L1. (1)
k=1
Since the zeros are bounded, there is no loss of generality to assume they are bounded
by 1 and since we are concerned only with zeros and critical points we assume the
polynomial is monic. The derivative of p(z) has the form

PE)=n]lG-G). ©)

Rolle’s Theorem fails for complex functions as the example f(z) = e™* — 1 shows.
This function has zeros at z = 0 and z = 2 but there are no zeros of its derivative
f'(z) = mie™* along the interval [0, 2]. In fact this derivative never vanishes. There is
however a simple analogue of Rolle’s Theorem which holds for complex polynomials.
The well-known Gauss-Lucas Theorem asserts that all the critical points of p(z) lie
in the closed convex hull of its zeros.

Suppose p(z) has the form (1) and that, say, z; = 0, then by the Gauss-Lucas
Theorem we see that all criticial points of p(z) must lie in the unit disk |z| < 1 and
thus in particular shows that the disk |z — 21| < 1 contains a critical point of p(z). A
natural question then arises, namely does this result remain true if we perturb z; 7
More precisely, we ask:
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n

Question: Does there exist a §, > 0 such that if p(z H z — z) € P(n) and if

|z;| < 6, for some j = 1,2,---n, then the disk |z — z]| < _1 must contain a critical
point of p(z) ?

This question is closely related to a famous unsolved conjecture:

SENDOV CONJECTURE (1962): If p(z) = [[(z — 2&) with |2zx| <1 fork=1,2---n
k=1

then each of the disks |z—z| < 1 must contain a critical point of p(z). The polynomial

p(z) = 2™ — 1 shows that “1” is best possible.

The Sendov Conjecture is true if and only if the answer to the question is yes and
0, = 1. For a brief survey of this conjecture see [4] or see [6] for a much more extensive
survey.

The Sendov Conjecture has been verified for polynomials of degree 8 or less [2].
However the full validity of the Sendov Conjecture is unknown even for polynomials
with real critical points. Hence we will consider the question for the subclass Pg(n)
which consists of polynomials in P(n) which have only real critical points and real
coefficients.

There are some known results related to the question for n > 4. Phelps and
Rodriguez [5] estimated §,, as the root in 0 < x < 1 of the equation

(1+2*)(1+2)" 3 -n=0.

Their result however applies only for polynomials in P(n) which are extremal for
the Sendov Conjecture. Brown([1]) improved this result but only for polynomials
extremal for the Sendov Conjecture for the subclass Pg(n). His estimate for d,, is the
root in 0 < x < 1 of the equation

20(1+2%)(1+2)"*—n=0.

Our result improves both estimates of d,, and the polynomial need not be extremal for
the Sendov Conjecture. Before stating the main result we introduce some notation.
For convenience we let

2z
My(z) = —=— 3
(o) = o ®)
and
1 , if n is even
= 1+4 2
M) =9 1Harra o iodd (4)
214+ 2 + 2?)
Define d,, to be the largest number z € (0, 1] such that
1
P(z) < ——— for 0<z<6,<1. (5)
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where

_ My(z) .
(z) = (n—m[n—3+M1(x)+M0(m)]> (6)

Using the values of 9,, defined as above, we can now state our main result:

Theorem 1. Let p(z) = [[(z — z) be a polynomial in Pr(n) of degree n > 2. If

k=1
|z;| < &, for some j = 1,2,---n, then the disk |z — z;| < 1 must contain a critical
point of p(z).

We can compare our results with those known earlier for a few values of n :

‘ H Phelps & Rodrz’guez‘ Brown ‘ Theorem 1 ‘

dg 0.4060 0.4913 0.5282
010 0.3649 0.4491 0.4794
011 0.3319 0.4144 | 0.4432
012 0.3050 0.3852 0.4101
013 0.2825 0.3604 | 0.3842
014 0.2634 0.3389 0.3601
015 0.2469 0.3202 0.3406

Since the estimates of Brown [1] only applied to polynomials in Pg(n) which are
extremal for the Sendov Conjecture, our estimates are slightly better here and sub-
stantially better than those of Phelps and Rodriguez [5]. The results in [1] and [5]
used special properties of extremal polynomials which we do not use here and still
obtain better results.

