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Abstract. Let p(z) = (z − z1)(z − z2) · · · (z − zn) be a polynomial whose zeros
zk all lie in the closed unit disk |z| ≤ 1. It is known that there exists δn > 0 such
that if a zero zj satisfies |zj| ≤ δn, then the disk |z − zj | ≤ 1 contains a critical
point of p(z). The Sendov Conjecture asserts that δn = 1 for all n > 2. We improve
the known values of δn for the case when p(z) has only real critical points and real
coefficients.

1. Introduction and Main Results

Let P(n) denote the class of all monic polynomials of degree n with zeros zk which
all lie in the closed unit disk |z| ≤ 1:

p(z) =
n∏
k=1

(z − zk), zk ∈ C, |zk| ≤ 1 . (1)

Since the zeros are bounded, there is no loss of generality to assume they are bounded
by 1 and since we are concerned only with zeros and critical points we assume the
polynomial is monic. The derivative of p(z) has the form

p′(z) = n
n−1∏
j=1

(z − ζj) . (2)

Rolle’s Theorem fails for complex functions as the example f(z) = eπiz − 1 shows.
This function has zeros at z = 0 and z = 2 but there are no zeros of its derivative
f ′(z) = πieπiz along the interval [0, 2]. In fact this derivative never vanishes. There is
however a simple analogue of Rolle’s Theorem which holds for complex polynomials.
The well-known Gauss-Lucas Theorem asserts that all the critical points of p(z) lie
in the closed convex hull of its zeros.

Suppose p(z) has the form (1) and that, say, z1 = 0, then by the Gauss-Lucas
Theorem we see that all criticial points of p(z) must lie in the unit disk |z| ≤ 1 and
thus in particular shows that the disk |z− z1| ≤ 1 contains a critical point of p(z). A
natural question then arises, namely does this result remain true if we perturb z1 ?
More precisely, we ask:
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Question: Does there exist a δn > 0 such that if p(z) =
n∏
k=1

(z − zk) ∈ P(n) and if

|zj | ≤ δn for some j = 1, 2, · · ·n, then the disk |z − zj | ≤ 1 must contain a critical
point of p(z) ?

This question is closely related to a famous unsolved conjecture:

Sendov Conjecture (1962): If p(z) =
n∏
k=1

(z− zk) with |zk| ≤ 1 for k = 1, 2 · · ·n,

then each of the disks |z−zk| ≤ 1 must contain a critical point of p(z). The polynomial
p(z) = zn − 1 shows that “ 1” is best possible.

The Sendov Conjecture is true if and only if the answer to the question is yes and
δn = 1. For a brief survey of this conjecture see [4] or see [6] for a much more extensive
survey.

The Sendov Conjecture has been verified for polynomials of degree 8 or less [2].
However the full validity of the Sendov Conjecture is unknown even for polynomials
with real critical points. Hence we will consider the question for the subclass PR(n)
which consists of polynomials in P(n) which have only real critical points and real
coefficients.

There are some known results related to the question for n ≥ 4. Phelps and
Rodriguez [5] estimated δn as the root in 0 < x ≤ 1 of the equation

(1 + x2)(1 + x)n−3 − n = 0 .

Their result however applies only for polynomials in P(n) which are extremal for
the Sendov Conjecture. Brown([1]) improved this result but only for polynomials
extremal for the Sendov Conjecture for the subclass PR(n). His estimate for δn is the
root in 0 < x ≤ 1 of the equation

2x(1 + x2)(1 + x)n−4 − n = 0 .

Our result improves both estimates of δn and the polynomial need not be extremal for
the Sendov Conjecture. Before stating the main result we introduce some notation.
For convenience we let

M0(x) =
2x

1 + x2
(3)

and

M1(x) =


1 , if n is even

1 + 4x+ x2

2(1 + x+ x2)
, if n is odd

. (4)

Define δn to be the largest number x ∈ (0, 1] such that

Φ(x) ≤ 1

1 + x− x2
for 0 ≤ x ≤ δn ≤ 1 . (5)
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where

Φ(x) =

(
M0(x)

n− x[n− 3 +M1(x) +M0(x)]

) 1
n−1

(6)

Using the values of δn defined as above, we can now state our main result:

Theorem 1. Let p(z) =
n∏
k=1

(z − zk) be a polynomial in PR(n) of degree n > 2. If

|zj | ≤ δn for some j = 1, 2, · · ·n, then the disk |z − zj | ≤ 1 must contain a critical
point of p(z).

