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This paper studies an unsupervised deep learning-based numerical approach for solving 
partial differential equations (PDEs). The approach makes use of the deep neural network to 
approximate solutions of PDEs through the compositional construction and employs least-
squares functionals as loss functions to determine parameters of the deep neural network. 
There are various least-squares functionals for a partial differential equation. This paper 
focuses on the so-called first-order system least-squares (FOSLS) functional studied in [3], 
which is based on a first-order system of scalar second-order elliptic PDEs. Numerical 
results for second-order elliptic PDEs in one dimension are presented.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Recently, deep neural network (DNN) models have had great success in computer vision, pattern recognition, and many 
other artificial intelligence tasks. A special feature of DNN is its new way to approximate functions through a composition 
of multiple linear and activation functions. This leads to some recent studies (see, e.g., [2,5,6,12]) on applications of deep 
learning to partial differential equations (PDEs).

The idea of solving differential equations using neural networks may be traced back to a paper in 1994 by Dissanayake 
and Phan-Thien [4]. For a differential equation L(u) = 0 defined on the domain � with boundary condition B(u) = 0 on ∂�, 
a neural network was trained to minimize the following least-square functional

L̃(v) =
∫
�

∣∣∣L(v)(x)
∣∣∣2

dx +
∫
∂�

∣∣∣B(v)(x)
∣∣∣2

ds ≡ ‖L(v)‖2
0,� + ‖B(v)‖2

0,∂�, (1.1)

where ‖ · ‖0,S is the L2 norm over subdomain S = � or ∂�. Several follow-up works use similar ideas with one hidden layer 
and sampling points from a mesh to numerically approximate the integrals in L̃ at each iteration [9–11]. More recently, 
there is a limited emerging literature on the use of deeper hidden layers to solve PDEs [2,5,12]. It is also illustrated that 
the sampling points can be obtained by a random sampling of the domain rather than using a mesh, which is beneficial 
in higher-dimensional problem [2,12]. The least-squares functional defined in (1.1) is based on the original PDEs. For a 
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second order PDE, the minimization of L̃(v) over admissible functions leads to a fourth-order PDE, which is a more difficult 
problem than the original one. Moreover, the interior and the boundary integrals in (1.1) are not balanced.

Another formulation of the loss function is to use the energy functional of the underlying PDEs, such as the resulting 
deep Ritz method recently introduced by E-Yu [6]. For a Poisson problem with Dirichlet boundary conditions, i.e.,{ −�u = f , in �,

u = 0, on ∂�,

the energy functional is given by

J̃ (v) =
∫
�

(
1

2
|∇v(x)|2 − f (x)v(x)

)
dx. (1.2)

This approach is applicable to problems having an underlying minimization principle.
The purpose of this paper is to study an unsupervised deep learning-based numerical approach for solving PDEs. The 

approach makes use of a deep neural network to approximate solutions of PDEs through the compositional construction 
and employs least-squares (LS) functionals as loss functions to determine parameters of the deep neural network. There are 
various least-squares functionals for a partial differential equation, this paper focuses on the FOSLS functional studied in [3], 
which is based on a first-order system of scalar second-order elliptic PDEs.

The LS methodology has been intensively studied for many PDEs including problems arising from solid and fluid dynam-
ics, radiation transport, magnetohydrodynamics, etc. The method has many attractions. The two striking features are (i) it 
naturally symmetrizes and stabilizes the original problem; and (ii) value of the corresponding LS functional at the current 
approximation is an accurate a posteriori error estimator. The first property enables us to work on complex systems which 
might not have underlying minimization principles, and the second one provides feedback for automatically controlling 
numerical processes such as the number and the location of quadrature points for evaluating LS functional.

The paper is organized as follows. Section 2 describes the second order elliptic PDEs, the least-squares formulation 
based on a first-order system of the underlying problem introduced in [3], and proper treatment of boundary conditions 
when using energy, LS, and FOSLS functionals. Section 3 introduces deep neural network and corresponding deep FOSLS 
method. Finally, numerical results on three test problems in one dimension are presented in section 4. Moreover, a numerical 
comparison between uniformly distributed and adaptively obtained quadrature points is reported in section 4.4.

