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Abstract

Any polynomial automorphism of C2 with nontrivial dynamics is conjugate to a
diffeomorphism of the 4-ball such that this diffeomorphism extends to a diffeomorphism
of the closed 4-ball. Moreover, the conjugating map is a smooth bijection of C2 to itself.
On the sphere at infinity, the extension has an attracting and a repelling solenoid, and
the dynamics near these invariant solenoids are described by conjugation to a model
solenoidal map.

1 Introduction

An outgrowth of the great successes in the study of complex dynamics in one variable is
the recent attention given to the dynamical behavior of polynomial automorphisms of C2;
e.g., by Friedland and Milnor, Bedford and Smillie, Fornæss and Sibony, Hubbard, Oberste-
Vorth, Papadopol, Veselov, and others. In particular, the potential theoretic techniques first
developed in one variable have proven to be invaluable in higher dimensions. An introduction
to this subject, with further references, can be found in [5]. On the other hand, there
is a large body of work on the dynamics of diffeomorphisms of compact manifolds, and
some of these techniques have also proven to be of great value in exploring the dynamics
of holomorphic maps in several variables. [10] is one introduction to this branch of real
dynamics, and [3] and [4] give some applications to holomorphic dynamics. In the hope
of providing further links between real dynamics on compact manifolds and polynomial
automorphisms of C2, it is natural to search for ways to extend a polynomial automorphism
of C2 to a diffeomorphism of a compact manifold. Since there is no obvious way of extending
a general polynomial automorphism to a holomorphic (or even real-analytic) diffeomorphism
of a compact manifold, we look instead for a smooth extension.

This paper presents one method for constructing such a smooth extension to a compact
manifold with boundary: Given a polynomial automorphism with nontrivial dynamics, it
is conjugate to a diffeomorphism of the 4-ball such that this diffeomorphism extends to a
diffeomorphism of the closed 4-ball. Moreover, the conjugating map is a smooth bijection
of C2 to itself. On the sphere at infinity, the extension has an attracting and a repelling
solenoid, and the dynamics near these invariant solenoids are described by conjugation to a
model solenoidal map introduced by [8]. The methods used here are analytic in character:
cut-off functions are used to piece together part of the original automorphism and part of a
map which extends naturally to the 3-sphere at infinity. This piecing together is done in a
parametrized way, and the resulting one-parameter family of maps is used to construct an
isotopy which forms the basis of the conjugating map.

Some of the results in this paper are similar to portions of the work by Hubbard and
Oberste-Vorth [8] and Hubbard, Papadopol, and Veselov [9]. In particular, those papers
also describe the extension of polynomial automorphisms to homeomorphisms of the closed
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4-ball. However, the techniques of those papers owe more to algebraic geometry than to
analysis. This algebraic-geometric approach has the advantage of preserving as much of
the complex analytic structure as possible, but it leads to obstructions which prevent the
resulting homeomorphism from being a global diffeomorphism.

For clarity of presentation, we first consider the case of a single Hénon map. In section 2,
we construct a homeomorphism of C2 which equals a given Hénon map on a large compact
set, which extends to a homeomorphism of the closed 4-ball obtained by adding a 3-sphere at
infinity, and which is a diffeomorphism outside of a small set. The extension to the 3-sphere
at infinity given by this homeomorphism is interesting in itself and is perhaps the simplest
possible extension (see equation (2.1)). This construction is done in a parametrized way to
give a one-parameter family containing the original Hénon map. In section 3, we use this one-
parameter family together with some cut-off functions to construct an isotopy which maps a
fundamental domain for the Hénon map to a fundamental domain for the map constructed
in section 2 and which conjugates the two maps on their fundamental domains. This isotopy
then extends easily to give a global conjugacy of the Hénon map to the other members of the
one-parameter family. In section 4, we show that on the 3-sphere at infinity, the extended
map has two invariant solenoids, one attracting and one repelling, and that the dynamics
on large parts of this 3-sphere can be described by conjugation to a model solenoidal map.
In section 5 we modify the proofs in the previous sections to obtain the same extension and
conjugation results, but now using C∞ smooth maps. Finally, in section 6, we discuss the
corresponding results for compositions of several Hénon maps.

I am grateful to Eric Bedford and John Hubbard for several helpful discussions. This
research was supported in part by a grant from the National Science Foundation.

2 A family of homeomorphisms

In this section we construct a homeomorphism of C2 which equals a given Hénon map on a
large bidisk and which extends to the closed 4-ball obtained by adding a 3-sphere at infinity.

First we fix some notation which will be used throughout the paper. Let F (x, y) =
(y, p(y) − ax) for x, y ∈ C, with a 6= 0 and p(y) = yd + p̂(y) a polynomial with d ≥ 2,
p̂(y) = byd−k +O(yd−k−1) a polynomial, k ≥ 2, b 6= 0. A map of this form is called a Hénon
map and is a polynomial automorphism of C2. By [6], any polynomial automorphism of C2

with nontrivial dynamics is conjugate to a composition of Hénon maps.
Choose r0 ≥ max{8|a| + 8, 16|b|} large enough that if |y| ≥ r0/2, then |p(y) − yd| =

|p̂(y)| ≤ 2|b||y|d−2 (hence ≤ |y|d−1/4) and |p̂′(y)| ≤ |y|d−2.

For r ≥ r0, let

Hr(x, y) =

(
y, R

yd

|y|d−1
− x
)
, (2.1)

where R = R(r) is a smooth positive function to be specified in lemma 2.2, and where we
make the standing assumption that yd/|y|d−1 = 0 if y = 0. Then each Hr is a homeomorphism

2



of C2 to itself which is real-analytic on C2 − {(x, 0) : x ∈ C}. Also, Hr is R+ homogeneous
of degree 1, hence defines a map of S3 to itself. Moreover, Hr is conjugate to its inverse by
the involution σ(x, y) = (y, x). I.e., H−1

r = σ−1Hrσ.

Notation: Let Sr(y) = R(r)yd/|y|d−1. Also, let ‖(x, y)‖∞ = max{|x|, |y|}.

PROPOSITION 2.1 There exists a one-parameter family of homeomorphisms Fr, r ≥ r0

of C2 and a C∞ function R0(r) > r such that Fr(x, y) = F (x, y) if ‖(x, y)‖∞ < r and
Fr(x, y) = Hr(x, y) if ‖(x, y)‖∞ > R0(r). Moreover, Fr(x, y) is C∞ in (r, x, y) except on the
set {(r, x, 0) : r ≥ r0, |x| ≥ r}.