We can compare our results with those known earlier for a few values of n :

Phelps & Rodriguez Brown Theorem 1

δ9 0.4060 0.4913 0.5282
δ10 0.3649 0.4491 0.4794
δ11 0.3319 0.4144 0.4432
δ12 0.3050 0.3852 0.4101
δ13 0.2825 0.3604 0.3842
δ14 0.2634 0.3389 0.3601
δ15 0.2469 0.3202 0.3406

Since the estimates of Brown [1] only applied to polynomials in PR(n) which are
extremal for the Sendov Conjecture, our estimates are slightly better here and sub-
stantially better than those of Phelps and Rodriguez [5]. The results in [1] and [5]
used special properties of extremal polynomials which we do not use here and still
obtain better results.

2. Preliminary Results

Let P (z) ∈ P(n) be a polynomial of the form

P (z) = (z − a)
n−1∏
k=1

(z − Zk), where 0 < a < 1 (7)

with

P ′(z) = n
n−1∏
j=1

(z − ζj) .

For j = 1, 2, · · · , n− 1 and k = 1, 2, · · · , n− 1, we define

γj =
ζj − a
aζj − 1
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and

wk =
Zk − a
aZk − 1

. (8)

We require the following results:

Lemma 1. If |γj| ≤
1

1 + a− a2
for some value of j = 1, 2, · · · , n− 1, then the disk

|z − a| ≤ 1 contains a critical point of P (z), namely ζj.

Proof: By hypothesis we have |γj| =

∣∣∣∣∣ ζj − aaζj − 1

∣∣∣∣∣ ≤ 1

1 + a− a2
and hence ζj − a =

ρeiθ(aζj−1) from which we get ζj = (a−ρeiθ)/(1−aρeiθ), where 0 ≤ ρ ≤ 1

1 + a− a2

and 0 ≤ θ < 2π. It follows that

|ζj − a| ≤
ρ(1− a2)

1− aρ ≤ 1 . 2

From the above result we will eventually need an estimate on |γj|. The following
result was first proved by Joyal [3]. We include the proof here for completeness.

Lemma 2. If A =
n−1∏
k=1

|wk| and B = −
n−1∑
k=1

wk, then

n−1∏
j=1

|γj| =
A

|n+ aB| .

Proof: Suppose P (z) is a polynomial of the form (7). Let L be the linear fractional

transformation z = L(w) =
w − a
aw − 1

and let λ = −(a2−1)−n
n−1∏
k=1

(awk−1). We see that

the rational function P (L(w)) has zeros at w = 0 and w = wk (k = 1, 2, · · · , n − 1)
and then after a simple calculation we obtain λP (L(w)) = P0(w)(aw − 1)−n, where
P0(w) = wn + bn−1w

n−1 + · · ·+ b1w . Since the zeros of P (L(w)) are wk, we have

b1 = (−1)n−1
n−1∏
k=1

wk and bn−1 = −
n−1∑
k=1

wk .

It follows that

λ
dP (L(w))

dw
= λP ′(L(w))

dz

dw
=
{
−a(aw − 1)−n−1

}
D 1

a
P0(w) (9)

where ′ denotes differentiation with respect to z and D 1
a
P0(w) is the polar derivative

of P0(w) with respect to 1
a

:
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D 1
a
P0(w) = nP0(w) +

(
1

a
− w

)
p′0(w) =

(
bn−1 +

n

a

) [
wn−1 + · · ·+ b1

n+ abn−1

]
.

Now from (9), the zeros of D 1
a
P0(w) are precisely the zeros of P ′(L(w)), i.e., when

L(w) = ζj or w = γj. Hence we get

(−1)n−1
n−1∏
j=1

γj =
b1

n+ abn−1

and the result now follows. 2

For the special class PR(n), we can prove the following:

Lemma 3. If p(z) =
n∏
k=1

(z − zk) ∈ PR(n) and |zj − 1| ≤ 1, for some j = 1, 2, · · · , n,

then the disk |z − zj | ≤ 1 contains a critical point of p(z).

Proof: Let p(z) =
n∏
k=1

(z− zk) ∈ PR(n) and let Ω = {z : |z − 1| ≤ 1, |z| ≤ 1}. We first

assert that if zj ∈ Ω then the disk |z − zj | ≤ 1 contains the interval [0, 1]. To verify
this, let f(x) = |zj − x|2 and note that since zj ∈ Ω, if 0 ≤ x ≤ 1 then

f(x) ≤ max{f(0), f(1), f(<e{zj})} .
Note that f(0) ≤ 1, f(1) = |zj − 1|2 ≤ 1 and f(<e{zj}) = (=m {zj})2 ≤ 1. Thus
f(x) ≤ 1 for all 0 ≤ x ≤ 1 and this proves the assertion.