2. Problem formulation

Let � be a bounded domain in Rd with Lipschitz boundary ∂� = �̄D ∪ �̄N . Consider the following second-order scalar 
elliptic partial differential equation:

−div (A∇ u) + Xu = f , in � ⊂ Rd (2.1)

with boundary conditions

u = gD , on �D and − n · A∇ u = gN , on �N , (2.2)

where f ∈ L2(�), gD ∈ H1/2(�D), gN ∈ H−1/2(�N ); A(x) is a d × d symmetric matrix-valued function in L2(�)d×d; X is a 
linear differential operator of order at most one; and n is the outward unit vector normal to the boundary. We assume that 
A is uniformly positive definite. Possible choices for X include: Xu = div (b u) with b ∈ L2(�)d and Xu = a · ∇ u + cu with 
a ∈ L2(�)d, c(x) ∈ L2(�).

Here and thereafter, we use the standard notation and definitions for the Sobolev space H s(�) and Hs(�) for a subset 
� in ∂�. The standard associated inner product and norms are denoted by (·, ·)s,� and (·, ·)s,� and by ‖ · ‖s,� and ‖ · ‖s,� , 
respectively. When s = 0, H0(�) coincides with L2(�). Denote the corresponding norms on product space H s(�)d by ‖ ·
‖s,�,d and | · |s,�,d . When there is no ambiguity, the subscript � and d in the designation of norms will be suppressed.

2.1. Least-squares formulations

Problem (2.1)-(2.2) is non-symmetric in general and, hence, has no underlying minimization principle. To make use of 
the deep neural network, we will employ LS principles. There are many LS formulations for problem (2.1). For example, a 
direct application of the LS principle to problem (2.1) leads to a LS functional defined in (2.14) which is similar to that in 
(1.1) but with different boundary terms. In this section, we describe the FOSLS formulation introduced in [3] which is based 
on a first-order system of problem (2.1)-(2.2).

To this end, introducing the flux variable σ = −A∇u, the second-order problem in (2.1) may be rewritten as a first-order 
system:
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{
divσ + Xu = f , in �,

σ + A∇u = 0, in �
(2.3)

with boundary conditions

u = gD , on �D and n · σ = gN , on �N . (2.4)

Let

H(div;�) ≡
{

v ∈ L2(�)d : div v ∈ L2(�)
}

.

Denote subsets of H1(�) and H(div; �) satisfying non-homogeneous boundary conditions by

H1
D ,g(�) = {v ∈ H1(�) : v|�D = gD } and H N ,g = {τ ∈ H(div;�) : τ · n|�N = gN }

respectively. When gD = 0 and gN = 0, these subsets become subspaces and are denoted by H1
D
(�) and H N (div; �). Let

Vg = H N ,g(div;�) × H1
D ,g(�) and V0 = H N (div;�) × H1

D
(�),

then the FOSLS formulation is to find (σ , u) ∈ Vg such that

G̃(σ , u; f) = min
(τ ,v)∈Vg

G̃(τ , v; f), (2.5)

where f = ( f , gD , gN ) and the FOSLS functional is defined by

G̃(τ , v; f) = ‖divτ + X v − f ‖2
0,� + ‖A−1/2τ + A1/2∇v‖2

0,�. (2.6)

It has been proved in [3] that the homogeneous FOSLS functional G̃(τ , v; 0) is coercive and bounded in V0, i.e., there 
exist positive constants c1 and c2 such that

c1|||(τ , v)|||2 ≤ G̃(τ , v;0) ≤ c2|||(τ , v)|||2 (2.7)

for all (τ , v) ∈ V0, where the FOSLS energy norm is given by

|||(τ , v)||| =
(
‖τ‖2

0,� + ‖divτ‖2
0,� + ‖v‖2

1,�

)1/2
.

The corcevity and boundedness of the homogeneous FOSLS functional further implies that the FOSLS minimization problem 
in (2.5) is well-posed, i.e., (2.5) has a unique solution (see [3] for a detail discussion).

2.2. Treatment of boundary conditions

Unlike finite element functions, it is not easy for a deep neural network function to satisfy a prescribed boundary 
condition. Such a difficulty was observed in [6] for the deep Ritz method. To circumvent this obstacle, for a Poisson equation 
(i.e., A = I and X = 0) with pure Dirichlet boundary conditions (i.e., �N = ∅), they add the essential boundary conditions to 
the energy functional:

J̃ (v) =
∫
�

(
1

2
|∇v(x)|2 − f (x)v(x)

)
dx + β ‖v(x) − gD ‖2

0,∂�, (2.8)

where β is a parameter to be determined. When the data vanishes, i.e., f = 0 and gD = 0, the modified energy functional 
becomes

J̃ (v) = 1

2
‖∇v‖2

0,� + β‖v(x)‖2
0,∂�.

