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1 Introduction

Holomorphic motions have been an important tool in the study of complex dynamics in one
variable. In this paper we provide one approach to using holomorphic motions in the study
of complex dynamics in two variables. To introduce these ideas more fully, let ∆r be the
disk of radius r and center 0 in the plane, let P1 be the Riemann sphere, and recall that a
holomorphic motion of a set E ⊂ P1 is a function α : ∆r × E → P1 such that α(0, z) = z
for each z ∈ E, α(λ, ·) : E → P1 is injective for each fixed λ ∈ ∆r, and α(·, z) : ∆r → P1

is holomorphic for each fixed z ∈ E. For future reference, we note that this definition (as
well as most results about holomorphic motions) applies equally well when the parameter λ
is allowed to vary in the complex polydisk: λ ∈ ∆n

r .
One of the first uses of holomorphic motions in the study of complex dynamics was in

the paper of Mañé-Sad-Sullivan [MSS], in which they use holomorphic motions to prove the
density of structurally stable maps within the family of polynomial maps of C of degree d. In
general, a map f : M →M , M a manifold, is structurally stable within a family of maps, F ,
if there is some neighborhood of f , say U ⊂ F , such that any map in U is conjugate to f via
a homeomorphism of M . Mañé-Sad-Sullivan obtain structural stability for polynomial maps
by showing that (subject to certain restrictions) the holomorphic motion defined naturally
on the Julia set of a polynomial map extends to give a conjugacy on all of C to nearby
polynomial maps. More precisely, they do this by starting with the canonical holomorphic
motion defined on hyperbolic periodic points and on periodic points satsifying a critical
orbit relation. By the λ-lemma of [MSS], this holomorphic motion extends uniquely to a
holomorphic motion of the closure of the periodic points. They then construct by hand
certain holomorphic motions which give partial conjugacies and which extend by iteration
to give a holomorphic motion of a dense set of the plane, which again extends uniquely to
give a topological conjugacy on the whole sphere.

Shortly after this work, Bers and Royden [BR] used the notion of a harmonic Beltrami
coefficient (defined in section 6) to show that given any holomorphic motion of a set E, there
is a canonical extension of this motion to a holomorphic motion of the sphere, although with
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a restriction to λ ∈ ∆r/3. The characterization of this extension is that in any component, S,
of the complement of E, the Beltrami coefficient (∂α/∂z̄)/(∂α/∂z) is a harmonic Beltrami
coefficient. Using this result, McMullen and Sullivan [MS] prove the density of structurally
stable maps within the family of rational maps of P1 of degree d as follows: As before, given a
family, fλ, λ ∈ ∆, with certain regularity properties, there is a canonical holomorphic motion
on the closure of the set consisting of periodic points and orbits of critical points. By the
Bers-Royden result, this motion extends canonically to a motion, αλ, of the entire sphere.
Then f−1

λ ◦ αλ ◦ f0(z) defines a second holomorphic motion which agrees with the original
motion on the periodic points and critical orbits, and which also has a harmonic Beltrami
coefficient. By the uniqueness of the Bers-Royden extension, this second holomorphic motion
agrees with the first, and hence αλ is a global topological conjugacy.

Turning to higher dimensions, one natural family of maps with interesting dynamics in
C2 is the family of (generalized) Hénon maps: compositions of holomorphic diffeomorphisms
of the form f(z, w) = (w, p(w) − az), where p is a polynomial of degree d ≥ 2 and a 6= 0.
We note here that for questions of structural stability, we will restrict ourselves to families
of maps all having the same degree. This corresponds for example to considering structural
stability of quadratic polynomials in one variable. With this restriction, the topology on
Hénon maps can be specified either in terms of the coefficients of the defining maps or in
terms of the compact-open topology, applied to the map and its inverse. Section 2 provides
a more detailed account of Hénon maps and hyperbolicity. For further references, see the
bibliography in [BuS].

There is an immediate generalization of holomorphic motions to two dimensions, simply
allowing each point z ∈ E to vary holomorphically within C2. In fact, by work of Mattias
Jonsson [J], given a family, fλ of hyperbolic Hénon maps, the set Jλ, which is the closure of
the set of saddle periodic points of fλ, varies as a holomorphic motion in this sense. However,
this generalization fails to have many of the important properties of one variable holomorphic
motions; in particular, given this kind of holomorphic motion on a set E, there is in general
no unique extension to E and no canonical extension in the sense of Bers and Royden.

Our approach in this paper is to use the technique of McMullen and Sullivan to construct
holomorphic motions on dynamically defined one-dimensional subsets of C2, then show that
these maps define homeomorphisms on the union of these one-dimensional subsets. To be
more precise, let f be a hyperbolic Hénon map, let J+ (resp. J−) be the boundary of the
set of points with bounded forward (resp. backward) orbit, and let J = J+ ∩ J−. Then J+

and J− are laminated by Riemann surfaces; each of these Riemann surfaces is conformally
equivalent to the plane and is the stable or unstable manifold of a point in J . Given a
one-parameter family, fλ, of such maps, the points of intersection between J−λ and J+

λ define
a holomorphic motion in each leaf, which extends canonically to the entire leaf by the Bers-
Royden theorem. As in McMullen-Sullivan, this defines a conjugacy between f0 on a leaf
of J+

0 and fλ on a leaf of J+
λ . However, since each leaf of J+

0 is dense in J+
0 , it is not clear

that the resulting conjugacy gives a homeomorphism of J+
0 to J+

λ . To establish that this
map is a homeomorphism, we use the notion of an affine structure (see [G1], [G2] and [BS7])
to provide a coherent framework for discussing holomorphic motions on the leaves of the
lamination. We show that the affine structure of J+

λ varies holomorphically with λ and that,
suitably normalized, the global parametrizing functions for the leaves of J+

λ converge locally
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uniformly when approaching a limit leaf. With this, the continuity of the conjugacy follows
essentially from the uniqueness of the Bers-Royden extension.

The first main result of this paper is the following theorem, which is an analog of the
results of [MSS] and [MS], and which states that a hyperbolic Hénon map restricted to J+∪J−
is conjugate to nearby Hénon maps via a holomorphic motion of each leaf of J+ ∪ J−.

THEOREM 1.1 Let fλ be a one-parameter family of hyperbolic Hénon maps depending
holomorphically on λ ∈ ∆n. Then there exists r > 0 and a map

Ψ : ∆n
r × (J+

0 ∪ J−0 )→ J+
λ ∪ J−λ

such that defining Ψλ(p) = Ψ(λ, p), we have

1. Ψ0(p) = p.

2. Ψλ is a homeomorphism for each fixed λ.

3. Ψλ(p) is holomorphic in λ for each fixed p ∈ J+
0 ∪ J−0 .

4. Ψλ maps each leaf of J−0 (J+
0 ) to a leaf of J−λ (J+

λ ).

5. Ψλf0 = fλΨλ on J+
0 ∪ J−0 .

The first three of the above properties are direct analogs of holomorphic motions in one
variable, while the fourth property shows that the map respects the dynamically defined
stable and unstable laminations.

In the study of the dynamics of polynomials in the plane, the polynomials with connected
Julia set play a special role. In [BS6], Bedford and Smillie define the notion of an unstably
connected Hénon map, which is an analog of a polynomial with a connected Julia set in one
variable. They also show that given a hyperbolic Hénon map which is unstably connected,
the lamination of J+ extends to a lamination of J+∪U+, where U+ is the set of points with
unbounded forward orbits. With this additional structure, we obtain a conjugacy as above
on J+ ∪ U+.

THEOREM 1.2 In addition to the hypotheses of theorem 1.1, assume that f0 is unstably
connected. Then the conclusions of that theorem remain valid when J+

0 and J+
λ are replaced

by J+
0 ∪ U+

0 and J+
λ ∪ U+

λ , respectively.

In particular, when f0 is hyperbolic and unstably connected, this gives a canonical con-
jugacy between f0 and fλ on all of C2 except for the basins of any attracting periodic points.

We are grateful to Curt McMullen for a helpful discussion on holomorphic motions.
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2 Preliminaries

We recall some standard terminology and some known results, which are discussed more fully
in [BS1], [BS2] and [BS7]. Friedland and Milnor [FM] divide the polynomial automorphisms
of C2 into two classes: elementary, which have relatively simple dynamics, and nonelemen-
tary. For brevity, we will use the term Hénon map to describe a nonelementary polynomial
automorphism of C2. Such maps can be characterized by having dynamical degree d ≥ 2,
where the dynamical degree of a polynomial automorphism of C2 is defined as in [BS2] by

d = lim
n→∞

(deg fn)1/n,

where deg fn denotes the maximum of the degrees of the two (polynomial) components of
fn.

Given a Hénon map, f , we let K+/K− denote the set of points in C2 with bounded
forward/backward orbits under f , and let J± = ∂K± and J = J+ ∩ J−. Since detDF is
constant on C2, we may replace f by f−1 if necessary to obtain | detDf | ≤ 1. From [BS1]
and [BS2] it follows that if f is hyperbolic when restricted to J , then f is Axiom A, and in
this case the nonwandering set consists of the basic set J plus a finite set of periodic sinks,
S. The stable set of J , W s(J), is J+ = ∂K+, and the interior of K+ consists of the basins of
the sinks. The unstable set of J , W u(J) is J− \S, and the interior of K− is empty. The sets
W s/u(J) have dynamically defined Riemann surface laminations Ws/u, whose leaves consist
of stable/unstable manifolds of points in J . Each leaf of either lamination is conformally
equivalent to C. Also, J has local product structure, which means that there exist positive
δ and ε such that if x, y ∈ J with ‖x − y‖ < δ, then W s

ε (x) and W u
ε (y) intersect in a

unique point which is contained in J . Here W s
ε (x) is the local stable manifold of x, defined

as {p : ‖fn(x) − fn(p)‖ < ε, ∀n ≥ 0}, with an analogous definition for the local unstable
manifold. As usual, we will use W s(p) and W u(p) for the stable and unstable manifolds of
a point p.