2. PRELIMINARY RESULTS

Let P(z) € P(n) be a polynomial of the form

P(z z—aHz—Zk where 0 < a < 1 (7)
with
n—1
'"2)=n]](z-¢).
j=1
Forj=1,2,--- ,n—1land k=1,2,--- ,n— 1, we define

GG—a

’)/j:(ZCj—l
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and

2&,—»a
aZ&——l'

(8)

Wp =
We require the following results:

Lemma 1. If |v;] <
l1+a-—
|z —a| <1 contains a critical point of P(z), namely (;.

5 for some value of j =1,2,--- ,n—1, then the disk
a

Proof: By hypothesis we have |y;| = ai{j_—al s and hence (; —a =
pe??(al; — 1) from which we get ¢; = (a — pe?) /(1 —ape), where 0 < p < p—
a—a
and 0 < 0 < 2x. It follows that
1— 2
Kj _ a‘ < u < 1. 0
1—ap

From the above result we will eventually need an estimate on |v;|. The following
result was first proved by Joyal [3]. We include the proof here for completeness.

n—1 n—1
Lemma 2. I[f A = H |wg| and B = — Zwk, then
k=1 k=1

IIW A
7' In+aB|

Proof. Suppose P(z) is a polynomial of the form (7) Let L be the linear fractional

w p—
transformation z = L(w) = N ¢ andlet A = — - H awy—1). We see that
aw —

the rational function P(L(w)) has zeros at w = 0 and w = wk (k=1,2,---,n—1)
and then after a simple calculation we obtain AP(L(w)) = Py(w)(aw — 1)*", where
Py(w) = w™ + b,_qw™ ' + -+ 4+ byw. Since the zeros of P(L(w)) are wy,, we have

b= () e and b= - Zwk
It follows that
AL o prru) e~ (afaw =172} DuRw)

where " denotes differentiation with respect to z and D1 Py(w) is the polar derivative
of Py(w) with respect to & :
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. 1 ’ . n n—1 bl
D%PO(w) —nPo(w)-I— <a w>p0(w) = <bn—1+ a) [w +.“+n+abn_1

Now from (9), the zeros of D1 Py(w) are precisely the zeros of P'(L(w)), i.e., when
L(w) = ¢ or w = ;. Hence we get

by
nl
H’YJ 7’L+abn1

and the result now follows. O

For the special class Pg(n), we can prove the following:

n

Lemma 3. If p(z) = [[(z — z) € Pr(n) and |z; — 1| < 1, for some j =1,2,--- ,n,
k=1
then the disk |z — z]\ <1 contains a critical point of p(z).

n

Proof: Let p(z) = [[ (2 — 2) € Pr(n) and let Q@ = {z : [z — 1| <1, |z| < 1}. We first

k=1
assert that if z; € Q then the disk |z — z;| < 1 contains the interval [0,1]. To verify
this, let f(z) = |z; — z|* and note that since z; € Q, if 0 < z < 1 then

f(z) < max{f(0), f(1), f(Re{z})} .

Note that f(0) <1, f(1) = |z; — 1|* < 1 and f(Re{z;}) = (Sm{z;})* < 1. Thus
f(z) <1forall 0 <z <1 and this proves the assertion.

Case 1: Suppose there exists a zero, say, z1, with |z;| = 1 and Rez; > 0. It is well-
known (see [4] for example) that if |z;| = 1, then there must be a critical point zq in

the disk ‘z — %

that z¢ € [0, 1]. The above assertion proves the lemma in this case.