By the Sobolev trace theorem, the interior and boundary norms in the above formula are not in the same scale. Specifically, 
the boundary norm is 1/2-order weaker than the interior norm. This consideration suggests the following modified energy 
functional of (2.8)

J (v; f) =
∫
�

(
1

2
|∇v(x)|2 − f (x)v(x)

)
dx + β ‖v(x) − gD ‖2

1/2,∂�, (2.9)

where f = ( f , gD ) and β is a constant. For the Poisson equation with the mixed boundary conditions in (2.2), the energy 
functional becomes
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J (v; f) = 1

2
‖∇v‖2

0,� −
⎛
⎜⎝∫

�

f (x)v(x)dx +
∫
�N

gN v dS

⎞
⎟⎠ + β ‖v(x) − gD ‖2

1/2,�D
(2.10)

where f = ( f , gD , gN ) and β is a constant. The minimization problem based on the above energy functional is to find 
u ∈ H1(�) such that

J (u; f) = min
v∈H1(�)

J (v; f). (2.11)

For the FOSLS formulation defined in (2.5), both the Dirichlet and Neumann boundary conditions are essential boundary 
conditions and, hence, we need to add them to the FOSLS functional with proper scales:

G(τ , v; f) = ‖divτ + X v − f ‖2
0,� + ‖A−1/2τ + A1/2∇v‖2

0,�

+αD‖v − gD ‖2
1/2,�D

+ αN‖n · τ − gN ‖2−1/2,�N
(2.12)

for all (τ , v) ∈ V ≡ H(div; �) × H1(�), where αD and αN are constants and may be chosen to be one. Now, the corre-
sponding FOSLS formulation is to find (σ , u) ∈ V such that

G(σ , u; f) = min
(τ ,v)∈V G(τ , v; f). (2.13)

It has been proved that the homogeneous FOSLS functional G(τ , v; 0) is coercive and bounded in V . This in turn implies 
that the LS minimization problem in (2.13) is well-posed in the space V without strongly enforced boundary conditions.

For the LS functional defined in (1.1), the norm on boundary conditions is weaker than that for the equation; moreover, 
the Dirichlet and the Neumann boundary conditions are not treated differently. A balanced LS functional for problem (2.1)
is as follows:

L(v; f) = ‖ − div (A∇ v) + X v − f ‖2
0,� + βD‖v − gD ‖2

3/2,�D
+ βN‖n · A∇ v + gN ‖2

1/2,�N
, (2.14)

where f = ( f , gD , gN ). Now, the corresponding LS formulation is to find u ∈ H2(�) such that

L(u; f) = min
v∈H2(�)

L(v; f). (2.15)

Assume that the solution of problem (2.1)-(2.2) is H2 regular. Then it is a direct consequence that the homogeneous LS func-
tional L(v; 0) is coercive and bounded in H2(�). This implies that problem (2.15) is well-posed by Lax-Milgram theorem 
[3].

Remark 2.1. Note that the LS formulation (2.14)-(2.15) is only applicable to problems whose solutions are sufficiently 
smooth, more precisely, at least in H2(�). This, in turn, implies that a DNN with non-piecewise-linear activation function is 
needed when using the LS functional as the loss function.

3. The deep FOSLS

This section describes deep neural network structures and the deep FOSLS method. Discussions on numerical evaluation 
of the FOSLS functional are, in principle, valid for both the energy and the LS functionals. Moreover, similar error bounds in 
(3.8) and (3.9) for the deep FOSLS is also valid for the energy and the LS functionals in the respective H1 and H2 norms.

3.1. Deep neural network structure

For convenience of audiences in numerical analysis, in this section we describe the DNN structure through functional 
terminology. A deep neural network defines a function

N : x ∈Rd −→ y = N (x) ∈Rc,

where d and c are dimensions of input x ∈Rd and output y = N (x) ∈Rc , respectively. The DNN function N (x) is typically 
represented as compositions of many different layers of functions:

y = N (x) = N (L) ◦ · · ·N (2) ◦N (1)(x), (3.1)

where the symbol ◦ denotes the composition of functions: f ◦ g(x) = f (g(x)), and L is the depth of the network. In this 
case, N (1) is called the first layer of the network, N (2) is called the second layer, and so on. All layers except the last one 
N (L) are called hidden layers since they are hidden in between input and output (see Fig. 3.1).
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Fig. 3.1. Fully-Connected Neural Network.

