
Nondensity of stability for polynomial automorphisms of C2

Gregery T. Buzzard

Abstract

In the space of polynomial automorphisms of C2, the set of structurally stable maps
is not dense. To obtain this result we develop some of the theory of moduli of stability
for holomorphic maps. Also, the set of hyperbolic maps is not dense in the set of
polynomial automorphisms; however, given any polynomial automorphism, F , of C2,
there is a polynomial automorphism, G, of the same degree as and arbitrarily near F
such that each periodic point of G is hyperbolic.

1 Introduction

In this paper we consider questions of dynamical stability; i.e., when do small changes in
a map lead to small changes in the dynamics? More precisely, let G be a topological space
of diffeomorphisms of a manifold M . A map F ∈ G is structurally stable if there exists a
neighborhood U of F such that for each G ∈ U , F and G are conjugate. In the study of
dynamics of one complex variable, the question of the density of stability was resolved in
[MSS] and [MS], where it was shown that in a family of rational maps of the Riemann sphere
which depends holomorphically on a parameter, the set of structurally stable maps is dense.
In contrast, for general Ck diffeomorphisms of a compact surface, the set of structurally
stable maps is not dense in most families; e.g., [I, Ch. 7, Sec. IV].

In this paper, we show that the situation for polynomial automorphisms of C2 of fixed
degree is analogous to that for Ck diffeomorphisms of a compact surface: structural stabil-
ity is not dense. In doing so, we develop some of the theory of moduli of stability along
the lines of [NPT]. In this particular case, there are numerical invariants associated with
homoclinic and heteroclinic tangencies which can prevent conjugation between maps having
different values for these invariants. We also show that hyperbolic maps are not dense in the
space of polynomial automorphisms of sufficiently high degree, but that given a polynomial
automorphism of degree d having nontrivial dynamics, there is a nearby automorphism of
the same degree such that all of its periodic points are hyperbolic. This latter result is one
half of the Kupka-Smale theorem in the setting of polynomial automorphisms.

Friedland and Milnor initiated the study of the dynamics of polynomial automorphisms
of C2 in [FM]. There they distinguish between elementary automorphisms, which are polyno-
mially conjugate to an automorphism of the form (x, y) 7→ (ax+ p(y), cy+d) (p polynomial,
a, c 6= 0) and which have simple dynamics, and the remaining automorphisms, which are
termed nonelementary and which do not have simple dynamics.

Bedford and Smillie [BS2] introduced the notion of the dynamical degree of a polynomial
automorphism of C2. Letting degF denote the maximum of the degrees of the polynomial
map F , the dynamical degree is defined as

d = d(F ) = lim
n→∞

(degF n)1/n,
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where F n denotes the nth iterate of F . This degree is a conjugacy invariant, and any
nonelementary polynomial automorphism of C2 is conjugate to an automorphism whose
dynamical degree is equal to its degree as a polynomial. Moreover, the elementary polynomial
automorphisms are exactly those which have dynamical degree 1.

DEFINITION 1.1 Let Pd denote the set of polynomial automorphisms of dynamical degree
d.

The topology on Pd is that induced by the compact-open topology applied both to an
automorphism and its inverse. With this topology, Pd is complete. This topology can also
be induced by a complete metric.

The main theorem of this paper is the following.

THEOREM 1.2 There exists N ∈ Z+ sufficiently large such that if d ≥ N , then the set of
structurally stable maps in Pd is not dense in Pd.

In proving the previous theorem, we develop some techniques which lead to the following
result.

THEOREM 1.3 Let F ∈ Pd, d ≥ 1, and let U be a neighborhood of F . Then there exists
G ∈ U such that each periodic point of G is hyperbolic.

As noted earlier, this result is one half of the Kupka-Smale theorem for polynomial
automorphisms. It is an open question if the part of the Kupka-Smale theorem giving
the transversality of stable and unstable manifolds is also true in this setting. The full
Kupka-Smale theorem holds in the space of all holomorphic automorphisms of Cn [B2], but
the techniques used there to prove transversality involve composing a given automorphism
with other automorphisms constructed to move the stable manifold in a specified manner.
Doing this within Pd requires that all the additional automorphisms are linear, which is not
sufficient for the argument in [B2].