1
< 3" Since Re z; > 0 and all critical points are real, we conclude

Case 2: Suppose there are no zeros of p(z) on the semicircle |z| = 1 and Re{z} > 0.
Then there exists a unique €, where 0 < € < 1, such that the shifted polynomial
n
p'(2) =plz 9 = T (=~ ) € Pan)

k=1
has zeros 2 = 2, + € with the property that there is a zero, say, z7, which satisfies
|2f] = 1 and Re{z7} > 0. Apply Case 1 to the zero 2z to conclude that there must
be a critical point of p*(z), say z§ = zo + €, where z, is a critical point of p(z), such
that 25 € [0,1]. Since z; € Q the shifted zero 2} = z; + € also belongs to 2 and hence
by the above assertion the disk |z — 27| < 1 contains the critical point zj € [0,1], i.e
|25 — 25| < 1. Now this yields |zg — 2;| = |25 — 2| < 1 and the proof of the lemma is
complete. O
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3. PROOF OF MAIN RESULT

Let p(z) be an arbitrary polynomial in Pg(n). Hence we have
p(z) = [[(z — 2), where |z,| <1for k=1,2,---,n
k=1

and

n—1
P(z) =n]](z—=z;), withz; e Rfor j=1,2,--+ ,n.
j=1

Observe that since all critical points must lie in the unit disk, we have —1 < z; <1
forj=1,,2,--- ,n—1.

Assume that |z;| < §,, for some fixed j, where §,, is defined as before, namely the
largest number z € (0, 1] such that

Sz) < ——— for 0<x<4,<1

where ®(z) is defined in (6). Note that if |z;| = 0, then the theorem holds by the
Gauss-Lucas Theorem, while if |z;| = 1 then there is a critical point in |z — | < 3 as
remarked earlier. Hence we may assume that 0 < |z;| < 1. By relabeling, if necessary,
assume 7 = n. Thus we have

2 = ae'? (10)

with 0 < a < 4,. Note that if p(z) belongs to Pg(n) then so do p(z) and (—1)"p(—=z).
Hence, without loss of generality, we may assume that z, lies in the first quadrant
and so 0 < 6 < 7. Note also that if 0 < 0 < %, then |z, — 1| < 1 and so by Lemma
3 the disk |z — z,| < 1 contains a critical point of p(z). Thus we may henceforth
suppose that

<<

o

(11)

wl

and
0<a<é,. (12)

Because the coefficients of p(z) are real, the non-real zeros of p(z) must occur in
conjugate pairs. If in addition p(z) has odd degree, then at least one zero must be

real. Thus since z, ¢ R, then we must have, say, z,_; = ae~? and so
) ) n—2
p(2) = (z — ae®)(z — ae™) 1z 2).
k=1
Consider the rotated polynomial
n n—1

P(z) = e*mep(zeie) = H(z —Zy)=(z—a) H (z — Zy),

k=1 k=1
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with derivative
n—1
/
P'(z)=n]](z-¢)
j=1

9 and (; = z;e7. Now by (8), we clearly have the estimate |wy| < 1

where 7, = z,e™?

forall k =1,2,---,n — 1, but we can obtain better estimates.
First observe that it can be shown that
Ty —a ae 29 — ¢ 2a
1| = = . < = M 13
[ 1] aZ,_1—1 a?e 20 — 1| = 1+ a2 (@) (13)
and that
ae %0 _ g 2a
%e{wn,l} = Re {m S m = M()(CL) . (14)

These estimates are best possible. We can use these to estimate the values of A and
B in Lemma 2. Clearly we have

n—1
A= [T lwi] < wna| < Mo(a). (15)
k=1
n—1
Since B = — Z wy, we get
k=1

n—1
—Re{B} = > Re{wi} < (n— 3) + Re{w,_o} + Re{w,_1}
k=1
and hence
—Re{B} < (n — 3) + Re{w,—2} + My(a)
If n is even, then Re{w,_»} < 1; however when n is odd we can do better. Since

at least one zero of p(z) must be real, say z,_», it follows that the rotated zero must
be Z,_o =re " where —1 <r < 1 and 2 < 0 < Observe that

%.
re " —q } a(l+7?) —rz(l+a?)