Note that if fλ is a one-parameter family of Hénon maps depending holomorphically on
λ ∈ ∆, and if f0 is hyperbolic, then fλ is also hyperbolic for all λ in some neighborhood of 0.
Also, by [BS1], f0 is Ω-stable, meaning that there is a one-parameter family of homeomor-
phisms ψλ : J0 → Jλ conjugating f0|J0 to fλ|Jλ. In fact, by work of Mattias Jonsson [J], for
each p ∈ J0, the map λ 7→ ψλ(p) is holomorphic in λ. Hence there is a natural holomorphic
motion defined on J0. Moreover, by restricting the domain of λ and possibly shrinking δ

and ε, we may assume that the δ and ε chosen for the local product structure on J0 apply
equally to Jλ for each λ. For the remainder of the paper, we let δ0 and ε0 represent such a
choice of δ and ε.

3 Unstable connectivity and critical points

For theorem 1.2, we need also the notion of an unstably connected Hénon map. Let U+ =
C2 \K+ be the set of points with unbounded forward orbit. Bedford and Smillie [BS6] define
a Hénon map to be unstably connected with respect to a saddle point p if some component
of W u(p) ∩ U+ is simply connected. By theorem 0.1 of that paper, this is equivalent to the
condition that for any saddle periodic point p, each component of W u(p) ∩ U+ is simply
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connected, and in this case they say that f is unstably connected. By theorem 0.2 of the
same paper, the assumption | detDf | ≤ 1 implies that f is unstably connected if and only
if J is connected. As mentioned earlier, if f is hyperbolic, then f is Ω-stable, so if f is
hyperbolic with connected J , then all nearby Hénon maps are also hyperbolic with connected
J . Summarizing this argument, we have the following.

PROPOSITION 3.1 Let f be a Hénon map of dynamical degree d, with | detDf | ≤ 1,
and suppose that f is hyperbolic and unstably connected. Then there is a neighborhood U of
f in the space of Hénon maps of degree d such that each g ∈ U is hyperbolic and unstably
connected.

As observed in [H] (see also [HO] and [BS1]), there is a plurisubharmonic function G+

on C2 defined by

G+(p) = lim
n→∞

1

dn
log+ ‖fn(p)‖,

and this function is pluriharmonic on U+ and satisfies G+ ◦ f(p) = d ·G+(p) and G+(x, y) =
log+ |y| + O(1) for (x, y) ∈ V +

R = {|y| > R, |x| < |y|}, R large. There is an analogous
definition ofG− with f−n in place of fn. Since G+ is pluriharmonic on U+, it is locally the real
part of a holomorphic function. In fact, in [HO, prop 5.4], it is shown that G+ = Re log(φ+)
in V +, where φ+(x, y) = y + O(1). Hence the level sets of φ+ define a nondegenerate
holomorphic foliation G+ defined in V +. Since U+ is the union of all backward images of
V + under f , and since f is a diffeomorphism, this foliation pulls back to give a holomorphic
foliation G+ on U+.

Finally, let Ws denote the lamination of J+ by stable manifolds of J . We restate here
a propostion due to Bedford and Smillie to the effect that if f is hyperbolic and unstably
connected, then the foliation G+ and the laminationWs fit together to form a lamination of
J+ ∪ U+.

PROPOSITION 3.2 [BS6, Prop. 2.7] If f is hyperbolic and unstably connected, then there
is a locally trivial lamination of J+ ∪ U+ whose leaves are the leaves of Ws and G+.

For polynomials of one complex variable, there is a close connection between connectivity
of the Julia set and the behavior of critical points. In two variables, Bedford and Smillie
[BS5] define the set of unstable critical points of a Hénon map to be the union over points
p ∈ J of the set of critical points of the Green function G+ restricted to W u(p) (actually
the union over all p for which the unstable manifold exists, which is a set of full µ-measure,
where µ is the unique measure of maximal entropy). They show also that such a critical
point is exactly a point of tangency between an unstable manifold of a point in J and a leaf
of the foliation G+.

In case f is hyperbolic and unstably connected, there are no tangencies between the
leaves of the unstable set W u(J) and the foliation G+, or equivalently, for each p ∈ J , the set
W u(p)∩U+ contains no unstable critical points. This fact is used in the proof of corollary A2
of [BS7], but is not stated explicity. Rather, Bedford and Smillie show in [BS6, Theorem 7.3]
that f is unstably connected if and only if for µ almost every point p, W u(p) ∩ U+ contains
no unstable critical points. For completeness, we provide here a proof of the stronger result
when f is hyperbolic and unstably connected.
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PROPOSITION 3.3 Let f be hyperbolic. Then f is unstably connected if and only if for
each point p ∈ J , W u(p) ∩ U+ has no unstable critical points, if and only if for each point
p ∈ J , W u(p) is nowhere tangent to the leaves of the foliation G+.

Proof: From [BS6, Theorem 7.3], f is unstably connected if and only if for µ almost
every point p, W u(p) ∩ U+ contains no unstable critical points, and by [BS5, Proposition
B.1], an unstable critical point in W u(p) ∩ U+ is exactly a tangency between W u(p) and a
leaf of the foliation G+. Thus, we need prove only that if f is unstably connected, then for
each point p ∈ J , W u(p) ∩ U+ has no unstable critical points.

Now, the fact that f is hyperbolic implies that W u(p) exists for each p ∈ J and that the
unstable set W u(J) is a locally trivial lamination of J−. Suppose there exists p ∈ J such
that W u(p) is tangent to a leaf of G+. Making a local biholomorphic change of coordinates
in a neighborhood of the point of tangency, we may assume that the point of tangency is
the origin in (z, w) coordinates, that G+ has leaves which are complex lines parallel to the
z-axis, and that W u(p) is locally the graph of a holomorphic function z 7→ zkh(z), h(0) 6= 0,
k ≥ 2. For any piece of a leaf of W u(q) sufficiently near this graph, the derivative of the
corresponding graph for W u(q) will have a zero near the origin, hence there will be a tangency
between between W u(q) and G+. Since each leaf of W u(J) is dense in J− [BS2] and since
these leaves form a locally trivial lamination, we see that for each p ∈ J , there is a tangency
between W u(p) and G+.

Thus, if f is hyperbolic, then a tangency between W u(p) and G+ for one p ∈ J implies a
tangency between W u(q) and G+ for all q ∈ J , hence for a set of full µ measure, hence f is not
unstably connected, as noted above. Taking the contrapositive, if f is unstably connected,
then for each p ∈ J there is no tangency between W u(p) and G+, hence no unstable critical
points on W u(p) ∩ U+. As noted above, this completes the proof.

4 Holomorphic families of laminations

In this section we discuss some uniformization properties of Riemann surface laminations
and of holomorphic families of such laminations. Roughly, the main result is that given a
holomorphic family of Riemann surface laminations in which each leaf is conformally equiv-
alent to the complex plane, and given two holomorphic transversals to these laminations,
there is a natural way of parametrizing a given leaf by the plane so that the parametrization
of this leaf varies holomorphically with the family, and so that the points of intersection
of this leaf with the two transversals are the images of 0 and 1 under the parametrization.
Moreover, locally, this parametrization can be done in such a way that the parametrization
converges locally uniformly when approaching a limit leaf. Precise definitions and results
are given below.

We first recall the definition of a Riemann surface lamination of a topological space X,
following [BS6] (see also [C], [G1], and [G2]). A chart consists of an open set Uj ⊂ X,
a topological space Yj , and a map ρj : Uj → C × Yj which is a homeomorphism onto its
image. An atlas consists of a collection of charts which covers X. For fixed y ∈ Yj, the set of
points ρ−1

j (C×{y}) is called a plaque. For coordinate charts (ρi, Ui, Yi) and (ρj , Uj, Yj) with
Ui ∩ Uj 6= ∅, the transition function is the homeomorphism from ρj(Ui ∩ Uj) to ρi(Ui ∩ Uj)
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defined by ρij = ρi ◦ ρ−1
j . A Riemann surface lamination, L, of a topological space X

is determined by an atlas of charts which satisfy the following consistency condition: the
transition functions may be written in the form ρij = (g(z, y), h(y)), where for fixed y ∈ Yj,
the function z 7→ g(z, y) is holomorphic. The condition on the transition functions gives a
consistency between the plaques defined in Uj and those in Ui. thus plaques fit together to
make global manifolds called leaves of the lamination, and each leaf has the structure of a
Riemann surface.