Each layer is typically a vector-valued function. The choice of the function N (l)(x) is guided by many mathematical and 
engineering disciplines. In this paper, we use fully connected (FC) hidden layers. A FC layer N (l) :Rnl−1 →Rnl is defined as 
a composition of a linear transformation T l :Rnl−1 →Rnl and an activation function ψ l :R →R as follows:

N (l)(xl−1) = ψ l ◦ T l(xl−1) = ψ l(W lxl−1 + bl), for xl−1 ∈ Rnl−1 , (3.2)

where W l =
(

wl
ij

)
nl×nl−1

∈ Rnl×nl−1 , bl ∈ Rnl , and application of ψ l to a vector z ∈ Rnl is defined component-wisely, i.e., 

ψ l(z) = (
ψ l(zi)

)
nl×1. Components of W l and bl are called weights and bias, respectively, and are parameters to be deter-

mined (trained). Each component of the vector-valued function N (l) is interpreted as a neuron and the dimensionality nl

defines the width or the number of neurons of the lth layer in a network. The n0 = d and nL = c are the respective dimen-
sions of input and output. There are nl × (nl−1 + 1) parameters at the lth layer, and the total number of parameters of the 
DNN function N (x) defined in (3.1) is given by

N =
L∑

l=1

nl × (nl−1 + 1).

Choices of the activation function ψ have influences on the output of a model, its accuracy, and the computational 
efficiency of training. A commonly used activation function is the leaky ReLU defined as follows:

ψ(x) =
{

x, if x > 0,

0.01x, otherwise,
(3.3)

which is a continuous piecewise linear function. A DNN with a piecewise linear activation function is capable of generating 
rich function classes. For instance, as discussed in [1,13], a DNN with at most [log2(d + 1)] hidden layers can represent 
piecewise linear function Rd →R. Furthermore, by introducing some special network structures and adding more neurons 
as well as layers, DNN is able to approximate a large class of functions other than linear [14].

The sigmoid function is another commonly used activation function, which is defined by

ψ(x) = 1

1 + e−x
, x ∈R. (3.4)

Both the leaky ReLU and the sigmoid activation functions are depicted in Fig. 3.2. The leaky ReLU is easier to compute than 
the non-linear sigmoid function. But using a smooth activation function such as the sigmoid function is essential for the 
deep LS method based on the LS functional defined in either (1.1) or (2.14). This is because functions generated by a DNN 
with a continuous piecewise linear activation function is only in H1(�).

3.2. Deep FOSLS

The idea of the deep FOSLS is to employ DNN functions for approximating the solution (σ (x), u(x)) of the FOSLS min-
imization problem in (2.5). More specifically, for each x ∈ � ⊂ Rd , a DNN is implemented to compute an approximation 
(σ̂ (x, 	), û(x, 	)) at the point x, where 	 ∈ RN stands for all parameters (weights and biases) in the DNN. A deep FOSLS 
approximation is to find (σ̂ (x, 	), û(x, 	)) such that

G(σ̂ (x,	), û(x,	); f) = min
˜ N

G(τ̂ (x, 	̃), v̂(x, 	̃); f). (3.5)

	∈R
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Fig. 3.2. Activation functions.

Instead of evaluating the FOSLS functional analytically, in this paper we consider numerical approximation to the FOSLS 
functional. This means that we will use numerical quadrature to approximate integrals of the FOSLS functional. For simplicity 
and generality in high dimensions, we will adopt composite “mid-point” quadrature rule. To this end, let

T = {K : K is an open subdomain of �}
be a partition of the domain �. Here, the partition means that union of all subdomains of T equal the whole domain �
and that any two distinct subdomains of T have no intersection; more precisely,

�̄ = ∪K∈T K̄ and K ∩ T = ∅, ∀ K , T ∈ T .

Denote by ED = {E : E = ∂ K ∩ �D , ∀ K ∈ T } and EN = {K : E = ∂ K ∩ �N , ∀ K ∈ T } the partitions of �D and �N associated 
with the partition T , respectively. Let xK and xE be interior points of K ∈ T and E ∈ ES with S = D or N , respectively. The 
xK and xE will be used as quadrature points below. Note that quadrature points are fundamentally different from sampling 
points used in the setting of supervised learning.