Before proving this proposition, we need some preliminaries and a lemma.

Choose a C∞ function φ : R → [0, 1] such that φ(t) = 1 if t ≤ 1/8, φ(t) = 0 if t ≥ 7/8,
and −2 ≤ φ′(t) ≤ 0. For y ∈ C, let φr(y) = φ(|y| − r).

Notation: For a smooth function f : C→ C, we write Dzf for the 2×2 matrix representing
the Jacobian of f at z. If f is holomorphic, then Dzf = f ′(z) with the usual identification.
For a matrix A, we use the notation ‖A‖m for the minimum min{‖Av‖ : ‖v‖ = 1} and ‖A‖
for the usual matrix norm. Note that if f is holomorphic, then the matrix norm ‖f ′(z)‖
equals |f ′(z)|.

LEMMA 2.2 There exists a function pr : C→ C which is C∞ for (r, y) ∈ [r0,∞)×C and
a C∞ function R : [r0,∞)→ R with R = R(r) ≥ (r + 1)d−1 such that

1. pr(y) = p(y) if |y| ≤ r.

2. pr(y) = Sr(y) if |y| ≥ r + 2.

3. Re
pr(y)

yd
≥ rd−1

2|y|d−1
if |y| ≥ r.

4. ‖Dypr‖m ≥


|p′(y)| if |y| ≤ r
d
2
|y|d−1 if r ≤ |y| ≤ r + 1

(r + 1)d−1 if |y| ≥ r + 1.

Proof of Lemma 2.2: For |y| ≤ r + 1, let

pr(y) = yd + φr(y)p̂(y).

Then pr(y) = p(y) if |y| ≤ r + 1/8, and pr(y) = yd if r + 7/8 ≤ |y| ≤ r + 1. Moreover, if
|y| ≥ r0/2, then by the choice of r0,

‖Dy(φr(y)p̂(y))‖ ≤ |φ′r(|y|)||p̂(y)|+ φr(y)|p̂′(y)|
≤ 4|b||y|d−2 + |y|d−2.

3



Hence for r + 1 ≥ |y| ≥ r ≥ r0,

‖Dypr‖m ≥ ‖Dyy
d‖m − (4|b|+ 1)|y|d−2

≥ d|y|d−1 − 4|b|+ 1

r0
|y|d−1

≥ d

2
|y|d−1.

Thus condition (1) is satisfied, as are the first two parts of condition (4).

Next we need to pass from yd to Sr(y) = Ryd/|y|d−1. For R, t ≥ 0, define

Ar(t, R) =

∫ t

0

(dsd−1φr+1(s) + (1− φr+1(s))R)ds.

Then Ar(t, R) = td if t ≤ r + 9/8 and ∂
∂t
Ar(t, R) = R if t ≥ r + 2 We will define R =

R(r) implicitly by Ar(r + 2, R(r)) = R(r)(r + 2). To see that R can be so defined, let
B(r, R) = Ar(r + 2, R) − (r + 2)R. Then using the fact that 0 ≤ φr+1(t) ≤ 1, we see that
(∂/∂R)B(r, R) < 0, and integrating first from 0 to r+ 1, then from r+ 1 to r+ 2 shows that
B(r, (r + 1)d−1) > 0 while B(r, d(r + 2)d−1) < 0.

Hence R(r) is well-defined, is unique, and by the implicit function theorem is C∞. More-
over, R(r) ≥ (r + 1)d−1. For t ≥ 0, let Ar(t) = Ar(t, R(r)). Then Ar(t) = td for t ≤ r + 9/8
and Ar(t) = R(r)t for t ≥ r + 2. Also, A′r(t) ≥ (r + 1)d−1 if r + 1 ≤ t ≤ r + 2.

For |y| ≥ r + 1, let

pr(y) = Ar(|y|)
yd

|y|d .

Then condition (2) is satisfied, and pr(y) is C∞ in (r, y). To check the remaining part of
condition (4), we calculate ‖Dypr‖m for |y| ≥ r+ 1. By the rotational symmetry of pr(y) for
|y| ≥ r + 1, it suffices to find ‖Dtpr‖m for t > r + 1. Note that for ε real and near 0,

pr(t+ iε) =
td + idtd−1ε

|t+ iε|d Ar(|t+ iε|) +O(ε2),

so using the fact that ( ∂
∂ε
|t+ iε|)|ε=0 = 0 and td = |t|d, we obtain

Dtpr =

(
A′r(t) 0

0 d
t
Ar(t)

)
. (2.2)

Since A′r(t) ≥ (r + 1)d−1 and dAr(t)/t ≥ d(r + 1)d−1 for t ≥ r + 1, condition (4) follows.

To verify condition (3), note that if r ≤ |y| ≤ r + 1, then |pr(y) − yd| = φr(y)|p̂(y)| ≤
|y|d−1/2, so dividing both sides by |y|d and taking real parts gives Re (pr(y)/yd) ≥ 1−1/2|y| ≥
rd−1/2|y|d−1, where the last inequality follows from the fact that |y| ≥ r ≥ r0 > 1.

If |y| ≥ r+1, then integrating from 0 to r+1 and r+1 to |y| and using R(r) ≥ (r+1)d−1

gives

Ar(|y|) ≥ (r + 1)d + (r + 1)d−1(|y| − (r + 1))

= |y|(r + 1)d−1,
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and hence Re(pr(y)/yd) = Ar(|y|)/|y|d ≥ rd−1/|y|d−1. Hence condition (3) holds. �

Proof of Proposition 2.1: Let pr(y) be as in the previous lemma. Note that if |y| ≤ r,
then pr(y) = p(y), and if |y| ≥ r+ 2, then pr(y) = Sr(y). Also, the map (x, y) 7→ (y, pr(y)−
ax) is a homeomorphism of C2 for each fixed r.

We next modify this homeomorphism by making a diffeomorphism of the plane for each
y which equals the map x 7→ pr(y)− ax if |y| ≥ r + 1 or if ‖(x, y)‖∞ ≤ r, and which equals
x 7→ Sr(y)− ax if |x| is sufficiently large (depending on r).