Case 1: Suppose there exists a zero, say, z1, with |z1| = 1 and <e z1 ≥ 0. It is well-
known (see [4] for example) that if |z1| = 1, then there must be a critical point x0 in

the disk
∣∣∣∣z − z1

2

∣∣∣∣ ≤ 1

2
. Since <e z1 ≥ 0 and all critical points are real, we conclude

that x0 ∈ [0, 1]. The above assertion proves the lemma in this case.

Case 2: Suppose there are no zeros of p(z) on the semicircle |z| = 1 and <e{z} ≥ 0.
Then there exists a unique ε, where 0 < ε < 1, such that the shifted polynomial

p∗(z) = p(z − ε) =
n∏
k=1

(z − z∗k) ∈ PR(n)

has zeros z∗k = zk + ε with the property that there is a zero, say, z∗1 , which satisfies
|z∗1 | = 1 and <e{z∗1} > 0. Apply Case 1 to the zero z∗1 to conclude that there must
be a critical point of p∗(z), say x∗0 = x0 + ε, where x0 is a critical point of p(z), such
that x∗0 ∈ [0, 1]. Since zj ∈ Ω the shifted zero z∗j = zj + ε also belongs to Ω and hence
by the above assertion the disk |z− z∗j | ≤ 1 contains the critical point x∗0 ∈ [0, 1], i.e.,
|x∗0 − z∗j | ≤ 1. Now this yields |x0 − zj | = |x∗0 − z∗j | ≤ 1 and the proof of the lemma is
complete. 2
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3. Proof of Main Result

Let p(z) be an arbitrary polynomial in PR(n). Hence we have

p(z) =
n∏
k=1

(z − zk), where |zk| ≤ 1 for k = 1, 2, · · · , n

and

p′(z) = n
n−1∏
j=1

(z − xj), with xj ∈ R for j = 1, 2, · · · , n .

Observe that since all critical points must lie in the unit disk, we have −1 ≤ xj ≤ 1
for j = 1, , 2, · · · , n− 1.

Assume that |zj| ≤ δn, for some fixed j, where δn is defined as before, namely the
largest number x ∈ (0, 1] such that

Φ(x) ≤ 1

1 + x− x2
for 0 ≤ x ≤ δn ≤ 1

where Φ(x) is defined in (6). Note that if |zj| = 0, then the theorem holds by the
Gauss-Lucas Theorem, while if |zj| = 1 then there is a critical point in |z− zj

2
| ≤ 1

2
as

remarked earlier. Hence we may assume that 0 < |zj | < 1. By relabeling, if necessary,
assume j = n. Thus we have

zn = aeiθ (10)

with 0 < a ≤ δn. Note that if p(z) belongs to PR(n) then so do p(z) and (−1)np(−z).
Hence, without loss of generality, we may assume that zn lies in the first quadrant
and so 0 ≤ θ ≤ π

2
. Note also that if 0 ≤ θ ≤ π

3
, then |zn − 1| ≤ 1 and so by Lemma

3 the disk |z − zn| ≤ 1 contains a critical point of p(z). Thus we may henceforth
suppose that

π

3
< θ ≤ π

2
(11)

and

0 < a ≤ δn . (12)

Because the coefficients of p(z) are real, the non-real zeros of p(z) must occur in
conjugate pairs. If in addition p(z) has odd degree, then at least one zero must be
real. Thus since zn /∈ R, then we must have, say, zn−1 = ae−iθ and so

p(z) = (z − aeiθ)(z − ae−iθ)
n−2∏
k=1

(z − zk) .

Consider the rotated polynomial

P (z) = e−inθp(zeiθ) =
n∏
k=1

(z − Zk) = (z − a)
n−1∏
k=1

(z − Zk) ,
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with derivative

P ′(z) = n
n−1∏
j=1

(z − ζj)

where Zk = zke
−iθ and ζj = xje

−iθ. Now by (8), we clearly have the estimate |wk| ≤ 1
for all k = 1, 2, · · · , n− 1, but we can obtain better estimates.