In the current setting, we are interested in the Riemann surface laminations of J+ and J−

given by stable and unstable manifolds and in the lamination of U+ given by the foliation
G+. Since these leaves have a natural holomorphic structure induced from C2, we will
require additionally that each map ρj is holomorphic on each plaque. With this additional
requirement, we can view a lamination of X as locally the “graph” of a holomorphic motion:
At a point p ∈ X, let v be a vector in C2 such that T = Cv is a complex line transverse to the
plaque through p. After a biholomorphic change of coordinates, we may assume that p is the
origin and that v = (0, 1). Let V be a small neighborhood of p, and let E be the set of points
in V which lie on T . Then the plaques in L near the origin define a holomorphic motion with
parameter z. I.e., there is a function α(z, w) defined for (z, w) ∈ ∆ε×E which is holomorphic
in z for each fixed w ∈ E, such that α(0, w) = w, α(z, ·) is injective for each z, and such
that a plaque of L through the point (0, w) is given by the set of points (z, α(z, w)), z ∈ ∆ε.
Moreover, there is a coherence property corresponding to the consistency requirement on the
transition functions given above. In the current setting, the map H(z, w) = (z, α(z, w)) is
a homeomorphism from ∆ε × E to an open set U ⊂ X which is holomorphic for each fixed
w ∈ E. Given a second point p̂ and Ĥ : ∆ε × Ê → Û with U ∩ Û 6= ∅, we have a transition
function H−1 ◦ Ĥ, which can be written in the form H−1 ◦ Ĥ(z, w) = (g(z, w), h(w)), where
for fixed w, the map z 7→ g(z, w) is holomorphic.

A holomorphic family of laminations is a generalization in which each plaque varies
holomorphically with some parameter λ ∈ ∆n

r . For this purpose, we will restrict ourselves
to families of laminations of sets in C2, and we will adopt the holomorphic motion view of
laminations. So we say that Lλ is a holomorphic family of laminations depending on the
parameter λ ∈ ∆n

r if each for each fixed λ, Lλ is a lamination of a set Xλ in C2 such that each
plaque is a Riemann surface as above and such that each plaque depends holomorphically
on λ in the following sense. As above, for each point p ∈ Xλ0 there is a local biholomorphic
change of coordinates so that the image of p is the origin and v = (0, 1) is transverse to
the plaque of Lλ0 through the origin. Let E be the intersection of T = Cv and a small
neighborhood of p in Xλ0. Then we require ε > 0 and the existence of a function α(z, w, λ)
defined on ∆ε × E × ∆n

ε (λ0) which is holomorphic in (z, λ) for each fixed w, such that
α(0, w, λ0) = w, α(z, ·, λ) is injective for each fixed (z, λ), such that the point (0, α(0, w, λ))
is contained in Xλ for each λ ∈ ∆n

ε , and such that for each λ ∈ ∆n
ε , the plaque of Lλ through

(0, α(0, w, λ)) is given by the set of points (z, α(z, w, λ)), z ∈ ∆ε. I.e., α is a holomorphic
motion of points w ∈ E with parameters (z, λ) ∈ ∆ε ×∆n

ε (λ0).
We will need a coherence condition on families of laminations also. We can view the

family Lλ as sitting in C2 × ∆n
r . Given a point p ∈ Xλ0 and local change of coordinates

as above, we require that the map H(z, w, λ) = (z, α(z, w, λ), λ) is a homeomorphism from
∆ε×E×∆n

ε (λ0) to an open set U in ∪λ(Xλ×{λ}). Moreover, given a second point p̂ ∈ Xλ̂0
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with Ĥ : ∆ε × Ê × ∆n
ε (λ̂0) → Û , we require that the transition function H−1 ◦ Ĥ can be

written in the form H−1 ◦ Ĥ(z, w, λ) = (g(z, w, λ), h(w), λ), where for fixed w, the map
(z, λ) 7→ g(z, w, λ) is holomorphic in z and λ.

Note that the set {(z, α(z, w, λ), λ) : z ∈ ∆ε, λ ∈ ∆n
ε (λ0)} is an (n + 1)-dimensional

holomorphic submanifold of Cn+2. Hence the plaque of Lλ0 through p can be said to vary
holomorphically with λ by viewing it as a slice of this submanifold. We call this submanifold
a family of plaques associated with p. Each plaque in this family is associated with a
unique leaf in the corresponding lamination Lλ, so we may speak also of the family of leaves
associated with p. We will see shortly that in the cases of interest for Hénon maps, the
family of leaves through p is biholomorphic to C×∆n

r .

The following is an immediate consequence of the implicit function theorem and the
definitions given above. It says essentially that a point of transverse intersection between a
holomorphic family of curves and a holomorphic family of plaques associated with a point
varies holomorphically with the parameter.

LEMMA 4.1 Let Lλ be a holomorphic family of laminations, let Pλ be the family of plaques
associated with a point p ∈ L0, and let F : ∆×∆n → C2 be holomorphic such that F (0, 0) = p
and such that for each fixed λ, F (·, λ) is an injective immersion which is transverse to Pλ.
Then there exists ε > 0 and a holomorphic function p : ∆n

ε → C2 such that p(0) = p0 and
p(λ) ∈ Pλ ∩ F (∆, λ) for all λ ∈ ∆n

ε .

Note that if the point p(λ) does not escape out the boundary of the image of F or
the boundary of a plaque Pλ, then by the monodromy theorem p(λ) may be analytically
continued to all of ∆n.

5 Stable manifolds and affine structures

Let fλ be a one-parameter family of hyperbolic Hénon maps and recall from section 2 that
there is a homeomorphism ψλ from J0 to Jλ which is holomorphic in λ and which conjugates
f0|J0 to fλ|Jλ. Given a point p0 in J0, let pλ be its image under ψλ, and let W s/u(pλ) be the
corresponding stable and unstable manifolds. In this section we show that the stable (and
unstable) manifolds of pλ can be parametrized by C in a way which depends holomorphically
on λ and so that the parametrizations of nearby leaves converge locally uniformly to the
parametrization of the family of leaves through pλ.

Let Sλ denote the set of sink orbits for fλ, and let Wu
λ denote the lamination of J−λ \ Sλ.

Given p ∈ J−λ , write Lλ(p) for the leaf of the lamination Wu
λ containing p.

As in [G1], [G2], and [BS7], we define an affine structure on a holomorphic curve L to be
an atlas consisting of holomorphic diffeomorphisms χj from open sets Uj of L to open sets of
C such that the Uj cover L and the χj ◦χ−1

k are restrictions of affine diffeomorphisms of C to
their domains of definition. For three distinct points x, y, z in C, the ratio (x− y)/(x− z) is
invariant under the group of affine diffeomorphisms of C. If x, y, z are distinct nearby points
of Uj , then the ratio (χj(x) − χj(y))/(χj(x) − χj(z)) depends only on the points x, y, and
z not on the particular coordinate chart χj whose domain contains x, y, and z. Hence we
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may denote this function by (x− y)/(x− z), which is holomorphic in x, y, and z, and which
in fact is holomorphic as a map into P1 whenever x, y, and z are not all equal. An affine
structure on a simply connected Riemann surface is said to be complete if it is isomorphic
to C with its canonical affine structure.

If f0 is hyperbolic, then for each p0 ∈ J0 there is an injective holomorphic map from
C to the unstable manifold of p0, and this map defines a complete affine structure on this
unstable manifold. Moreover, the iterates of f0 respect this affine structure in the sense that
the pullback or pushforward of the affine structure from one leaf to another agrees with the
original affine structure on the new leaf.

Let ε = ε0 as chosen for the local product structure in section 2, fix x0 ∈ J−0 , and choose
disjoint transversals T1, T2 to the local unstable manifold W u

ε (x0), and let T3 be any other
transversal to this local unstable manifold. For x ∈ J−0 near x0, there are three points
pj(x) = Tj ∩ W u

ε (x), j = 1, 2, 3, and p1, p2 are distinct. The ratio (p1 − p3)/(p1 − p2) is
well-defined, independently of any particular choice of complex affine coordinate on W u(x).
To say that the affine structure is continuous is to say that this ratio varies continuously
with x, and proposition 5.1 of [BS7] implies that the affine structure on Wu is continuous.
In fact, the following theorem of Ghys implies a stronger continuity property.

THEOREM 5.1 [G2] Let L be a Riemann surface lamination of a subset, X, of a complex
manifold such that each leaf of L is parabolic (conformally equivalent to the plane). Then the
affine structure on leaves is continuous in the following sense: Let U be a chart of L, and for
each i ≥ 0, let xi, yi, zi be a triple of distinct points in U which for each fixed i are all three
contained in the same plaque of L. Suppose also that (xi, yi, zi) converges to distinct points
(x∞, y∞, z∞) in U . Then the ratio (xi − yi)/(xi − zi) converges to (x∞ − y∞)/(x∞ − z∞).

Note that in [G2], the laminated space is assumed to be compact. However, the com-
pactness is used only to deduce that the conformal type of each leaf is independent of the
Riemannian metric on the space. In the current setting, each leaf is parabolic using the
standard metric on C2, so we may dispense with compactness.

We use the continuity of the affine structure to construct holomorphic parametrizations
of leaves which converge locally uniformly when approaching a limit leaf. The essential idea
is to choose a limit leaf along with two transversals to this leaf. Nearby leaves will also
intersect these transversals, and we can choose the parametrization of leaves by the plane so
that the images of 0 and 1 lie on these transversals. The continuity of the affine structure
gives the local uniform convergence almost immediately. Note that we take a very myopic
view when parametrizing leaves. In practice, one leaf will come back and accumulate on itself
everywhere. For purposes of the parametrization, we work locally and regard each plaque as
part of a separate leaf with its own parametrization. Thus one leaf may have many different
parametrizations, any two of which differ by an affine transformation.