Define αr(y) = |pr(y)−Sr(y)|. Then αr(y) is continuous in (r, y) and uniformly continuous
and bounded on [r0, R] × C for any R > r0 since pr(y) = Sr(y) for |y| ≥ r + 2. Hence, we
can choose a positive C∞ function L(r) with L(r) ≥ sup{αr(y) : y ∈ C}/|a|.

Next, define

ψr(x) = φ

(
|x| − r − 2

3L(r)

)
.

Then ψr(x) = 1 when |x| ≤ r + 2, and ψr(x) = 0 if |x| ≥ r + 2 + 3L(r). Also, using the
bounds on φr and φ′, we see that for x1, x2, y ∈ C and t ∈ R,∣∣∣∣ ∂∂tψr(x1 + x2t)

∣∣∣∣ ≤ 2

3L(r)
|x2|. (2.3)

Let
qr(x, y) = ψr(x)pr(y) + (1− ψr(x))Sr(y),

and
Gr(x, y) = (y, qr(x, y)− ax).

Note that Gr(x, y) is a continuous map of C2 into itself. To show that Gr is a homeo-
morphism, we see from the form of Gr that it suffices to show that the function gr,y(x) =
qr(x, y) − ax is a homeomorphism of the plane for each fixed y. Given any x1, x2 ∈ C, let
g(t) = gr,y(x1 + (x2 − x1)t) for t ∈ R. Then g is C∞, and using (2.3) and the definition of
αr(y) we get

|g′(t) + a(x1 − x2)| ≤ 2|x2 − x1|
3L(r)

αr(y).

Integrating g′ from 0 to 1 and using αr(y)/L(r) ≤ |a| gives |gr,y(x2)−gr,y(x1)| ≥ |x2−x1||a|/3.
Hence gr,y is injective. Moreover, gr,y is continuous, and gr,y(x) = Sr(y) − ax for |x| ≥
r + 2 + 3L(r), hence gr,y(x) extends to CP1 by fixing ∞. By compactness, this extension is
a homeomorphism of CP1, hence gr,y is a homeomorphism of C. As noted, this implies that
Gr is a homeomorphism of C2.

For the last modification, first note that qr(x, y) = Sr(y) if |x| ≥ r+2+3L(r) or |y| ≥ r+2.
Hence for such (x, y) we have Gr(x, y) = (y, Sr(y)− ax). Define M(r) = r + 2 + 3L(r).

We claim that there exist C∞ functions a(r, x, y) for (r, x, y) ∈ [r0,∞)× C2, and R0(r)
for r ≥ r0, such that
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1. R0(r) ≥M(r) + 1.

2. a(r, x, y) = ax if ‖(x, y)‖∞ ≤M(r).

3. a(r, x, y) = x if ‖(x, y)‖∞ ≥ R0(r).

4. For fixed r and y, and c > 0, there exists c′ ∈ C, c′ 6= 0 such that a(r, ceiθ, y) = c′eiθ

for all θ ∈ R.

5. For all (r, x, y), |a(r, x, y)| ≤ max{|ax|, |x|}.

6. For t > 0, ∂
∂t
|a(r, t, y)| > 1− |1−|a||

1+|a| .

7. For any |x| < |y|, ‖Dxa(r, x, y)‖+ ‖Dya(r, x, y)‖ < 7 max{|a|, 1}.

To construct such an a(r, x, y), let

a1(r, y) = exp

(
φ

(
|y| −M(r)

N(r)

)
log |a|

)
,

where N(r) > M(r) is a positive function to be specified later. Note first that a1(r, y) = |a|
if |y| ≤M(r), and a1(r, y) = 1 if |y| ≥M(r) +N(r). Also, a1(r, y) ≤ max{|a|, 1}, and given
ε0 > 0, we can choose N(r) > 0 sufficiently large to obtain ‖Dya1(r, y)‖ < ε0/(M(r) + 1).
For t > 0 define

a2(r, t, y) = t+

∫ t

0

φM(r)(s)(a1(r, y)− 1)ds.

Then a2(r, t, y) = a1(r, y)t for t ≤M(r), and a2(r, t, y)− t is constant for t ≥M(r) + 1.
Let ε(r, t, y) = a2(r, t, y)− t. Then ε(r, t, y) = ε(r,M(r) + 1, y) whenever t ≥ M(r) + 1,

and for fixed r,
|ε(r,M(r) + 1, y)| ≤ |1− |a||(M(r) + 1).

Let εr = |1− |a||(M(r) + 1), let R0(r) = (1 + 2N(r)(1 + |a|))(M(r) + 1), and let

a3(r, t, y) = a2(r, t, y)−
(

1− φ
(

t−M(r)− 1

R0(r)−M(r)− 1

))
ε(r,M(r) + 1, y).

Then a3(r, t, y) = a2(r, t, y) for t ≤ M(r) + 1, and a3(r, t, y) = t for t ≥ R0(r). Moreover,
using |φ′| < 2, we see that for t ≥M(r) + 1,∣∣∣∣1− ∂

∂t
a3(r, t, y)

∣∣∣∣ ≤ 2
εr

R0(r)−M(r)− 1
≤ |1− |a||
N(r)(1 + |a|) . (2.4)

Finally, let

a(r, x, y) = a3(r, |x|, y) exp

(
iφ

(
|x| −M(r)

N(r)

)
φ

(
|y| −M(r)

N(r)

)
Im(log a)

)
x

|x| ,

where log a is any branch of the logarithm. Then a(r, x, y) satisfies properties 1 through 6
immediately.
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Moreover, for t > 0, we see from (2.4) and |φ′| < 2 that∣∣∣∣ ∂∂ta(r, t, y)

∣∣∣∣ ≤ max

{
|a|, 1 +

1

N(r)

}
+ |a3(r,M(r) +N(r), y)| 2

N(r)
,

which by property 5 is bounded by (3 + ε0) max{|a|, 1} for N(r) large. Also, for t > 0,∣∣∣∣ ∂∂εa(r, t + iε, y)|ε=0

∣∣∣∣ = |a3(r, t, y)|1
t
,

which again by property 5 is bounded by max{|a|, 1}. By rotational symmetry, we see that
‖Dxa(r, x, y)‖ ≤ (4 + ε0) max{|a|, 1}.