= H(z,r),

are~ ¥ — 1 1+ a2r? — 2arx

Re{wn_o} = Re {

OH 0H
where z = cosf € [0, 3). From this we see that e <0if0<r<1and e > 0 if
x x
—1 < r < 0. Calculations then give

2a .
TTa ,if0<r<1
H(z,r) < ,

1+4

- PTG 1< <0

2(14+a+a?)

144 2 2
Tt is clear that —— 0 ?_ and hence if we define M (a) as

21 +a+a?) ~— 1+4+a?
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1 , if n is even
. 2
Ma)=q 1raata o iiodd
2(1+ a+ a?)
then we obtain the estimate
—Re{B} < (n—3) + Mi(a) + Moy(a). (16)

Without loss of generality |y;| < |y;| for j =1,2,--- ,n — 1. Using the estimates
(15) and (16), from Lemma 2 we obtain

n—1 A
n—1 < | =
”71’ —]1;[1’73‘ ]n—l—aB]
< A
~ n+aRe{B}

My (a) — (g
= (n—a[n—3+M1(a)+M0(a)]> = ®(a)",

where ®(z) is defined by (6). Now by assumption,

1
)  —
(a) < 1+a—a?

and hence we obtain .

l+a—a?’

Apply Lemma 1 to conclude that the disk |z — a| < 1 contains the critical point (4
of the (rotated) polynomial P(z), i.e., |(; — a] < 1. Hence we get |z; — z,| < 1 and
so the disk |z — z,| < 1 contains the critical point z; and this completes the proof of
the theorem. O

7| <

4. REMARKS

The interpretation of our results in terms of force fields can be traced back to
Gauss. This is pointed out for example in the article by Marden [4] and in the article
by Walsh [7] where he writes:

“ If there are plotted in the plane of the complex variable the roots of a polynomial
f(2) and the roots of the derived polynomial f'(z), there are interesting geometric
relations between the two sets of points. It was shown by Gauss that the roots of f'(2)
are the positions of equilibrium in the force field due to equal particles situated at each
root of f(z), if each particle repels with a force equal to the inverse distance. The
deriwative vanishes not only at the positions of equilibrium but also at the multiple

roots of f(z).”
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Indeed, suppose a point charge is located at zy € C. If the force F' exerted on a
test charge located at z € C is inversely proportional to its distance from zj, then

F:k:{ = } (17)

zZ— 20

Now suppose that a unformly charged infinitely long wire is placed perpendicular to
the complex plane C and passes through the point z; € C. By Coulomb’s Law it
can be shown that the force exerted on a test charge at z is given by (17). This
is because the wire has symmetric contributions of force from above and below the
complex plane and hence the resulting force is planar. Moreover, instead of the
force being inversely proportional to the square of the distance, it can be shown that
it is inversely proportional to the distance. Consequently any complex polynomial
p(z) = (2 — 21)(2 — 22) - - - (2 — 2,) gives rise to a force field with point charges at zy
where the force exerted on a test charge is inversely proportional to the distance from
the point charges. And conversely, given any such force field (with positive integer
charges) there corresponds a complex polynomial. In addition since

1;’((22)) :{kzn:lz_lzk}

the equilibrium points in the force field correspond to the critical points of p(z) (unless
the critical point is also a zero of p(z)). Thus we may interpret our result physically,
namely if all the point charges of this type of force field lies inside or on the unit circle,
then for every point charge sufficiently close to the origin there must be an equilibrium
point within unit distance of it (unless the point charge has a charge greater than 1,
in this case the zero corresponding to the point charge has multiplicity larger than 1
and is also a critical point).
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