For the following proposition, let L be a lamination of a closed subset X of C2 such that
each leaf, L, of L is parabolic. Also, let U be a chart of L, and let I = Z+ ∪ {∞}.
PROPOSITION 5.2 Let xi, yi ∈ U for i ∈ I with xi → x∞ and yi → y∞, x∞ 6= y∞ and
such that for each i ∈ I, xi and yi are contained in the same leaf, Li, of L and in the same
plaque within U . Let φi : C→ Li be injective holomorphic for i ∈ I with φ−1

i (xi)→ φ−1
∞ (x∞)

and φ−1
i (yi)→ φ−1

∞ (y∞). Then φi → φ∞ uniformly on each compact subset of C.

9



Proof: Let Pi be the plaque of U containing xi, yi. We will show first that φi converges
to φ∞ uniformly on each compact subset of φ−1

∞ (P∞) ⊂ C. By assumption on U , there exists
a biholomorphic change of coordinates such that P∞ is an open set in the z-axis (C× {0}).
By restricting to sufficiently large i, we may assume that the projection πi : Pi → (C×{0}) is
injective holomorphic for each i (and π∞ = Id). Moreover, π−1

i π∞ converges to the identity
uniformly on compact subsets of P∞ as i→∞ (e.g. by the λ-lemma of [MSS]).

Let γ ∈ π∞(P∞) be a simple closed curve with x∞, y∞ /∈ π−1
∞ (γ), and letNγ = Ui∈I π

−1
i (γ).

Then Nγ is compact and xi, yi /∈ Nγ for i large. Define Ri(p) on Pi, i ∈ I, by

Ri(p) =
φ−1
i (xi)− φ−1

i (p)

φ−1
i (xi)− φ−1

i (yi)
.

Since x∞ 6= y∞ and the preimages of xi and yi converge to the preimages of x∞ and y∞,
repectively, we see that for large i, Ri is well-defined and holomorphic on Pi. Moreover,
Ri(p) is precisely the ratio function applied to the triple (xi, yi, p). Viewing Ri(p) = R(i, p)
as a function on the compact set Nγ , the theorem of Ghys implies that R is continuous on
Nγ , hence uniformly continuous. In particular, φ−1

i ◦ π−1
i → φ−1

∞ ◦ π−1
∞ uniformly on γ, hence

on the interior of γ by Cauchy’s formula, hence on each compact subset of P∞.
Thus (πi ◦ φi)−1 → (π∞ ◦ φ∞)−1 uniformly on compact subsets of π∞(P∞). Since π∞φ∞

is injective holomorphic, this implies that πi ◦φi converges to π∞ ◦φ∞ uniformly on compact
subsets of φ−1

∞ (P∞) (e.g. by the integral formula for the inverse of a holomorphic map). Since
π−1
i ◦ π∞ converges to the identity uniformly on compact subsets of P∞, this implies that φi

converges to φ∞ uniformly on compact subsets of φ−1
∞ (P∞).

To complete the proof, let K ⊂ C be compact, and cover φ∞(K) by finitely many plaques
P∞,1, . . . , P∞,m with P∞,j ∩P∞,j+1 6= ∅ for j = 1, . . . , m− 1 and P∞,1 = P∞. The preceding
construction implies that φi converges to φ∞ uniformly on compact subsets of φ−1

∞ (P∞,1).
Since P∞,1 and P∞,2 are open and have nonempty intersection, we can apply the same
argument to two new sequences of points with limits in their intersection to conclude that
φi converges to φ∞ uniformly on compact subsets of φ−1

∞ (P∞,2). By induction, we obtain
uniform convergence on all of K.

In dealing with families of Hénon maps, we will need a parametrized version of the above
result. First a definition.

DEFINITION 5.3 Let Lλ, λ ∈ ∆n, be a holomorphic family of laminations. We say that
Lλ is leafwise trivial if for each leaf Lλ0, there exists ε > 0 such that the set Z := {(λ, p) :
λ ∈ ∆n

ε (λ0), p ∈ Lλ} is biholomorphic to ∆n
ε × C.

As an example of how a holomorphic family of leaves could fail to be trivial in this sense,
consider a P1 bundle over ∆n, then remove a section over ∆n which is not holomorphic.
Then each leaf is biholomorphic to C, but the bundle is not biholomorphic to ∆n × C.

In the following theorem, I = Z+ ∪ {∞}, as before.

THEOREM 5.4 Let Lλ, λ ∈ ∆n, be a leafwise trivial holomorphic family of laminations.
Let xi(λ), yi(λ), i ∈ I, be holomorphic in λ with xi(λ) 6= yi(λ) for each i and λ, and such that
for all λ, yi(λ) is contained in the plaque through xi(λ). Suppose also that xi(λ) converges to
x∞(λ) and yi(λ) converges to y∞(λ) uniformly on compact subsets of ∆n as i→∞. Let Li,λ
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be the leaf through xi(λ), and let φi,λ : C→ Li,λ be injective holomorphic with φi,λ(0) = xi(λ)
and φi,λ(1) = yi(λ).

Then φi(λ, z) = φi,λ(z) is holomorphic in (λ, z), and φi converges to φ∞ uniformly on
compact subsets of (z, λ) ∈ C×∆n.

Proof: Since Lλ is leafwise trivial, it is a locally trivial fibration over ∆n, hence is
biholomorphic to ∆n ×C by [W, lemma 4.4]. Hence there exist injective holomorphic maps
Φi,λ : C→ Li,λ such that Φi,λ(z) is holomorphic in (λ, z) ∈ ∆n × C.

Since xi(λ) and yi(λ) are holomorphic in λ, we see that Xi(λ) := Φ−1
i,λ(xi(λ)) and Yi(λ) :=

Φ−1
i,λ(yi(λ)) are holomorphic from ∆n to C, and by the injectivity of Φi,λ, we have Xi(λ) 6=

Yi(λ). Since injective maps from the plane to itself are unique up to affine map, we see that
φi,λ(z) = Φi,λ(Xi(λ) + z(Yi(λ)−Xi(λ))) is holomorphic in (λ, z) as desired.

Finally, the uniform convergence of φi to φ∞ follows almost exactly as in the proof of
proposition 5.2, using the function Ri,λ given by the formula for Ri with φ−1

i,λ in place of φ−1
i .

Next, we show that the leaves of the dynamical laminations generated by a hyperbolic
Hénon map are leafwise trivial holomorphic families of laminations.

THEOREM 5.5 Let fλ be a family of hyperbolic Hénon maps depending holomorphically
on λ ∈ ∆n, and let Wu

λ be the lamination of J−λ whose leaves are the unstable manifolds
of Jλ. Then Wu

λ is a leafwise trivial holomorphic family of laminations. Likewise Ws
λ is a

leafwise trivial holomorphic family of laminations.
Moreover, if each fλ is unstably connected and Lλ =Ws

λ∪G+
λ , then again Lλ is a leafwise

trivial holomorphic family of laminations.

Proof: The proof of the (un)stable manifold theorem for hyperbolic sets as in [S, Chap.
6] relies on a contraction mapping argument applied to a Banach space of bounded sections
over Jλ. Starting with initial approximations to the unstable manifolds which vary holo-
morphically with λ, the uniform convergence obtained from the contraction implies that the
unstable manifolds for Jλ will vary holomorphically with λ in the sense that the family of
leaves associated with a point varies holomorphically with λ. Thus Lλ is a holomorphic
family of laminations.

For the leafwise triviality, [BS1, theorem 5.4] implies that for xλ0 ∈ Jλ0 , we can exhaust
W u(xλ0) by an increasing union of disks. Since the family of leaves Lλ associated with xλ0

varies holomorphically with λ, the same argument implies that there exists ε > 0 and injective
holomorphic maps Hj : ∆×∆n

ε (λ0)→ Z, where Z is the manifold of leaves associated with
xλ0 as in definition 5.3, such that the image of Hj is contained in the image of Hj+1 and
such that the union of their images is all of Z. Since each leaf is conformally equivalent to
C, [FS] implies that Z is biholomorphic to C×∆n

ε , so Lλ is leafwise trivial.
Finally, suppose fλ is unstably connected for all λ. The function G+

λ (p) is pluriharmonic
in (λ, p) by [BS1, proposition 3.3], hence is locally the real part of a function Ψ which is
holomorphic in (λ, p). Then the plaques of G+

λ are precisely the level sets of Ψ(λ, ·), hence
these plaques vary holomorphically in λ, so Lλ is a holomorphic family of laminations. The
fact that Lλ is leafwise trivial in this case follows as above, using the ideas in the proof of

11



theorem 7.2 in [HO] to produce the increasing sequence of biholomorphic images of bidisks.

Collecting the results of this section, we obtain the following result, which allows us to
parametrize leaves ofWu

λ andWs
λ holomorphically in λ so that the parametrizations converge

locally uniformly when approaching a limit leaf. For this proposition, let ε = ε0 be as chosen
for local product structure. Moreover, if necessary we may shrink this ε so that at each point
of Jλ, the bidisk of size 2ε with axes parallel to the stable and unstable directions at this
point defines a chart for the stable and unstable laminations.