Next, note that ‖Dya2(r, |x|, y)‖ ≤ (M(r)+1)‖Dya1(r, y)‖ ≤ ε0, hence ‖Dya3(r, |x|, y)‖ ≤
2ε0. Thus

‖Dya(r, x, y)‖ ≤ ‖Dya3(r, |x|, y)‖+ |a3(r, |x|, y)|
∥∥∥∥Dyφ

(
|y| −M(r)

N(r)

)∥∥∥∥ ,
and since this derivative of φ is 0 for |y| ≥M(r) +N(r), property 5 implies that if |x| < |y|,
then the right hand side is bounded by 2ε0 +2(M(r)+N(r))/N(r). Combining this with the
bound for ‖Dxa‖, we see that for ε0 < 1/4 and N(r) sufficiently large, property 7 is satisfied
also. Thus, a(r, x, y) exists as claimed.

In particular, for each fixed r and y, the map x 7→ Sr(y)− a(r, x, y) is a smooth injective
map of C to itself which equals x 7→ Sr(y) − x for x ≥ R0(r), and hence this map is a
diffeomorphism of C.

Finally, let

Fr(x, y) =

{
Gr(x, y) = (y, qr(x, y)− ax) if ‖(x, y)‖∞ ≤M(r),
(y, Sr(y)− a(r, x, y)) if ‖(x, y)‖∞ ≥M(r).

(2.5)

Note that the two definitions agree in a neighborhood of {‖(x, y)‖∞ = M(r)}. To show that
Fr is a homeomorphism of C2 to itself, it suffices to check that for each fixed y, Fr(·, y) is a
homeomorphism of C to itself, which follows from the remarks about Sr(y)− a(r, x, y). �

3 Conjugation

In this section we show that the map Fr constructed in the previous section is conjugate to
the Hénon map F . First we develop some of the basic properties of the maps Fr, then we
use the family of maps Fr to define an isotopy which can be used to conjugate F to Fr.

Notation: Let F∞ = F .

LEMMA 3.1 Let r ∈ [r0,∞]. If |y| ≥ r0/2 and |x| ≤ 2|y|, then (z, w) = Fr(x, y) satisfies
|w| ≥ 3|z| ≥ 3r0/2.
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Proof: Since F∞ = Fr on ∆2(0; r) for any r ≥ r0, we may assume without loss that
r < ∞. First suppose ‖(x, y)‖∞ ≤ M(r). Choose θ ∈ R such that eiθyd = |y|d. Since
|y| ≥ r0/2, we have |eiθp(y)− eiθyd| ≤ |y|d/4 by choice of r0. If |y| ≤ r, then Re(eiθpr(y)) =
Re(eiθp(y)) ≥ 3|y|d/4. If |y| ≥ r, then Re(eiθpr(y)) = Re(pr(y)/yd)|y|d ≥ (rd−1/2)|y|. In
either case, Re(eiθpr(y)) ≥ 3r0|y|/8. Hence

|qr(x, y)| ≥ Re(eiθqr(x, y))

≥ ψr(x, y)r0
3|y|
8

+ (1− ψr(x, y))R(r)|y|

≥ 3r0|y|
8

Since r0 ≥ 8|a| + 8 and |x| ≤ 2|y|, we obtain |w| = |qr(x, y) − ax| ≥ 3r0|y|/8 − 2|a||y| ≥
3|y| = 3|z|. Hence (z, w) = Fr(x, y) satisfies |w| ≥ 3|z| ≥ 3r0/2.

To finish the proof, suppose ‖(x, y)‖∞ ≥ M(r), in which case (x, y) = (y, Sr(y) −
a(r, x, y)). Then |w| = |Sr(y) − a(r, x, y)| ≥ r0|y| − max{|ax|, |x|} ≥ 3|y| = 3|z|. Hence
the lemma holds. �

LEMMA 3.2 Let r ∈ [r0,∞]. If |x| ≥ r0/2 and |y| ≤ 2|x|, then (z, w) = F−1
r (x, y) satisfies

|z| ≥ 3|w| ≥ 3r0/2.

Proof: Again we may assume r < ∞. Suppose that ‖(z, w)‖∞ ≤ M(r). Then (x, y) =
Fr(z, w) = (w, qr(z, w)− az). Since |w| = |x| ≥ r0/2, we have as in the previous lemma that
|qr(z, w)| ≥ 3r0|w|/8. Since |y| ≤ 2|w|, we have |az| ≥ |qr(z, w)| − |y| ≥ 3r0|w|/8− 2|w| ≥
3|a||w|. Hence |z| ≥ 3|w| ≥ 3r0/2.

If ‖(z, w)‖∞ ≥ M(r), then (x, y) = (w, Sr(w) − a(r, z, w)), so examining the second
coordinate and using property 5 of a(r, x, y) we obtain

max{|az|, |z|} ≥ |a(r, z, w)|
≥ R(r)|w| − |y|
≥ ((r + 1)d−1 − 2)|w|
≥ (8|a|+ 6)|w|.

Hence |z| ≥ 3|w| ≥ 3r0/2, as desired. �

Notation: Let ∆2
0 = {(x, y) : |x| ≤ r0/2, |y| ≤ r0}.

Notation: For a map f , let Ω(f) denote the nonwandering set of f . I.e., Ω(f) consists of
all points p such that for any neighborhood V of p, there exists n > 0 so that V ∩fn(V ) 6= ∅.

LEMMA 3.3 For each r ≥ r0, Ω(Fr) = Ω(F ).

Proof: By [2], Ω(F ) ⊆ ∆2
0. By the two previous lemmas, if ‖(x, y)‖∞ ≥ r0/2, then (x, y)

is wandering for Fr. Since F = Fr on ∆2
0, the lemma follows. �
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Notation: Let V = {|x| > r0/2, |x| > |y|/2}, and for r ∈ [r0,∞], let Dr = (Fr(V )\V )∪∆2
0.

LEMMA 3.4 Let r ∈ [r0,∞] and (x, y) ∈ C2. Then there exists n ∈ Z such that F n
r (x, y) ∈

Dr

Proof: If there exists n so that F n
r (x, y) ∈ ∆2

0, then the proof is done. Otherwise,
lemma 3.2 implies that ∩n≤0F

n
r (V ) = ∅, so ∪n≤0F

n
r (C2 \ V ) = C2. Hence there exists n ≥ 0

such that F n
r (x, y) ∈ C2 \ V . Similarly, lemma 3.1 implies that there exists n ≤ 0 so that

F n
r (x, y) ∈ V . Since F−1

r (V ) ⊆ V and Fr(C2 \ V ) ⊆ C2 \ V , there exists a unique integer n
such that F n−1

r (x, y) ∈ V and F n
r (x, y) ∈ C2 \ V , hence F n

r (x, y) ∈ Fr(V ) \ V as desired. �

Notation: Let U0 = {|x| < r0, |y| ≤ r0}, U1 = {|y| ≥ r0, |x| < |y|}, and U = U0∪U1. Note
that U is a neighborhood of ∂V .