In the next section we show that the order of contact between two 1-dimensional complex
manifolds in C2 is a topological invariant, then construct a family of automorphisms whose
fixed points have associated eigenvalues which are nonconstant functions of the parameter.
In the final section we adapt the methods of [NPT] to the complex case to show that some
differential information is preserved even under topological conjugacy, thus giving rise to
moduli of stability. Combining these results with results of [B1] gives theorem 1.2.

I am grateful to the referee for a careful reading of this paper and for several helpful
suggestions. This research was supported in part by a grant from the National Science
Foundation.
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2 Preliminary results

DEFINITION 2.1 Let F be a smooth map of a manifold M . A point p ∈ M is said
to be nonwandering for F if for each neighborhood V of p, there exists n > 0 such that
F n(V )∩V 6= ∅. The nonwandering set of F , Ω = Ω(F ) is the set of all nonwandering points
of F .

Recall that a periodic point p of period n of a diffeomorphism F is hyperbolic if none of
the eigenvalues of DpF

n has modulus 1. Moreover, a hyperbolic periodic point has stable
and unstable manifolds, and these manifolds are immersed 1-dimensional complex manifolds
when F is holomorphic. Recall also that F ∈ Pd is hyperbolic if there is a continuous, F -
invariant splitting Es⊕Eu = TCn|Ω and constants C > 0, 0 < µ < 1 such that ‖DF n|Es‖ ≤
Cµn and ‖DF−n|Eu‖ ≤ Cµn| for n ≥ 0. See [R] for further background in the real case.

The following theorem on the nondensity of hyperbolicity is an analytic counterpart
of theorem 1.2, which is topological in nature. It should be noted that the density of
hyperbolicity for polynomials of one variable is an open question for every degree d ≥ 2.

THEOREM 2.2 There exists N ∈ Z+ such that if d ≥ N , then the set of hyperbolic maps
is not dense in Pd.

Proof: From [B1], there exists N ∈ Z+ such that if d ≥ N , then there is an open set
U ⊆ Pd such that each F ∈ U has a tangency between the stable and unstable manifolds
for a basic set, Λ. Such a point of tangency, p, is in Ω(F ), but it is immediate that such a
point prevents a hyperbolic splitting of Ω(F ). Since this is true for all maps in U , we see
that hyperbolicity is not dense in Pd for d large.

The next lemma implies that the order of tangency between two 1-dimensional complex
manifolds in C2 is a topological invariant.

LEMMA 2.3 Suppose M1 and M2 are two 1-dimensional complex submanifolds of C2 which
intersect in exactly one point p. Let U be a neighborhood of p, and suppose that φ : U → C2

is continuous and injective and that φ(Mj) is also a complex manifold, j = 1, 2. Then the
order of contact between φ(M1) and φ(M2) is the same as that between M1 and M2.

Proof: Using a topological change of coordinates, we may assume that p and φ(p) are
both the origin, that M1 and φ(M1) are contained in C× {0}, and that M2 and φ(M2) are
contained in the graphs of z 7→ zm and z 7→ zn, respectively, for some positive integers m
and n.

Let ∆ be the unit disk in C and ∆∗ = ∆ \ {0}. Consider an element in the fundamental
group π1(∆ × ∆∗) of the form γ(θ) = (δeiθ, δeimθ), for small δ > 0. Then [γ] = [m] ∈
π1(∆×∆∗), and since φ is a homeomorphism of a neighborhood of the origin which preserves
the z-axis, [φ◦γ] = [m] ∈ π1(∆×∆∗). From the topological change of coordinates introduced
above, the image of φ◦γ is contained in the graph of z 7→ zn minus the origin. In particular,
the projection of φ ◦ γ to the z-axis is an element of π1(∆∗), and taking the graph of this
projection under z 7→ zn shows that φ ◦ γ ∈ nZ in π1(∆ × ∆∗). Thus m ∈ nZ, and by a
symmetric argument we have n ∈ mZ, so n = m as desired.
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In the following proposition, JF represents the determinant of the Jacobian matrix of
partial derivatives of F . Note that JF is constant for a polynomial automorphism F .