THEOREM 5.6 Let fλ be a family of hyperbolic Hénon maps depending holomorphically
on λ ∈ ∆n. Let p ∈ J0, q ∈ J0 ∩W s

ε (p) with q 6= p, and let pλ = ψλ(p), qλ = ψλ(q). Then
there exists φλ : C→ C2 injective for each fixed λ and holomorphic in (z, λ) ∈ C×∆n such
that φλ(C) = W s(pλ), φλ(0) = pλ, and φλ(1) = qλ. Moreover, if pj ∈ J0 with pj → p and
qj ∈ J0 ∩W s

ε (pj) with qj → q and φj is the corresponding parametrization for each j, then
φjλ converges to φλ uniformly on compact subsets of C × ∆n. There is an analogous result
for W u(pλ).

Proof: By theorem 5.5,Wu
λ is a leafwise trivial family of laminations. Hence theorem 5.4

applies to give φλ with the stated properties and shows that if pjλ and qjλ converge uniformly
on compacts to pλ and qλ respectively, then φjλ converges uniformly on compacts to φλ.
Hence it suffices to show the uniform convergence of pjλ and qjλ to pλ and qλ.

To do this, define holomorphic maps hj(λ) = pjλ and h(λ) = pλ, where pjλ = ψλ(pj).
Note that since we have restricted to λ in the closed polydisk ∆n, the filtration argument
in [BS1] implies that there exists some R > 0 so that Jλ is contained in ∆2

R independently
of λ. In particular, hj is uniformly bounded by R, independently of λ and j. Note also
that for each fixed λ, ψλ is a homeomorphism, and since pj → p, we have ψλ(pj) → ψλ(p)
for each fixed λ. Hence {hj}j is a uniformly bounded sequence of holomorphic maps which
converges pointwise to h. Since the sequence is uniformly bounded, it is equicontinuous, and
this plus pointwise convergence implies uniform convergence. Thus pjλ converges uniformly
on compacts to pλ, and likewise for qjλ, which as noted above implies the convergence of φjλ
to φλ.

We need an analogous parametrization for leaves of G+
λ in the unstably connected case.

Since ψλ is not defined outside J0 we will have to work a bit harder. First a theorem which
will allow us to extend ψλ to U+

0 ∩ J−0 .

THEOREM 5.7 Let fλ be a family of unstably connected hyperbolic Hénon maps depending
holomorphically on λ ∈ ∆n. Let p ∈ (J+

0 ∪U+
0 )∩J−0 . Let L+

λ be the family of leaves of G+
λ ∪Ws

λ

through p, and let L−λ be the family of leaves of Wu
λ through p. Then there exists a unique

map λ → pλ ∈ C2 bounded and holomorphic in λ ∈ ∆n such that p0 = p and pλ ∈ L−λ ∩ L+
λ

for each λ.
Moreover, if pj ∈ (J+

0 ∪U+
0 )∩ J−0 and pj → p, then pjλ converges to pλ uniformly on ∆n.

Proof: We first construct pλ. For this purpose, if p ∈ J0, then pλ = ψλ(p) satisfies
the conclusions, hence we assume p ∈ U+

0 . Choose a chart containing p for the family of
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laminations G+
λ , λ ∈ ∆n

ε and let P+
λ be the family of plaques through p. Likewise, let P−λ

be the family of plaques of Wu
λ through p. Since f0 is hyperbolic and unstably connected,

lemma 4.1 implies that pλ is defined uniquely for λ near 0 as the intersection of P+
λ and P−λ .

Note that by definition of the lamination G+
λ , the function G+

λ (pλ) is constant. Note also
that since λ is restricted to the closed polydisk in the hypothesis of the lemma, it follows
from [BS1] that there exists R > 0 independent of λ so that J−λ is contained in ∆2

R∩V +
R and

that for a given constant C, the intersection of ∆2
R ∩ V +

R with the level set {G+
λ (x, y) = C}

is contained in {|y| < R′} for some R′ > 0 independent of λ. Hence replacing R by the max
of R and R′, we have that pλ is contained in ∆2

R, and this will remain true if we continue pλ
within the intersection of J−λ and the same level set of G+

λ .
We now continue pλ throughout ∆n. Suppose that γ is any closed curve from [0, 1] to

∆n and suppose that pλ is defined and holomorphic at each point λ ∈ γ([0, 1)). Since pλ
is uniformly bounded, we can take a sequence tj ∈ [0, 1), tj increasing to 1 such that for
λj = γ(tj), the points pλj converge to some point q. Let λ0 = γ(1). Since pλ ∈ J−λ for all

λ and since the union over λ ∈ ∆n of J−λ × {λ} is closed as a subset of C2 × ∆n, we have
q ∈ J−λ0

. Also, since G+
λ (pλ) is a constant C > 0 we have G+

λ (q) = C and hence q ∈ U+
λ0

. In
particular, q is the point of intersection of plaques of the corresponding laminations, hence
has an extension qλ as above for λ in some neighborhood of λ0.

Note that if qλ = pλ at some point λ in their set of common definition, then the local
unique extension in terms of intersecting plaques implies that they agree on an open set,
hence everywhere they are both defined. Thus qλ will be a continuation of pλ once we show
that they agree at one point.

In a neighborhood of qλ0 let Ψλ(x, y) be holomorphic in (λ, x, y) with Re Ψλ(x, y) =
G+
λ (x, y). Then the level sets of Ψλ define the lamination G+

λ , hence Ψλj (pλj) is a constant
C independent of j, hence equal to Ψλ0(q). In a neighborhood of q, and for λ near λ0,
there is a fixed complex line independent of λ through q such that the projection of the
level set {Ψλ = C} to this line is injective holomorphic. Moreover, the points of intersection
of J−λ with this level set define a holomorphic motion via projection to this complex line.
Because J−λ intersects the set {Ψλ = C} transversally for all λ near λ, we can choose a small
neighborhood, Y , of q, then restrict λ to a sufficiently small neighborhood of λ0 such that
each point in Y which is a point of intersection between {Ψλ = C} and J−λ has a continuation
as such a point of intersection for all λ in this small neighborhood.

For j sufficiently large, pλj is such a point of intersection, and the continuation of pλj must
agree with the extension of pλk since pλ is defined as a point of intersection. Hence pλ has
an extension to λ in a neighborhood of λ0. Then pλ and qλ both project to the complex line
chosen above, and their images are points in the holomorphic motion. Corollary 2 of [BR],
implies that given r > 0 small these points of the holomorphic motion are constrained to lie
in a small neighborhood of q for ‖λ− λ0‖ ≤ r From the injectivity of a holomorphic motion
and the compactness of this parameter range, these two points must be either identical for all
such λ or distinct with a positive lower bound on their closest approach. Since pλj converges
to q by hypothesis, the two images must be identical.

Hence qλ agrees with pλ for some λ where both are defined. As noted above, this implies
that they agree on an open set, hence qλ is a continuation of pλ. By the monodromy theorem,
pλ extends to all of ∆n.
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Suppose now that pj converges to p as in the statement of the theorem. We wish to show
that pjλ converges uniformly on ∆n to pλ. However, since the pjλ are uniformly bounded, the
argument in the proof of theorem 5.6 implies that we need show only that pjλ converges to
pλ for each fixed λ.

Let P+
λ and P−λ be the family of plaques through p for λ in some small neighborhood of

0. Since the family of plaques {P+
λ }λ form a holomorphic manifold, M+, of dimension n+ 1

in C2 ×∆n
ε , there is an open set in this ambient space and a bounded holomorphic function

H+ defined on this open set such that M+ is the precisely the zero set of H+. Likewise, for
H− and M−.

For j sufficiently large and λ in some small polydisk, Dn, independent of j, the point
pjλ is contained in the set where H± are defined, and since pjλ is defined as the point of
intersection of two leaves of the stable and unstable laminations, we see that for fixed j,
H±(pjλ) is either 0 for all λ near 0 or never 0. Moreover, since H± is bounded, the set of
functions h±j (λ) = H±(pjλ) is a normal family. Now, given any subsequence of h±j , we can

extract a locally uniformly convergent subsequence, and since pj = pj0 converges to p = p0,
the limit function must have a zero at λ = 0, hence the limit function must be identically
0 by Hurwitz’ theorem. Since this is true for any initial subsequence, it follows that h±j
converges to 0 pointwise as j → ∞ for each λ ∈ Dn. Since the h±j are uniformly bounded,
we have as before that the convergence to 0 is uniform on compact sets. From the definition
of h±j in terms of H±, this implies that pjλ converges to pλ uniformly for λ in compact subsets
of Dn.

Finally, recall that the points pjλ are uniformly bounded, hence form a normal family.
Given any subsequence, and any further locally uniformly convergent subsequence, the ar-
gument above implies that the limit function agrees with pλ on some neighborhood of 0,
hence everywhere. Since this is true for any initial subsequence, the functions pjλ must con-
verge pointwise to pλ on all of ∆n, and since they are uniformly bounded, we see that the
convergence is uniform on this compact set.

COROLLARY 5.8 Let fλ be as in the previous theorem. Then the map ψλ : J0 → Jλ
extends to a a map ψλ : (J+

0 ∪U+
0 )∩J−0 such that ψ0 is the identity, ψλ is a homeomorphism

for each fixed λ, and ψλ(p) is holomorphic in λ for each fixed p.