LEMMA 3.5 There exists a neighborhood V0 of V such that Fr(U) ∩ V 0 = ∅ for all r ∈
[r0,∞].

Proof: Lemma 3.2 implies that F−1(V ) ∩ U0 = ∅, so applying F gives F (U0) ∩ V = ∅.
Note also that Fr(U 0) = F (U 0) for all r ≥ r0. Moreover, if (x, y) ∈ U 1, then by lemma 3.1,
(z, w) = Fr(x, y) has |w| ≥ 3|z| ≥ 3r0/2, which is bounded away from V . Hence for all
r ∈ [r0,∞], Fr(U) is contained in the closed set F (U0) ∪ {(x, y) : |y| ≥ 3|x| ≥ 3r0/2}, and
this union does not intersect V . Hence there exists V0 as claimed. �

Notation: For c ∈ C, let Xc = {(cy, y) : |y| > r0/2}. For w ∈ C, let Yw = {(z, w) : z ∈ C}.

LEMMA 3.6 Let |c| < 1, and w ∈ C. Then for all r ∈ [r0,∞], Fr(Xc) and Yw are
transverse. In particular, given (z0, w0) ∈ Fr(Xc) ∩ Yw0, there exists a neighborhood W of
r in [r0,∞] and a unique C∞ function z : W → C such that z(r) = z0 and for all s ∈ W ,
(z(s), w0) ∈ Fs(Xc) ∩ Yw0.

Proof: Let (z, w) ∈ Fr(Xc) ∩ Yw, where |c| < 1 and r ∈ [r0,∞]. By lemma 3.1, |w| ≥
3r0/2. Moreover, the tangent space of Yw at (z, w) is C(1, 0). Hence to check transversality,
it suffices to check that

‖Dy(π2Fr(cy, y))‖m > 0.

In fact, we will prove the stronger result, which will be useful later, that if |x| < |y|, |y| ≥
r0/2, and |c| < 1, then for each real θ,∣∣∣∣(D(x,y)π2Fr)

(
c

eiθ

)∣∣∣∣ > ∣∣∣∣(D(x,y)π1Fr)

(
c

eiθ

)∣∣∣∣ , (3.1)

where D(x,y)πjFr represents the 2×4 matrix of partial derivatives of πjFr at the point (x, y).
From the definition of Fr in equation (2.5), we see that for any x and y,

(D(x,y)π1Fr)

(
c

eiθ

)
= eiθ,
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and hence in (3.1) it suffices to show that the left hand side is bigger than 1. The definition
of Fr also implies that if ‖(x, y)‖∞ ≤ M(r), then

π2Fr(x, y) = ψr(x)pr(y) + (1− ψr(x))Sr(y)− ax.

If also |y| ≥ r + 2, then pr(y) = Sr(y), so

π2Fr(x, y) = R(r)|y| y
d

|y|d − ax,

and a calculation like that leading to (2.2) together with R(r) > 8|a|+ 8 and |c| < 1 shows
that the left hand side of (3.1) is at least R(r)− |ac| > 1 in this case.

If |y| < r + 2, then |x| < r + 2 by assumption, so ψr(x) = 1 and hence π2Fr(x, y) =
pr(y)− ax. Since |y| > r0/2, part 4 of lemma 2.2 and the choice of r0 shows that

‖Dypr(y)‖m ≥ (|y| − 1)d−1 > 4|a|+ 3,

so the left hand side of (3.1) is at least 3|a| + 3 > 1. Hence (3.1) holds whenever |x| < |y|,
|c| < 1, and r0/2 < |y| ≤M(r).

If |y| ≥M(r), then

π2Fr(cy, y) = R(r)|y| y
d

|y|d − a(r, x, y).

By property 7 of a(r, x, y) and a calculation like that for equation (2.2), we see that the left
hand side of (3.1) is at least

R(r)− ‖Dxa(r, x, y)‖|c| − ‖Dya(r, x, y)‖ > 1.

Hence the transversality part of the current lemma is seen to be true, and the rest of the
lemma follows from the implicit function theorem. �

LEMMA 3.7 There exists a C∞ map g : [r0,∞]× C2 → C2 such that gr = g(r, ·) satisfies

1. g∞ = Id.

2. gr is a diffeomorphism of C2 and a diffeomorphism of D∞ onto Dr.

3. π2gr(x, y) = y for all (x, y) ∈ C2 and all r ∈ [r0,∞].

4. gr = Id on a neighborhood (independent of r) of ∂V ∪∆2
0.

5. gr(F (Xc)) = Fr(Xc) for all r ∈ [R0,∞] and all |c| ≤ 3/4.

Proof: We will define gr as the time-t map (t = r0/r) of a time dependent vector field
which preserves the sets Yw and which is compactly supported within each Yw. This approach
avoids questions of the completeness of vector fields defined on noncompact sets. First we
define an isotopy, hr, of F (U) to Fr(U) which preserves the sets Yw, then use the ideas of
the isotopy extension theorem to obtain gr.
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Fix (x0, y0) ∈ U . If |y0| ≤ r0, then also |x0| ≤ r0, so Fr(x0, y0) = F (x0, y0) for all
r ∈ [r0,∞]. Define hr(F (x0, y0)) = F (x0, y0) for all r ∈ [r0,∞].

Next, let (x0, y0) ∈ U with |y0| > r0, and let |c| < 1 such that x0 = cy0. Since Fr(x0, y0) =
F (x0, y0) for r ≥ ‖(x0, y0)‖∞, we define hr(F (x0, y0)) = F (x0, y0) for such r. To complete
the definition of hr, let w = π2F (x0, y0), and suppose that hr(F (x0, y0)) is defined and C∞

for r ∈ (r1,∞] with hr(F (x0, y0)) ∈ Fr(Xc) ∩ Yw for all r ∈ (r1,∞].
In order to extend hr(F (x0, y0)) to [r0,∞], we first extend the definition to r = r1, then

use transversality to extend to a neighborhood of r1. By compactness, this is sufficient to
extend to all of [r0,∞].