PROPOSITION 2.4 Let F ∈ Pd with d ≥ 2. Then there exists a one parameter family
{Fµ}µ∈C∗ ⊆ Pd with F1 = F such that for all n ≥ 1 there exists a discrete subset En ⊆ C∗
such that if µ ∈ C∗ \ En, then F n

µ has exactly dn distinct fixed points, each of which varies
holomorphically with µ. For each such fixed point p(µ), the eigenvalues of Dp(µ)F

n are
distinct and are nonconstant holomorphic functions of µ. Also, JFµ is independent of µ.

Proof: Using [FM], we may assume that F is a composition of generalized Hénon maps
of the form Hj(z, w) = (w, pj(w) − ajz), where pj is a monic polynomial of degree dj ≥ 2
and aj 6= 0.

Suppose that

D(0,0)F =

(
α β
γ δ

)
. (2.1)

For p ∈ C2, let ψp(z, w) = (z, w) + p. Replacing F by ψ−1
p Fψp for some p near 0, we may

assume that δ 6= 0. We construct Fµ with this new F , then the final family is given by
ψpFψ

−1
p .

For µ ∈ C∗, let φµ(z, w) = (µz, w/µ), and let Fµ = φµFφµ. Since φµ is volume preserving,
the Jacobian of Fµ is independent of µ.

From [BS1], there exists R > 0 such that for each j and each r ≥ R, the set V +
r = {(z, w) :

|w| ≥ r, |z| ≤ |w|} satisfies Hj(V
+
r ) ⊆ V +

2r , and likewise V −r = {(z, w) : |z| ≥ r, |w| ≤ |z|}
satisfies H−1

j (V −r ) ⊆ V −2r . In particular, this implies that the nonwandering set of F (hence
the set of periodic points) is contained in ∆2(0;R). A simple check shows that for |µ| < 1,
Fµ(V +

|µ|R) ⊆ V +
2|µ|R and F−1

µ (V −|µ|R) ⊆ V −2|µ|R, and hence all periodic points for Fµ are contained

in ∆2(0; |µ|R).
Let λ1, λ2 be the eigenvalues of D(0,0)Fµ with |λ1| ≤ |λ2|. Calculating λ1 and λ2 and

using αδ − βγ 6= 0, we see that limµ→0 λ1 = 0 and limµ→0 λ2 =∞, since δ 6= 0.
Hence for µ sufficiently near 0, the eigenvalues of D(0,0)Fµ are distinct and have modulus

different from 1. Moreover, since each fixed point, p(µ), of F n
µ is contained in ∆2(0; |µ|R),

the derivative Dp(µ)F
n
µ will be nearly (D(0,0)Fµ)n for µ near 0. Since F n

µ has at most dn fixed
points by [FM], we can choose µ sufficiently near 0 that all of the fixed points of F n

µ are
hyperbolic with distinct eigenvalues.

From [FM], F n
µ has exactly dn fixed points counted with multiplicity, and since a hy-

perbolic fixed point has multiplicity 1 by the inverse function theorem, the argument just
given implies that F n

µ has dn distinct fixed points for µ sufficiently near 0. In fact, for all µ
outside a discrete subset of C, F n

µ has dn distinct fixed points. To see this, note that the set
A = {(z, w, µ) : F n

µ (z, w) = (z, w)} is a 1-dimensional analytic set in C2 × C∗ and that the
projection of A to C∗ is proper with finite fibers. Since the cardinality of the fibers is constant
except possibly on a 0-dimensional analytic subset where one of the eigenvalues of a fixed
point of F n