Proof: The theorem implies that given p ∈ (J+
0 ∪ U+

0 ) ∩ J−0 , we can define ψλ(p) = pλ,
and that this extension is continuous and holomorphic in λ. Moreover, for any fixed λ0,
we can apply the theorem to obtain ψλ0,λ taking J+

λ0
∪ U+

λ0
) ∩ J−λ0

to J+
λ ∪ U+

λ ) ∩ J−λ . The

uniqueness part of the theorem implies that ψ−1
λ = ψλ,0, hence ψλ is injective with continuous

inverse, as desired.

We are now ready to give a version of theorem 5.6 in the unstably connected case. The
proof is the same as the proof of theorem 5.6, using the corollary to obtain the homeomor-
phism ψλ.

THEOREM 5.9 Let fλ be a family of hyperbolic, unstably connected Hénon maps depend-
ing holomorphically on λ ∈ ∆n. Let A0 = (J+

0 ∪ U+
0 ) ∩ J−0 , let p ∈ A0, and let q ∈ A0 be

in the same plaque of Ws ∪ G+ as p with p 6= q. Let pλ and qλ be the points defined in the

14



previous theorem. Then there exists φλ : C→ C2 injective for each fixed λ and holomorphic
in (z, λ) ∈ C×∆n such that φλ(C) equals the leaf of Ws

λ ∪ G+
λ through pλ, with φλ(0) = pλ,

and φλ(1) = qλ. Moreover, if pj ∈ A0 with pj → p and qj ∈ A0 in the same plaque as pj

with qj → q and φj is the corresponding parametrization for each j, then φjλ converges to φλ
uniformly on compact subsets of C×∆n. There is an analogous result for leaves of Wu

λ .

6 Holomorphic motions

We recall the following theorem, due to Bers and Royden [BR], on the canonical extension of
a holomorphic motion of a set E ⊂ P1 to a holomorphic motion on P1. For more background,
see [BR].

THEOREM 6.1 [BR] Let τ : ∆ × E → P1 be a holomorphic motion. Then τ restricted
to ∆1/3 × E has a canonical extension to a holomorphic motion τ : ∆1/3 × P1 → P1. This
extension is characterized by the following property: Let µ(λ, z) be the Beltrami coefficient of
z 7→ τ(λ, z) and let S be any component of P1 \ Ê, where Ê is the closure of E in P1. Then

µ(λ, z) = ρS(z)−2ψ(λ, z) (6.1)

for z ∈ S, λ ∈ ∆1/3, where ρS(z)|dz| is the hyperbolic metric in S and the function ψ(λ, z)
is holomorphic in z ∈ S, antiholomorphic in λ ∈ ∆1/3.

This theorem is true also if the disk is replaced by the ball in Cn. See [Su] or [Mi].
A Beltrami coefficient of the form in (6.1) is said to be a harmonic Beltrami coefficient.

The hyperbolic metric is also known as the Poincaré metric and the infinitesimal Kobayashi
metric.

The parametrization of leaves given in the previous section gives us a way to speak of a
holomorphic motion on leaves.

DEFINITION 6.2 Let φ : ∆n × C → C2 be holomorphic and suppose that φλ = φ(λ, ·) is
injective for each fixed λ ∈ ∆n. Let E0 ⊂ φ(0,C). Then τ : ∆n ×E0 → C2 is a holomorphic
motion of E0 on the family of leaves defined by φ means that τλ(E0) = τ(λ,E0) is contained
in the leaf φ(λ,C) for each λ, and φ−1

λ τλφ0 is a standard holomorphic motion in C of the set
φ−1

0 (E0).

In particular, given a holomorphic motion on leaves, we can pull it back to a holomorphic
motion in the plane, then apply the Bers-Royden extension and push forward to obtain
an extended holomorphic motion on leaves. We will call this extension the Bers-Royden
extension also.

We record here also a notion for the convergence of holomorphic motions on leaves when
approaching a limit leaf. Let I = Z+∪{∞}. In the following definition, the Hausdorff metric
on sets in the plane is defined with respect to the spherical metric, denoted here by ds, on
the Riemann sphere.

Notation: With φ and τ as in the previous definition, let φ∗[τλ] denote the map φ−1
λ τλφ0

defined on φ−1
0 (E0).
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DEFINITION 6.3 For each i ∈ I, let φi : ∆n×C→ C2 be holomorphic with φiλ = φi(λ, ·)
injective for each fixed λ, and suppose that φi converges to φ∞ uniformly on compact sets.
Let Ei ⊂ φi(0,C) for each i ∈ I, and let τ i : ∆n × Ei be a holomorphic motion on the
leaves defined by φi. Then τ i converges uniformly to τ∞ means that the sets Ai = (φi0)−1(Ei)
converge to A∞ in the Hausdorff metric and that the corresponding holomorphic motions in
the plane converge uniformly on compacts: For each ε > 0, there exist δ > 0 and N > 0 such
that if i > N and ‖λ1 − λ2‖+ ds(z1, z2) < δ, z1 ∈ Ai, z2 ∈ A∞, then

ds(φ
i
∗[τ

i
λ1

](z1), φ∞∗ [τ∞λ2
](z2)) < ε.

The uniqueness of the Bers-Royden extension allows us to conclude that given a sequence
of holomorphic motions on leaves converging as above, then the extensions also converge in
this sense.

PROPOSITION 6.4 Let φi and τ i be as in the previous definition, and let τ̂ i denote the
Bers-Royden extension of τ i. Then τ̂ i converges uniformly to τ̂∞.

Proof: The fact that A0 converges to A∞ in the Hausdorff metric implies that for a
given compact K ⊂ C \ A∞, K is also contained in the complement of Ai for large i,
and that the hyperbolic metric of the component of the complement of Ai containing K
converges uniformly on K to the hyperbolic metric of the complement of A∞. Moerover,
since each φi∗[τ̂

i
λ] has a harmonic Beltrami coefficient, say µi(λ, z) = ρi(z)

−2ψi(λ, z), and
since ‖µi(λ, z)‖ρi(z)2 is uniformly bounded for λ ∈ ∆n, z ∈ K, we see that the family {ψi}
is a normal family.

Hence there exists a subsequence of ψi converging uniformly on each compact subset of
∆n × (C \ A∞) to ψ(λ, z). Moreover, from theorem 1 of [BR], we have for each i that

‖µi(λ, z)‖∞ < ‖λ‖.

Hence this estimate holds also for µ(λ, z) = ρ∞(z)−2ψ(λ, z), and the subsequence of holo-
morhic motions corresponding to the chosen subsequence of ψi converges uniformly to a
holomorphic motion with the harmonic Beltrami coefficient µ. But this limit motion must
agree with φ∞∗ [τ̂∞λ ] on A∞, and since this latter motion also has a harmonic Beltrami coeffi-
cient, the uniqueness of the Bers-Rodyden extension implies that the limit motion must equal
φ∞∗ [τ̂∞λ ]. Since any subsequence must have the same limit, we obtain pointwise convergence,
and corollary 2 of [BR] implies equicontinuity of the sequence, hence uniform convergence
as in the preceding definition.

We prove next that the natural motion of J0 given by ψλ is a holomorphic motion on
leaves and that the motions on a sequence of leaves approaching a limit leaf converges to the
motion on the limit leaf.

THEOREM 6.5 Let fλ be a family of hyperbolic Hénon maps depending holomorphically
on λ ∈ ∆n. Let Lλ be either of the laminations Wu

λ or Ws
λ. Let p ∈ J0, pλ = ψλ(p), and

let Lλ = Lλ(p) be the leaf of Lλ through pλ. Let E0 = L0 ∩ J0. Then ψ(λ, ·) = ψλ(·) is a
holomorphic motion of E0 on the family of leaves {Lλ}.
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Moreover, if pj ∈ J0 converges to p ∈ J0 and Ljλ = Lλ(p
j) is the leaf through pjλ, then the

holomorphic motion of Ej
0 = L0(pj) ∩ J0 on the family of leaves {Ljλ} converges uniformly

to the holomorphic motion of E0 on the family of leaves {Lλ}.
Finally, the Bers-Royden extensions of the motions of Ej

0 converge uniformly to the Bers-
Royden extensions of the motion of E0.

Proof: Since ψλ is a homeomorphism of J0 to Jλ which conjugates f0 to fλ, it follows
that ψλ maps L0∩J0 onto Lλ∩Jλ. Hence ψλ(E0) is contained in Lλ. Moreover, theorem 5.6
implies that there exist holomorphically varying parametrizations φλ : C→ Lλ. Since ψλ(q)
is holomorphic in λ for each fixed q ∈ J0, we see that φ∗[ψλ] is a holomorphic motion in the
plane, hence ψλ is a holomorphic motion on the family of leaves through p.

For the convergence result, assume without loss of generality that Lλ is the unstable
lamination. For the remainder of this proof, let δ = δ0 and ε = ε0 be the constants chosen
earlier from the definition of local product structure: if aλ, bλ ∈ Jλ with ‖a − b‖ < δ, then
W s
ε (aλ) and W u

ε (bλ) intersect in a unique point contained in Jλ.
Theorem 5.6 implies that there exist functions φjλ : C→ W u(pjλ) which are holomorphic

in z ∈ C and in λ ∈ ∆n, and bijective for each fixed λ, and which converge locally uniformly
to the map φ∞λ parametrizing W u(pλ).

With these parametrizations, the first part of this proof implies that the holomorphic
motion on the family of leaves through pj is defined on the set Aj = (φj0)−1(J0 ∩W u(pj))
and is given by the pullback τ jλ = φj∗[ψλ]. The set A∞ and τ∞λ are defined similarly using p
and φ.