The definition of Fr shows that π2Fr(cy, y) behaves like a polynomial in the sense that
π2Fr(cy, y) = w has exactly d zeros counted with multiplicity (note that lemma 3.6 implies
that the multiplicity of each zero is 1 except possibly at points where Fr(cy, y) = F (cy, y)
is holomorphic). In particular, hr1(F (x0, y0)) = limr→r1 hr(F (x0, y0)) must exist and equal
one of the images of the d zeros corresponding to r = r1. Simple estimates imply that
hr1(F (x0, y0)) is contained in Fr1(Xc) ∩ Yw, so lemma 3.6 implies that hr(F (x0, y0)) extends
uniquely to a neighborhood of r1 with hr(F (x0, y0)) ∈ Fr(Xc) ∩ Yw, hence hr extends to
r ∈ [r0,∞], as desired.

The implicit function theorem implies that hr is smooth on [r0,∞] × F (U). Note also
that hr = Id on ∆2

0 for all r. As in the isotopy extension theorem, e.g., [7, theorem 8.1.4],
the trajectory of a point under hr defines a smooth vector field by

Qt(p) =

{ (
d
dr
hr(h

−1
r0/t

(p))
)∣∣∣
r=r0/t

if t 6= 0

0 if t = 0,

where p ∈ hr0/t(F (U)) = Fr0/t(U) and t ∈ [0, 1]. Note that π2Qt ≡ 0, so that Qt restricts to
a vector field on each Yw.

Let µ : C2 → [0, 1] be a C∞ function which is 0 on C2 \ U and 1 in a neighborhood of
C2 \ V and such that µ = 1 on each set Xc with |c| ≤ 3/4. Then Zt(p) = µ(F−1

r0/t
(p))Qt(p) is

a C∞ vector field for p ∈ Fr0/t(U), t ∈ [0, 1], with π2Zt ≡ 0, Zt ≡ Qt on Fr0/t(C2 \V ) and on
Fr0/t(Xc) for each |c| ≤ 3/4, and Zt ≡ 0 on a neighborhood of Fr0/t(∂U) and on ∆2

0∩Fr0/t(U)
since hr ≡ Id there for any r. Hence Zt extends to a smooth vector field on C2 by setting
Zt ≡ 0 on the complement of Fr0/t(U). In particular, Zt preserves each Yw, and Zt ≡ 0 on
V by lemma 3.5, so Zt is complete.

For r ∈ [r0,∞], let gr be the time-(r0/r) map of Zt. Then properties 1-4 are immediate,
and property 5 is true since hr(F (Xc)) = Fr(Xc) and gr = hr on F (Xc) for |c| ≤ 3/4. �

THEOREM 3.8 For each r ≥ r0, the maps Fr and F are conjugate via a homeomorphism
of C2. I.e., there exists Φr : C2 → C2 a homeomorphism such that ΦrFΦ−1

r = Fr.

Proof: We will construct a homeomorphism Φr : D∞ → Dr such that Φr is the identity
on ∂V ∪∆2

0, and Φr = Fr ◦ F−1 on F (∂V ).
Before constructing Φr, we show how this proves the theorem. Suppose p ∈ D∞ and

F (p) ∈ D∞. By lemma 3.1, either p ∈ ∂V or p ∈ ∆2
0. If p ∈ ∂V , then Φr(p) = p, so

FrΦr(p) = Fr(p). Also, F (p) ∈ F (∂V ), so ΦrF (p) = (FrF
−1)F (p) = Fr(p) = FrΦr(p). On
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the other hand, if p ∈ ∆2
0 (and F (p) ∈ D∞), then F (p) ∈ ∆2

0, so Φr(p) = p, ΦrF (p) = F (p),
and F (p) = Fr(p), so FrΦr(p) = ΦrF (p). Hence FrΦr = ΦrF on D∞ ∩ F−1(D∞).

Moreover, given Φr defined on D∞, we can extend Φr to C2 by iteration. For p ∈ C2,
lemma 3.4 implies that there exists n ∈ Z so that F n(p) ∈ D∞. Define Φr(p) = F−nr ΦrF

n(p).

Since Φr(p) = FrΦrF (p) for p ∈ D∞ ∩ F−1(D∞) and Fr = F on ∆2
0, we see that Φr is well-

defined and continuous. Moreover, Φ−1
r is defined by Φ−1

r (p) = F nΦ−1
r F n

r (p), where n ∈ Z is
chosen so that F n

r (p) ∈ Dr, and as before, Φ−1
r is well-defined and continuous. Hence Φr is

a homeomorphism of C2 with ΦrFΦ−1
r = Fr on C2.

To construct Φr, let µ : C2 → [0, 1] be C∞ with µ ≡ 0 in a neighborhood of F (∂V )\F (∆2
0)

and µ ≡ 1 in a neighborhood of ∂V ∪ ∆2
0. We also require that µ is constant on each set

F (Xc) for |c| ≤ 1/2 and µ(p) = 1 for each p = F (cy, y) with |c| ≥ 1/2. Define Φr : D∞ → C2

by
Φr(p) = FrF

−1
r/µ(p)gr/µ(p)(p).

Note that if |c| ≤ 3/4, then part 5 of the previous lemma implies that Φr(F (Xc)) = Fr(Xc).
Moreover, parts 2 and 5 of that lemma imply that gr is a diffeomorphism of D∞ \ {F (Xc) :
|c| ≤ 1/2} to Dr \ {Fr(Xc) : |c| ≤ 1/2}. Since µ is constant on each F (Xc), this implies that
Φr is a diffeomorphism of D∞ to Dr. In fact, setting γ(p) = µ(F (F−1

r (p))), we have

Φ−1
r (p) = g−1

r/γ(p)Fr/γ(p)F
−1
r (p).

Moreover, if p is in the neighborhood of ∂V ∪∆2
0 where µ = 1 and gr = Id, then Φr(p) = p.

Similarly, if p is in the neighborhood of F (∂V )\F (∆2
0) where µ = 0, then Φr(p) = FrF

−1(p).

Finally, if p ∈ F (∂V ) ∩ F (∆2
0), then Fs = F at F−1(p) for any s ≥ r0, and hence gs(p) = p

and thus Φr(p) = p. Thus Φr satisfies all of the needed requirements. �

4 Behavior on the sphere at infinity

In this section we describe the behavior of the map Fr on the 3-sphere at infinity. Much
of this section is similar to and inspired by [8], where the theory of solenoidal mappings is
developed more fully.