µ is 1, we see that for µ outside a discrete set, F n
µ has dn distinct fixed points. For

such µ, the implicit function theorem implies that each fixed point varies holomorphically
with µ.
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The sum of the eigenvalues of DF n
µ is a holomorphic function on C2 × C∗, hence on

A. Since the product of the eigenvalues is JF n
µ , which is constant, it follows that each

eigenvalue is a holomorphic function of µ whenever the two eigenvalues are distinct and A
is unbranched. Removing a zero-dimensional set, En, of µ’s at which any fixed point has
an associated eigenvalue equal to 1 or any eigenvalue is repeated, we are left with an open
dense set of µ’s which is the complement of a discrete set and on which each eigenvalue of
each fixed point of F n

µ is a holomorphic function of µ. In view of the calculation of limµ→0 λj
given above, each eigenvalue is nonconstant on this set.

With the previous result, we can prove theorem 1.3 as a corollary.

Proof of theorem 1.3: Composing with a linear contraction near the identity, we may
assume that |JF | 6= 1. Moreover, if F has dynamical degree 1, then it is elementary in
the sense of [FM], and a simple calculation shows that the the proper choice of the linear
contraction makes all periodic points hyperbolic. Hence we may assume that d ≥ 2.

With this modified F , let Fµ be as in the previous proposition. From that result, for
each n ≥ 1, there exists an open dense set Un = C∗ \ En such that for each µ ∈ Un, F n

µ has
dn distinct fixed points, and the corresponding eigenvalues vary holomorphically with µ and
are nonconstant functions of µ. For each n, let U ′n denote the subset of Un such that for
each µ ∈ U ′n, there exists a fixed point p(µ) of F n

µ such that some eigenvalue of Dp(µ)F
n
µ has

modulus 1. Since U ′n is a real-analytic subset of Un of codimension 1, we see that Un \ U ′n is
open and dense in Un, hence in C∗. Taking the intersection of Un \U ′n over all n ≥ 1 gives a
dense Gδ subset V of C∗, so in particular there exists µ ∈ V near enough to 1 that Fµ in U .
Taking G = Fµ gives the theorem.

Remark: Note that proposition 2.4 gives a way to construct a hyperbolic automor-
phism using the family Fµ. For µ near 0, the nonwandering set for Fµ will be contained in
∆2(0; |µ|R). On this bidisk, DFµ will map a cone field in the vertical direction into itself
with a rate of expansion bounded above one, and likewise DF−1

µ will map a cone field in the
horizontal direction into itself with a rate of expansion bounded above 1. This implies that
Fµ is hyperbolic on its nonwandering set.

3 Moduli of stability and proof of main theorem

The next lemma establishes the existence of moduli of stability for holomorphic maps: for
a homoclinic tangency, the ratio of the logs of the absolute values of the eigenvalues of the
associated fixed point is preserved under topological conjugacy. The methods used here are
similar to those found in [NPT]. As in that work, we state the results here in terms of a
heteroclinic tangency.

For this lemma, let F1, F2 be holomorphic automorphisms of C2, let pj and qj be fixed
saddle points for Fj, and suppose that there is a tangency between W u(pj , Fj) and W s(qj , Fj)
at the point rj . Let Uj be a neighborhood of the orbit of rj under Fj with pj , qj ∈ Uj , and
suppose that φ : U1 → U2 is a homeomorphism satisfying φ(p1) = p2, φ(q1) = q2, φ(r1) = r2,
and φ ◦ F1 = F2 ◦ φ on U1 ∩ F−1

1 (U1), so that φ gives a local conjugacy between F1 and
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F2. In particular, since the stable and unstable manifolds are topological objects, φ maps
W s(p1, F1) ∩ U1 to W s(p2, F2) ∩ U2, and likewise for the unstable manifolds.

LEMMA 3.1 Let αj be the contracting eigenvalue of DpjFj and let βj be the expanding
eigenvalue of DqjFj. Then

log |α1|
log |β1|

=
log |α2|
log |β2|

.