Choose R > 0 and let K = ∆R ⊂ C. Since we are using the spherical metric to
define the Hausdorff metric, the proposition will be established once we show that Aj ∩K
converges to A∞ ∩K in the Hausdorff metric and that τ jλ = φj∗[ψλ] converges uniformly on
(z, λ) ∈ (K ∩ Ej)×∆n to τ∞λ .

Since φ∞λ (K) is contained in W u(pλ), it follows that for large n, f−nλ (φ∞λ (K)) is contained
in W u

δ (f−nλ (pλ)). Hence for large j, f−nλ (φjλ(K)) is also within δ of f−nλ (pλ). It suffices to
prove the convergence result near f−nλ (pλ), then apply fnλ ; for clarity, we drop the f−nλ for
the remainder of the proof.

Choose distinct points a and b in W u
ε (p) ∩ J0 so that each of aλ and bλ is of distance no

more than δ/2 from pλ for any λ. Then for large j, W u
ε (pjλ) and W s

ε (aλ) intersect in a unique
point of Jλ, and likewise for bλ.

Using a local biholomorphic change of variables from a neighborhood of W u
δ (pλ) to the

unit bidisk {|u| < 1, |v| < 1} (with the change of variables depending holomorphically on
λ), we may assume that W u

δ (pλ) is ∆ × {0} and that W s
δ (aλ) and W s

δ (bλ) are {0} ×∆ and
{1/2} × ∆, respectively. Then for each q ∈ J0 ∩W u

δ (p0) and for given values of λ ∈ ∆n

and v ∈ ∆, we associate the point given by taking the intersection of W s
ε (qλ) with ∆× {v},

then projecting to the u-coordinate. This defines a holomorphic motion of the point q with
parameters λ and v.

We can view this holomorphic motion as a lamination with leaves defined by {qλ,v : v ∈ ∆}
as in figure 1, and the holonomy map associated with the leaves of this lamination gives a
projection Hj

λ from W u
δ (pλ)∩Jλ to W u

δ (pjλ)∩Jλ. As j tends to∞, the v coordinate of W u
δ (pjλ)

converges uniformly to 0. Hence the estimate in corollary 2 of [BR] implies that Hj
λ (and

(Hj
λ)
−1) converges to the identity uniformly in q and λ. In particular, this establishes the
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Figure 1. The holomorphic motion q(λ, v) and the projection H
j
λ

convergence of Ej ∩K to E∞∩K in the Hausdorff metric. Moreover, given q ∈ J0∩W u(pj0),
we have ψλ(q) = Hj

λψλ(Hj
0)−1(q). Hence

τ jλ = (φjλ)
−1Hj

λψλ[(φj0)−1Hj
0 ]−1,

where ψλ is restricted to W u
δ (pλ). The right hand side converges uniformly to

(φ∞λ )−1ψλ(φ∞0 )−1 = τ∞λ ,

as desired.
Finally, the convergence of the Bers-Royden extensions follows from proposition 6.4.

We prove an analogous result in the unstably connected case.

PROPOSITION 6.6 Let fλ be as in the previous proposition and assume also that each
fλ is unstably connected. Let Lλ be the lamination Ws

λ ∪ G+
λ . Let p ∈ (J+

0 ∪ U+
0 ) ∩ J−0 ,

pλ = ψλ(p), and let Lλ = Lλ(p) be the leaf of Lλ through pλ. Let E0 = L0 ∩ J−0 . Then
ψ(λ, ·) = ψλ(·) is a holomorphic motion of E0 on the family of leaves {Lλ}.

Moreover, if pj ∈ (J+
0 ∪ U+

0 ) ∩ J−0 converges to p in the same set, then the holomorphic
motion of Ej

0 = L0(pj) ∩ J−0 on the family of leaves {Lλ(pj)} converges uniformly to the
holomorphic motion of E0 on the family of leaves {Lλ}, and the Bers-Royden extensions of
the motions of Ej

0 converge uniformly to the Bers-Royden extension of the motion of E0.

Proof: Since fλ is unstably connected, we can use corollary 5.8 to obtain the homeomor-
phism ψλ and use theorem 5.9 in place of theorem 5.6 in the proof of the previous theorem
to obtain the holomorphic motion of E0.

For the convergence result, if p ∈ J0, the proof is the same as that of the previous theorem,
so we assume that p ∈ U+

0 ∩ J−0 . In this case, proof of the previous theorem still applies
except for the existence of δ and ε. However, instead of applying f−n for some large n, we
now apply fn. Since leaves of the lamination of U+

0 are super-stable manifolds as shown in
[BS5], it follows that for large n and j, fnλ (φjλ(K)) is again contained in a small neighborhood
of fnλ (pλ), and the discussion of G+ after proposition 3.1 implies that these images of K will
be nearly horizontal disks. A simple calcuation implies that the local unstable manifolds
of points in J−λ near pλ are nearly vertical disks. Hence again there are unique points of
intersection between local stable and unstable leaves, so the remainder of the proof of the
previous theorem applies without change.
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7 Proof of main theorems

Proof of theorem 1.1: Choose p0 ∈ J0 and let pλ = ψλ(p0). We will first construct the
map Ψλ on the set W u(p0). To this end, let φλ : C→W u(pλ) be a parametrization obtained
by theorem 5.6. I.e., φλ is holomorphic in (λ, z), φλ(0) = pλ, and φλ(1) = ψλ(q0) for some
q0 ∈W u(p0)\{p0}. Let E0 = J0∩W u(p0), and define a holomorphic motion of A0 = φ−1

0 (E0)
by

αλ = φ−1
λ ψλφ0 = φ∗[ψλ].

By the theorem of Bers and Royden, α extends canonically to a holomorphic motion α̂λ of
C with a harmonic Beltrami coefficient.

We define Ψλ : W u(p0) → W u(pλ) by Ψλ = φλα̂λφ
−1
0 . Note that on E0, Ψλ = ψλ.

Moreover, Ψλ is independent of the choice of φλ. To see this, suppose that γ : ∆n × C →
W u(pλ) is holomorphic in (λ, z), and let B0 and βλ be the analogs of A0 and αλ with γ in
place of φ. Then φ−1

λ γλ : C→ C is affine linear and holomorphic in λ, say φ−1
λ γλ(z) = Qλ(z),

or γλ(z) = φλQλ(z). Hence

βλ(z) = Q−1
λ φ−1

λ ψλφ0Q0(z) = Q−1
λ αλQ

−1
0 (z).

Since Qλ is affine linear, the canonical extension of βλ is β̂λ = Q−1
λ α̂λQ0(z). Using this with

the expression for γλ given above and canceling terms, we obtain γλβ̂λγ
−1
0 (p) = Ψλ(p) for

each p ∈W u(p0). I.e., Ψλ is independent of the choice of parametrization.
Hence we may apply the construction given above to each p0 ∈ J0 to obtain Ψλ : J−0 \S0 →

J−λ \Sλ satisfying properties 1, 3, and 4 of the theorem, where Sλ is the set of sink orbits for
fλ. The same construction applies to give Ψλ on J+

0 , and we can define Ψλ on S0 by using
the implicit function theorem to follow the sink orbits.

As in McMullen- Sullivan [MS], we can use the uniqueness of the Bers-Royden extension
to show that Ψλ conjugates f0 on W u(p0) to fλ on W u(pλ). To do this, let α̂λ be the
holomorphic motion of C induced as above by ψλ on W u(p0), and let β̂λ be the motion
induced by ψλ on W u(f0(p0)), where W u(fλ(pλ)) is parametrized by γλ. (Note that β and
γ are different from the maps of the same name in the preceding section.) We obtain the
following diagram, with the left and right portions commuting as indicated.

C φ0−→ W u(p0)
f0−→ W u(f0(p0))

γ0←− C
↓ α̂λ /// ↓ ψλ  Ψλ ↓ ψλ  Ψλ /// ↓ β̂λ
C φλ−→ W u(pλ)

fλ−→ W u(fλ(pλ))
γλ←− C

Note that γ−1
λ fλφλ is a biholomorphic map of C to itself, hence equal to some affine linear

map Qλ depending holomorphically on λ. Hence Qλα̂λQ
−1
0 is a holomorphic motion of C.

Moreover, since Qλ is an affine linear map, the Beltrami coefficient of this new holomorphic
motion is simply a constant times the Beltrami coefficient of α̂λ, hence the new holomorphic
motion has a harmonic Beltrami coefficient.

Moreover, the fact that ψλ = fλψλf
−1
0 on J0 implies that ψλ = fλφλαλφ

−1
0 f−1

0 on
W u(f0(p0))∩J0, and hence QλαλQ

−1
0 = γ−1

λ ψλγ0 on the same set. But also βλ = γ−1
λ ψλγ0 by

construction, so by the uniqueness of the extension of this motion to a motion with harmonic
Beltrami coefficient, we see that β̂λ = Qλα̂λQ

−1
0 .
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Since α̂λ = φ−1
λ Ψλφ0 and β̂λ = γ−1

λ Ψλγ0, we have

γ−1
λ Ψλγ0 = Qλφ

−1
λ Ψλφ0Q0,

and using Qλ = γ−1
λ fλφλ and cancelling common factors, we obtain Ψλ = fλΨλf

−1
0 .