Let T = D × S1, where D is the disk of radius 2 in C, and let (z, ζ) be the coordinates
in T. Let C+ and C− be the families of cones

C+(z, ζ) = {(u, ξ) ∈ T(z,ζ)T : |ξ| ≥ |u|},
C−(z, ζ) = {(u, ξ) ∈ T(z,ζ)T : |ξ| ≤ |u|}

in the tangent bundle of T. Following [8], we say that a map τ : T → T is solenoidal
of degree d if τ is a C1 injective immersion of degree d such that Dτ(C+) ⊆ C+, and if
there exists a constant K > 1 such that for all (z, ζ) ∈ T we have that (u, ξ) ∈ C+(z, ζ)
and D(z,ζ)τ(u, ξ) = (u1, ξ1) imply |ξ1| > K|ξ| and that (u, ξ) ∈ C−(z, ζ) and D(z,ζ)τ(u, ξ) =
(u1, ξ1) imply |u1| < 1/K|u|.

A standard model of a solenoidal mapping is given by defining

τd(z, ζ) = (ζ + εzζ1−d, ζd)
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for (z, ζ) ∈ C2, |z| ≤ 2, |ζ | = 1. In [8] and [9], two different methods are given for extending
a Hénon map to a compactification of C2 so that the compactification is homeomorphic
to a closed 4-ball and so that the Hénon map extends to a homeomorphism of this closed
4-ball to itself. Moreover, for both methods, the authors show that on the sphere at infinity,
this homeomorphism has an attracting solenoid and a repelling solenoid, and that in a
neighborhood of the attracting solenoid the homeomorphism is conjugate to τd, where d is the
degree of the Hénon map. In a neighborhood of the repelling solenoid, the homeomorphism
is conjugate to τ−1

d .

These results are also true for the present extension. Let Ĥr denote the map induced by
Hr (or equivalently Fr) on the 3-sphere. Let V + = {(x, y) : |x| < 2|y|, |x|2 + |y|2 = 1}. Note
that V + is a solid torus and that by lemma 3.1, Ĥr maps V + into the interior of V +. Also,
let σ(x, y) = (y, x).

THEOREM 4.1 For r sufficiently large, Ĥr|V + (resp. Ĥ−1
r |σ(V +)) is solenoidal and con-

jugate to τd (resp. τ−1
d ).

Proof: We can write Ĥr in coordinates (z, ζ), |z| ≤ 2, |ζ | = 1 by

Ĥr(z, ζ) =

(
ζ

|Rζd − z| ,
Rζd − z
|Rζd − z|

)
,

where R = R(r). Conjugating ζ by the map θ 7→ eiθ, which induces an isometry on the
tangent bundle, we can write Ĥr as

Ĥr(z, θ) =

(
eiθ

|Reiθ − z| , Im log(Reidθ − z)
)

=

(
eiθ

R

∣∣∣∣1− ze−iθ

R

∣∣∣∣−1

, dθ + Im log

(
1− ze−idθ

R

))
.

From this, we see that as r →∞ (and hence R→∞), the partial derivatives of all terms
except dθ tend to 0. In particular, for r sufficiently large, Ĥr satisfies the conditions for
being solenoidal.

The fact that Ĥr : V + → V + is conjugate to τd follows as in corollary X.2 of [9]: Ĥr

restricted to V + is conjugate to one of the maps τd,k as in theorem 3.11 of [8], and proposition
4.6 of [8] implies that τd,0 = τd is the only one of these maps which can be extended to

an orientation preserving homeomorphism of the 3-sphere. Since Ĥr extends, it must be
conjugate to τd. Since Ĥ−1

r is conjugate to Ĥr by the involution σ(x, y) = (y, x), we see that
Ĥ−1
r is conjugate to τ−1

d on σ(V +). �

In general, Ĥr need not be conjugate to Ĥs on all of the 3-sphere for r 6= s. John Hubbard
is planning a detailed study of the conjugacy classes of maps similar to Ĥr.

5 Smooth results

In this section we modify the proofs of the previous sections to obtain the same results except
that here the maps Fr and the one parameter family are all C∞ smooth.
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Let F , r0, r, and R = R(r) be as before, and define

Jr(x, y) =

(
y, R

yd

|y|d−1
φ

(
|x|

CR|y|

)
− x
)
,

where C = C(r) is a positive function to be specified. Then Jr is R+ homogeneous of degree
1, and Jr is C∞ on C2 \ {(0, 0)}.

PROPOSITION 5.1 There exists a one-parameter family of C∞ diffeomorphisms Fr, r ≥
r0 of C2 and a C∞ function R0(r) > r such that Fr(x, y) = F (x, y) if ‖(x, y)‖∞ < r and
Fr(x, y) = Jr(x, y) if ‖(x, y)‖∞ > R0(r). Moreover, Fr(x, y) is C∞ in (r, x, y).

Proof: The proof is nearly the same as that for proposition 2.1. Referring to that proof,
define αr(y) as before, define βr = sup{|pr(y)|+|Sr(y)| : |y| ≤ 1}, then choose L(r) a positive
C∞ function so that L(r) ≥ max{βr, sup{αr(y) : y ∈ C}}/|a|.

Define ψr as before with this new L(r), let M(r) = r + 2 + 3L(r), and let C = C(r) be
C∞ with C(r) ≥ max{24/|a|,M(r), 2 + 1/|a|}. Let

qr(x, y) = ψr(x)pr(y) + (1− ψr(x))Sr(y)φ

(
|x|

CR|y|

)
and

Gr(x, y) = (y, qr(x, y)− ax).

Since |φ′| ≤ 2, we have for any x1, x2 ∈ C that∣∣∣∣ ∂∂tqr(x1 + (x2 − x1)t, y)

∣∣∣∣ ≤|Sr(y)|2|x2 − x1|
CR|y| (1 + ψr(x1 + (x2 − x1)t))

+

∣∣∣∣ ∂∂tψr(x1 + (x2 − x1)t)

∣∣∣∣ ∣∣∣∣pr(y)− Sr(y)φ

(
x1 + (x2 − x1)t

CR|y|

)∣∣∣∣ . (5.1)

Note that in this expression both ψr and (∂/∂t)ψr are 0 if |x1 + (x2−x1)t| ≥M(r), in which
case the right hand side is bounded by |a||x2−x1|/12. On the other hand, if |x1+(x2−x1)t| ≤
M(r), then φ(|x|/CR|y|) = 1 whenever |y| ≥ 8M(r)/CR. Since 8M(r)/CR ≤ 1, we see that
if |x1 + (x2 − x1)t| ≤M(r), then∣∣∣∣pr(y)− Sr(y)φ

(
x1 + (x2 − x1)t

CR|y|

)∣∣∣∣ ≤ max{βr, αr(y)} ≤ L(r)|a|.