Proof: Note that the stable and unstable manifolds have only a finite order of contact
since otherwise they would agree on an open set, hence everywhere, which would imply
that their union is a compact complex manifold contained in C2, which is impossible. In
particular, lemma 2.3 applies.

Consider a sequence r1,k → r1 with r1,k /∈W u(p1) ∪W s(q1). Dropping to a subsequence,
we may assume that F−nk1 (r1,k) converges to a point p′1 ∈ W s(p1) \ {p1} and that Fmk

1 (r1,k)
converges to a point q′1 ∈W u(q1) \ {q1} with p′1, q

′
1 ∈ U1.

Let V u
1 be a compact neighborhood of r1 in W u(p1) and V s

1 a compact neighborhood of r1

in W s(q1). Let d denote Euclidean distance, and let du1,k = d(r1,k, V
u

1 ) and ds1,k = d(r1,k, V
s

1 ),
both of which converge to 0 as k → ∞. Again dropping to a subsequence, we may assume
that log ds1,k/ log du1,k converges to L ∈ [0,∞].

Using section 7.3 of [dMvS], we see that F1 is C1-linearizable in neighborhoods of p1 and
q1. Hence for some constant c > 1 independent of k, we have |α1|nk/c ≤ du1,k ≤ c|α1|nk and
|β1|−mk |/c ≤ ds1,k ≤ c|β1|−mk . Taking log and keeping track of signs, we see that for k large,

nk log |α1| − log c

−mk log |β1|+ log c
≥

log du1,k
log ds1,k

≥ nk log |α1|+ log c

−mk log |β1| − log c
.

The limit of the central term exists in [0,∞] and equals 1/L. On the other hand, the ratio
of the outer two terms tends to 1 as k →∞, so the limit of each of those terms is also 1/L.
Hence

lim
k→∞

−mk

nk
= L

log |α1|
log |β1|

.

Let V s
2 = φ(V s

1 ), V u
2 = φ(V u

1 ), r2,k = φ(r1,k), d
s
2,k = d(r2,k, V

s
2 ), and du2,k = d(r2,k, V

u
2 ).

From lemma 2.3, the order of tangency is the same for both pairs of manifolds, and we may
put the tangencies in the normal form as in the proof of that lemma, so that the tangency
is at the origin, the unstable manifold is the z-axis, and the stable manifold is the graph of
z 7→ zn for some n ≥ 2.

To reach a contradiction, suppose first that log |α1|/ log |β1| < log |α2|/ log |β2|. We will
show that then either

du1,k
ds1,k
→ 0 or

du2,k
ds2,k
→∞ (3.1)

(or both). To see this, note that if du2,k/d
s
2,k is bounded from above, then there exists C > 0

such that |α2|nk|β2|mk ≤ C. Hence

log |α2|
log |β2|

≤ logC

nk log |β2|
− mk

nk
. (3.2)
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Choose δ > 1 such that (log |α1| + log δ)/ log |β1| = log |α2|/ log |β2|. Using this to replace
the left hand side of (3.2), we find

nk log(|α1|δ) +mk log |β1| ≤
logC log |β1|

log |β2|
,

so (|α1|δ)nk |β1|mk is bounded and hence |α1|nk |β1|mk → 0. Given the bounds on du1,k in
terms of |α1| and on ds1,k in terms of |β1|, we see that du1,k/d

s
1,k → 0, as desired. Similarly, if

log |α1|/ log |β1| > log |α2|/ log |β2|, then either du1,k/d
s
1,k →∞ or du2,k/d

s
2,k → 0.