The argument just given applies to any p0 ∈ J0, hence fλ = Ψλf0Ψ−1
λ on J−0 \S0. Finally,

the extension of Ψλ to S0 using the implicit function theorem respects the dynamics on the
sink orbits, hence Ψλ conjugates f0 to fλ on all of J−0 . Applying this to f−1

λ gives Ψλ on
J−0 ∪ J+

0 satisfying properties 1, 3, 4, and 5.

Note that Ψλ is bijective since it is bijective on each leaf and since it is a 1-to-1 one
correspondence between leaves. We need to check that Ψλ is continuous with continuous
inverse, but it suffices to show that it is continuous and proper (as a map from a subset of
C2 into C2) since then we can use a one-point compactification to get a continuous 1-to-1
map on a compact set, which automatically has a continuous inverse.

To show continuity, let qj be a sequence of points in J−0 converging to a point q∞ in J−0 ,
and suppose first that q∞ is not a sink. We want to show that Ψλ(qj) converges to Ψλ(q

∞).
Let p∞ ∈ J0 so that q∞ is in the unstable manifold of p∞ for f0, and likewise let pj ∈ J0 so
that qj is in the unstable manifold of pj. Dropping to a subsequence if necessary, we may
assume that pj converges to p∞.

Theorem 6.5 implies that the holomorphic motion of W u(pj) ∩ J0 converges uniformly
to the holomorphic motion of W u(p∞) ∩ J0, and that the Bers-Royden extensions of the
former motions converge to the Bers-Royden extension of the latter. Since Ψλ is precisely
the Bers-Royden extension of these motions, it follows at once that Ψλ(q

j) converges to
Ψλ(q

∞).
We claim next that p0 ∈ J−0 is in the basin of attraction of a sink orbit if and only if

Ψλ(p0) is in the basin of attraction of a sink orbit for each λ. First, p0 ∈ J−0 is in J+
0 precisely

when Ψλ(p0) ∈ J+
λ since Ψ is injective and is a homeomorphism of J0 to Jλ. Since J+

0 is
the boundary of all basins of attraction of sink orbits of f0, we may assume either that p0 is
in the basin of a sink or that p0 is in the set of points with unbounded forward orbit. We
can then write ∆n as the disjoint union of the set A of λ such that Ψλ(p0) is in the basin
of some sink and the set B of λ such that Ψλ(p0) has unbounded forward orbit. Note that
if Ψλ(p0) is attracted to a sink of fλ, then some small closed neighborhood is attracted to
this sink, and for all sufficiently small perturbations of fλ, this closed neighborhood will still
be in the basin of some sink. Since Ψλ(p0) is holomorphic in λ, it follows that the set A is
open, and likewise, the set B is open. Since ∆n is connected, only one of these two sets can
be nonempty, and since the point 0 is in one of them, the claim follows. This argument can
be refined by further decomposing the set A into disjoint sets Ai of λ such that Ψλ(p0) is
contained in the basin of attraction of Ψλ(q

j) for each sink qj of f0. The conclusion in this
case is that p0 is in the basin of attraction of qj0 if and only if for all λ, Ψλ(p0) is in the basin
of attraction of qjλ.

To continue the proof of continuity, if q∞ is a sink, then without loss of generality we
may assume that each qj is contained in the basin of attraction of q∞ but is not equal to q∞.
Let U be a small neighborhood of J0 in J−0 , and let N = f0(U) \ U . Then N is compact,
disjoint from J0, and for each j there exists nj such that f

−nj
0 (qj) ∈ N . Moreover, since q∞

20



is a sink, it follows that nj →∞. Let

K = {f−nj0 (qj) : j ≥ 1}.

Then K is a compact set contained in the intersection of N and the basin of q∞. The
previous paragraph implies that Ψλ(K) is contained in the basin of attraction of q∞λ for all
λ. Hence, for fixed λ, Ψλ(K) is a compact set in the basin of q∞λ , and since nj → ∞, we
see that f

nj
λ Ψλ(K) converges uniformly to q∞λ . Since Ψλ(q

j) ∈ fnjλ Ψλ(K), we have Ψλ(q
j)

converging to q∞λ = Ψλ(q
∞). Thus Ψλ is continuous on all of J−0 .

For properness, suppose pj0 ∈ J−0 with ‖pj0‖ → ∞ but ‖Ψλ(p
j
0)‖ ≤ C for some large

constant C and fixed λ. Since J0 is a bounded set, and since any pj0 which is in K+
0 must be

in J0, we may assume without loss of generality that each pj0 is in the complement of K+
0 .

By the claim made previously, pjλ = Ψλ(p
j
λ) is in the complement of K+

λ . After dropping to

a subsequence, we can find a sequence nj increasing to ∞ such that qj0 = f
−nj
0 (pj0) converges

to a point q∞0 in J−0 \ K+
0 . Let qjλ = Ψλ(q

j
0). The conjugacy property of Ψ implies that

qjλ = f
−nj
λ (pjλ). Let Aj = f

−nj
λ ((J−λ \ (int K+

λ ))∩∆2
C). Then each Aj is compact, Aj+1 ⊂ Aj ,

and qjλ ∈ Anj for each j. Moreover, the continuity of Ψλ implies that q∞λ is the limit of the

sequence qjλ, so

q∞λ ∈ ∩m>0∪j≥m{qjλ} ⊂ ∩m>0Anm.

But the intersection of all Aj is precisely Jλ, so q∞λ must be in Jλ. But this is a contradiction
since Ψλ is injective, is a homeomorphism from J0 to Jλ and since q∞0 is not in J0. Hence
Ψλ must be proper, hence a homeomorphism of J−0 to J−λ .

Applying the above proof to f−1
λ , we get a conjugacy of f0|J+

0 to fλ|J+
λ which agrees with

the previously constructed map on J0, so we get the map Ψλ defined on J+
0 ∪J−0 , as desired.

This completes the proof of theorem 1.1.

Proof of theorem 1.2: In the case when f0 is unstably connected and hyperbolic,
then proposition 3.1 implies that fλ is also unstably connected for λ near 0. Moreover,
the previous construction applies to give Ψ on J+

0 ∪ J−0 , and by replacing theorem 5.6 with
theorem 5.9 and theorem 6.5 with theorem 6.6, the previous proof applies to show that Ψ is
continuous.

For the properness, the previous proof does not apply directly, although it still implies
that Ψ is proper on J+

0 ∪ J−0 . To finish the proof, suppose that pj0 is a sequence of points in
U+

0 with ‖pj0‖ → ∞. In this case, either G+
0 (pj0) → ∞ or G−0 (pj0) → ∞, and we suppose for

now that the former applies. Note that the leaf of the lamination through pj0, which is a level
set of G+

0 , is biholomorphic to the plane, and G−0 is subharmonic on this leaf, is nonnegative,
nonconstant, and harmonic outside of the zero set, hence must equal 0 somewhere. By
definition of G−0 , a zero of this function is precisely a point of J−0 . Hence there exists a point
qj0 in J−0 on the leaf through pj0. Then G+

0 (qj0) = G+
0 (pj0), and since Ψλ is a homeomorphism

on J−0 , we must have G+
λ (Ψλ(q

j
0))→∞. Since Ψλ takes level sets of G+

0 to level sets of G+
λ ,

we have G+
λ (Ψλ(p

j
0))→∞, hence ‖Ψλ(p

j
0)‖ → ∞.

Next, suppose G−0 (pj0) → ∞ but G+
0 (pj0) < C and ‖Ψλ(p

j
0)‖ < C for some constant

C. Again we can choose qj0 in J−0 on the leaf through pj0. Since the set of points in J−0
with G+

0 < C is bounded, we can drop to a convergent subsequence to obtain qj0 converging
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Figure 2. Corresponding points under the map Ψλ.

to q∞0 ∈ J−0 . See figure 2. The continuity of Ψλ implies that qjλ = Ψλ(q
j
0) converges to

q∞λ = Ψλ(q
∞
0 ). Moreover, pjλ = Ψλ(p

j
0) is contained in the same leaf as qjλ, and dropping to

a further subsequence, we may assume that pjλ converges to a point p∞λ in U+
λ ∪ J+

λ in the
same leaf as q∞λ . Since Ψλ is a homeomorphism on J−0 , a neighborhood, Y , of q∞0 in J−0 maps
onto a neighborhood of q∞λ in J−λ . Since Ψλ maps each leaf of the lamination of J+

0 ∪ U+
0

bijectively to a leaf of the lamination of J+
λ ∪U+

λ , the image of the leaves through points in Y
contains a neighborhood in J+

λ ∪U+
λ of the point p∞λ . Theorem 6.6 implies that Ψλ converges

uniformly when approaching a limit leaf. Together, these facts imply that Ψλ maps a small
neighborhood in J+

0 ∪ U+
0 of p∞0 to a neighborhood of p∞λ in J+

λ ∪ U+
λ . In particular, this

image includes pjλ for all large j, so the preimage, the small neighborhood, includes pj0 for all
large j, which contradicts ‖pj0‖ → ∞.
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[HO] J. Hubbard and R. Oberste-Vorth, Hénon mappings in the complex domain I: The
global topology of dynamical space, Inst. Hautes Etudes Sci. Publ. Math., 79 (1994),
pp. 5-46.

[J] M. Jonsson, Holomorphic motions of hyperbolic sets, Michigan Math. J., 45 (1998), no.
2, 409-415.
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