This plus equation (2.3) and C ≥ 24/|a|, implies that the right side of (5.1) is bounded
by 5|a||x1 − x2|/6, so continuing as in the proof of proposition 2.1, we see that Gr is a
diffeomorphism of C2.

Finally, with a(r, x, y) as in the proof of proposition 2.1, we can define

Fr(x, y) =

{
Gr(x, y) = (y, qr(x, y)− ax) if ‖(x, y)‖∞ ≤M(r),(
y, Sr(y)φ

(
|x|

C(r)R(r)|y|

)
− a(r, x, y)

)
if ‖(x, y)‖∞ ≥M(r).

(5.2)
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Note that φ(t) = 0 for t > 1, so Fr is smooth even along |y| = 0. Moreover, properties 4 and
6 of a(r, x, y) together with the fact that∣∣∣∣ ∂∂tSr(y)φ

(
t

CR|y|

)∣∣∣∣ ≤ 2

C

and the fact that C > 2 + 1/|a| implies that Fr(·, y) is a diffeomorphism of C for each fixed
y, hence that Fr is a diffeomorphism of C2. By property 3 of a(r, x, y), Fr(x, y) = Jr(x, y)
for ‖(x, y)‖∞ ≥ R0(r), as desired. �

THEOREM 5.2 The maps F and Fr are conjugate via a C∞ diffeomorphism of C2. I.e.,
there exists Φr : C2 → C2 a diffeomorphism such that Φ−1

r FΦr = Fr.

Proof: On the set U , the Fr constructed in this section equals the Fr constructed in
proposition 2.1. Hence the conjugation in the current theorem is obtained exactly as in
theorem 3.8.

The fact that Φr is C∞ follows from the facts that Φr is C∞ on D∞, that F and Fr are
C∞, that Φr = Id on a neighborhood of ∂V ∪∆2

0 and Φr = Fr ◦ F−1 on a neighborhood of
F (∂V ), and that Φr(p) = F−nr ΦrF

n(p) for p ∈ F−n(D∞). �

Note that Jr = Hr except at points (x, y) where |x|/CR|y| ≥ 1/8, which implies the
equality of Ĵr and Ĥr except on the analogous set in the 3-sphere. In particular, Ĵr|V + =
Ĥr|V + is still conjugate to τd. Moreover, if |x|/CR|y| ≥ 1/8 and (z, w) = Jr(x, y), then
C ≥ 24/|a| implies that |ax|/2 ≥ R|y|, hence |w| ≥ |ax|/2 > 2|z|. Thus, for such (x, y),
the point on the 3-sphere corresponding to Jr(x, y) is not contained in σ(V +). In particular,
if (z, w) ∈ σ(V +), then Ĵ−1

r (z, w) = Ĥ−1
r (z, w), so Ĵ−1

r is conjugate to τ−1
d on σ(V +) by

theorem 4.1.

6 Compositions of Hénon maps

In this section we obtain results similar to those in earlier sections, but here the focus is on
compositions of Hénon maps.

Let Fj(x, y) = (y, pj(y)−ajx) for j = 1, . . . , n, where pj is a polynomial of degree dj ≥ 2
having the form of the polynomial p of section 2 and aj ≥ 0. As noted earlier, [6] implies
that any polynomial automorphism of C2 with nontrivial dynamics is conjugate to the map
F = Fn ◦ · · · ◦ F1 for some choice of n, the pj’s and the aj ’s.

For each j, we can construct Fj,r as in proposition 2.1 (or proposition 5.1). Let r0 be the
maximum of the r0’s corresponding to each individual Fj,r. Let r̂0 > 0 be large enough that

F (∆2
0(0; r̂0) contains ∆2(0; r0).

THEOREM 6.1 Let r = (r1, . . . , rn) with each rj ≥ r̂0. Then F = Fn◦· · ·◦F1 is conjugate
on C2 to Fr = Fn,rn ◦ · · · ◦ F1,r1. If each Fj,rj is constructed as in proposition 5.1, then the
conjugating map is smooth.
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Proof: The proof of lemma 3.6 implies that the inequality in (3.1) is valid for each Fj,r
for all r ≥ r0, |x| < |y|, |y| ≥ r0/2, |c| < 1, and θ real. By lemma 3.1, we can apply each
Fj,rj in turn to see that (3.1) is valid for Fr. Hence lemma 3.6 is valid for Fr.

For each r ≥ 0, let Fr,r = Fn,rn+r ◦ · · · ◦ F1,r1+r, let Fr,∞ = F , and for r ∈ [0,∞], let

Dr = (Fr,r(V ) \ V ) ∩∆2
0.

Since lemma 3.6 is valid in the current setting and by the choice of r̂0, we see that
lemma 3.7 is valid with Fr,r in place of Fr using the same proof (up to some notational
changes). Hence the proof of theorem 3.8 is also valid in the current setting. Thus Fr and
F are conjugate as claimed, and the smoothness follows as in theorem 5.2. �

Finally, for rj sufficiently large, the map induced on the 3-sphere at infinity by Fj,rj will

be solenoidal on V + as in theorem 4.1, so the composition of these maps, F̂r will also be
solenoidal on V +, as can be seen by checking the definition of solenoidal. Moreover, F̂r

is conjugate to τdn ◦ · · · ◦ τd1 on V +. This can be seen by applying proposition 3.8 of [8]
inductively to obtain the conjugacy on a fundamental domain for F̂r, then completing the
conjugacy as in theorem 3.11 of [8]. Analogous results obtain for the inverses of the relevant
maps. For further results on such compositions, the reader is urged to consult section XI of
[9].
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[8] J.H. Hubbard and R. Oberste-Vorth, Hénon mappings in the complex domain, Publ.
Math. I.H.E.S., 79 (1994), 5-46.

[9] J.H. Hubbard, P. Papadopol, and V. Veselov, to appear in Acta Math.

16



[10] C. Robinson, Dynamical systems : stability, symbolic dynamics, and chaos, CRC Press:
Boca Raton, 1995.

17