Let As = {(z, w) : |w − zn| ≤ |z|n/8}, Au = {(z, w) : |w| ≤ |z|n/8}, and let A0 be the
closure of the complement of As ∪Au. Note that for r = (z, w) near r1, d(r, V s

1 ) ≈ |w − zn|,
and d(r, V u

1 ) ≈ |w|, both up to a constant multiple which approaches 1 as r tends to r1. In
particular, if du1,k/d

s
1,k → 0, then r1,k ∈ Au for large k, while if du1,k/d

s
1,k →∞, then r1,k ∈ As

for large k. Hence, if r1,k ∈ A0 ∪ As for all k, then du1,k/d
s
1,k is bounded below by a positive

constant, while if r1,k ∈ A0 ∪ Au for all k, then du1,k/d
s
1,k is bounded above by a positive

constant. Thus (3.1) implies that if log |α1|/ log |β1| < log |α2|/ log |β2|, then there exists a
neighborhood B1 of r1 such that φ(B1 ∩ (A0 ∪ As)) ⊆ As. Likewise, if log |α1|/ log |β1| >
log |α2|/ log |β2|, then there exists B1 with φ(B1 ∩ (A0 ∪Au)) ⊆ Au.

To show the first case is impossible, let γ1(t) = (0, εeit). Then γ1 ⊆ B1 ∩ A0 for small ε,
and γ1 is a generator for π1(C×C∗). If φ◦γ1(t) ⊆ As, we can project along fibers parallel to
the w-axis to V s

2 to get a curve γ2. Note that γ2 misses the origin since the point of tangency
is preserved, so γ2 projects to the z-axis to give an element [m] ∈ π1(C∗). Since V s

2 is the
graph of z 7→ zn for some n ≥ 2, we see that γ2 = [mn] ∈ π1(C×C∗), so γ2 is not a generator
and hence φ ◦ γ1 is not a generator, contradiction. Thus φ(B1 ∩ (A0 ∪As)) 6⊆ As.

To show the second case is impossible, apply the map (z, w) 7→ (z, zn − w) to both
systems. This interchanges As and Au, so the preceding argument applies to show that
φ(B1 ∩ (A0 ∪Au)) 6⊆ Au. Thus log |α1|/ log |β1| = log |α2|/ log |β2| as desired.

Proof of theorem 1.2: First we observe that by [B1], there exists N ∈ Z+ such that if
d ≥ N , then there is an open set U ⊆ Pd and a dense subset E ⊆ U such that each F ∈ E
has a hyperbolic fixed point p = p(F ) with a homoclinic tangency: a tangency between the
stable and unstable manifolds of p.

Fix F ∈ U , and let V be any neighborhood of F in Pd. It suffices to find F1 and F2 in V
which are not conjugate.

Choose G ∈ V with a homoclinic tangency associated to a fixed point p, and consider the
family Ga defined in proposition 2.4. If there exists Ga ∈ V with no homoclinic tangencies
associated to a fixed point, then we are done by lemma 2.3 since tangencies are preserved
under conjugacy.

Otherwise, let α and β be the contracting and expanding eigenvalues of DpG, respectively.
By lemma 3.1, it suffices to show that there is a µ near 1 such thatGµ has no fixed point whose
eigenvalues α(µ) and β(µ) satisfy log |α(µ)|/ log |β(µ)| = log |α|/ log |β|. By proposition 2.4,
in any neighborhood of 1 there exists an open set, U , of parameters µ such that each Gµ has d
distinct fixed points, each of which has distinct associated eigenvalues which are nonconstant
holomorphic functions of µ. Let p(µ) be such a fixed point with contracting and expanding
eigenvalues α(µ) and β(µ), respectively. Suppose log |α(µ)|/ log |β(µ)| equals a constant C1
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for some open set of µ’s. Since α(µ)β(µ) equals JGµ, which is a constant C2 by proposi-
tion 2.4, we can replace β(µ) by C2/α(µ) to obtain log |α(µ)| = C1 log |C2|/(1 + C1). This
implies that |α(µ)| and hence α(µ) are constant, contradiction. Thus log |α(µ)|/ log |β(µ)|
is a nonconstant real-analytic function on U , so there is an open dense subset on which this
function is not equal to log |α|/ log |β|. Taking the intersection of these open dense subsets
corresponding to the d distinct fixed points of Gµ shows that we can choose µ near 1 as
claimed. Hence F is not stable.
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