First observe that it can be shown that

|wn−1| =
∣∣∣∣∣ Zn−1 − a
aZn−1 − 1

∣∣∣∣∣ =
∣∣∣∣∣ ae−2iθ − a
a2e−2iθ − 1

∣∣∣∣∣ ≤ 2a

1 + a2
= M0(a) (13)

and that

<e{wn−1} = <e
{
ae−2iθ − a
a2e−2iθ − 1

}
≤ 2a

1 + a2
= M0(a) . (14)

These estimates are best possible. We can use these to estimate the values of A and
B in Lemma 2. Clearly we have

A =
n−1∏
k=1

|wk| ≤ |wn−1| ≤M0(a) . (15)

Since B = −
n−1∑
k=1

wk, we get

−<e{B} =
n−1∑
k=1

<e{wk} ≤ (n− 3) + <e{wn−2}+ <e{wn−1}

and hence

−<e{B} ≤ (n− 3) + <e{wn−2}+M0(a)

If n is even, then <e{wn−2} ≤ 1; however when n is odd we can do better. Since
at least one zero of p(z) must be real, say zn−2, it follows that the rotated zero must
be Zn−2 = re−iθ, where −1 ≤ r ≤ 1 and π

3
< θ ≤ π

2
. Observe that

<e{wn−2} = <e
{
re−iθ − a
are−iθ − 1

}
=
a(1 + r2)− rx(1 + a2)

1 + a2r2 − 2arx
= H(x, r) ,

where x = cos θ ∈ [0, 1
2
). From this we see that

∂H

∂x
< 0 if 0 < r ≤ 1 and

∂H

∂x
> 0 if

−1 ≤ r < 0. Calculations then give

H(x, r) ≤



2a

1 + a2
, if 0 < r ≤ 1

1 + 4a + a2

2(1 + a + a2)
, if − 1 ≤ r ≤ 0

It is clear that
1 + 4a+ a2

2(1 + a+ a2)
≤ 2a

1 + a2
and hence if we define M1(a) as
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M1(a) =


1 , if n is even

1 + 4a+ a2

2(1 + a+ a2)
, if n is odd

,

then we obtain the estimate

−<e{B} ≤ (n− 3) +M1(a) +M0(a) . (16)

Without loss of generality |γ1| ≤ |γj| for j = 1, 2, · · · , n − 1. Using the estimates
(15) and (16), from Lemma 2 we obtain

|γ1|n−1 ≤
n−1∏
j=1

|γj| =
A

|n+ aB|

≤ A

n+ a<e{B}

≤
(

M0(a)

n− a[n− 3 +M1(a) +M0(a)]

)
= Φ(a)n−1 ,

where Φ(x) is defined by (6). Now by assumption,

Φ(a) ≤ 1

1 + a− a2

and hence we obtain

|γ1| ≤
1

1 + a− a2
.

Apply Lemma 1 to conclude that the disk |z − a| ≤ 1 contains the critical point ζ1

of the (rotated) polynomial P (z), i.e., |ζ1 − a| ≤ 1. Hence we get |x1 − zn| ≤ 1 and
so the disk |z − zn| ≤ 1 contains the critical point x1 and this completes the proof of
the theorem. 2

4. Remarks

The interpretation of our results in terms of force fields can be traced back to
Gauss. This is pointed out for example in the article by Marden [4] and in the article
by Walsh [7] where he writes:

“ If there are plotted in the plane of the complex variable the roots of a polynomial
f(z) and the roots of the derived polynomial f ′(z), there are interesting geometric
relations between the two sets of points. It was shown by Gauss that the roots of f ′(z)
are the positions of equilibrium in the force field due to equal particles situated at each
root of f(z), if each particle repels with a force equal to the inverse distance. The
derivative vanishes not only at the positions of equilibrium but also at the multiple
roots of f(z).”
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Indeed, suppose a point charge is located at z0 ∈ C. If the force F exerted on a
test charge located at z ∈ C is inversely proportional to its distance from z0, then

F = k

{
1

z − z0

}
. (17)

Now suppose that a unformly charged infinitely long wire is placed perpendicular to
the complex plane C and passes through the point z0 ∈ C. By Coulomb’s Law it
can be shown that the force exerted on a test charge at z is given by (17). This
is because the wire has symmetric contributions of force from above and below the
complex plane and hence the resulting force is planar. Moreover, instead of the
force being inversely proportional to the square of the distance, it can be shown that
it is inversely proportional to the distance. Consequently any complex polynomial
p(z) = (z − z1)(z − z2) · · · (z − zn) gives rise to a force field with point charges at zk
where the force exerted on a test charge is inversely proportional to the distance from
the point charges. And conversely, given any such force field (with positive integer
charges) there corresponds a complex polynomial. In addition since

p′(z)

p(z)
=

{
n∑
k=1

1

z − zk

}
,

the equilibrium points in the force field correspond to the critical points of p(z) (unless
the critical point is also a zero of p(z)). Thus we may interpret our result physically,
namely if all the point charges of this type of force field lies inside or on the unit circle,
then for every point charge sufficiently close to the origin there must be an equilibrium
point within unit distance of it (unless the point charge has a charge greater than 1,
in this case the zero corresponding to the point charge has multiplicity larger than 1
and is also a critical point).
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