Since Sobolev norms ‖ · ‖1/2 and ‖ · ‖−1/2 in the FOSLS functional are not computationally feasible, we will approximate 
them by weighted L2 norms with local weights h−1/2

E and h1/2
E , respectively, where hE is the diameter of E . This idea leads 

to the following discrete FOSLS functional:

Ĝ(τ̂ (x,	), v̂(x,	); f) =
∑
K∈T

((
div τ̂ + X v̂ − f

)2
(xK ,	) + (

A−1/2τ̂ + A1/2∇ v̂
)2

(xK ,	)
)

|K |

+αD

∑
E∈ED

(
v̂ − gD

)2
(xE ,	)|E|h−1

E + αN

∑
E∈EN

(
n · τ̂ − gN

)2
(xE ,	)|E|hE , (3.6)

where |K | and |E| are the d and d − 1 dimensional measures of K and E respectively; and αD and αN are two positive 
constants. For given data f , gD , and gN , the value of the discrete FOSLS functional at (τ̂ , v̂) is a function of the parameters 
	. Then the discrete deep FOSLS approximation is to find (σ̂ T (x, 	), ûT (x, 	)) such that

Ĝ(σ̂ T (x,	), ûT (x,	); f) = min
	̃∈RN

Ĝ(τ̂ (x, 	̃), v̂(x, 	̃); f). (3.7)

Remark 3.1. Similar to the discrete FOSLS functional defined in (3.6), the discrete energy and the discrete LS functionals are 
defined as follows:

Ĵ (v̂(x,	u); f) =
∑
K∈T

(
1

2
|∇ v̂|2 − f v̂

)
(xK ,	u)|K | −

∑
E∈EN

(
gN v̂

)
(xE ,	u)|E|

+αD

∑
E∈ED

(
v̂ − gD

)2
(xE ,	u)|E|h−1

E

and L̂(v̂(x,	u); f) =
∑
K∈T

(−div (A∇ v̂) + X v̂ − f
)2

(xK ,	u)|K |

+ αD

∑
E∈ED

(
v̂ − gD

)2
(xE ,	u)|E|h−3

E + αN

∑
E∈EN

(
n · A∇ v̂ + gN

)2
(xE ,	u)|E|h−1

E ,

respectively, where αD and αN are positive constants.



Z. Cai et al. / Journal of Computational Physics 420 (2020) 109707 7
Fig. 4.1. Four-layer neural network for training u(x) and σ (x). Each block consists of one fully-connected (FC) layer. x is an arbitrary point in the domain 
� ⊂Rd , and ml and nl are the respective numbers of neurons in the upper and lower branches at the lth layer.

To understand approximation property of the discrete deep FOSLS method, by the triangle inequality, we have∣∣∣∣∣∣(σ − σ̂ T , u − ûT )
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣(σ − σ̂ , u − û)

∣∣∣∣∣∣ + ∣∣∣∣∣∣(σ̂ − σ̂ T , û − ûT )
∣∣∣∣∣∣, (3.8)

where the first term represents the approximation error caused by the deep neural network and the second term is the 
numerical error by evaluating the FOSLS functional through numerical quadrature. How to estimate the former is still an 
open problem. The latter can be computed to a desired accuracy through either uniform or adaptive partition of the �, �D , 
and �N . A detailed algorithmic and theoretical discussions of the second term will be presented in a forthcoming paper.

In (3.8), (σ̂ T (x, 	), ûT (x, 	)) is assumed to be the exact solution of the minimization problem in (3.7). In prac-
tice, problem (3.7) is solved numerically by an iterative method such as the method of (stochastic) gradient decent. Let 
(σ̂ k

T (x, 	), ûk
T (x, 	)) be the algebraic approximation at the kth iterate, then the total error of the discrete deep FOSLS 

method is bounded by the sum of the DNN approximation error, the quadrature error, and the algebraic error as follows:∣∣∣∣∣∣∣∣∣(σ − σ̂ k
T , u − ûk

T )

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣(σ − σ̂ , u − û)
∣∣∣∣∣∣ + ∣∣∣∣∣∣(σ̂ − σ̂ T , û − ûT )

∣∣∣∣∣∣ +
∣∣∣∣∣∣∣∣∣(σ̂ T − σ̂ k

T , ûT − ûk
T )

∣∣∣∣∣∣∣∣∣. (3.9)

Again, (3.9) is obtained by the triangle inequality.

4. Numerical experiments

The solution u(x) and the flux σ (x) in the FOSLS formulation are independent variables. This observation implies that 
an efficient DNN structure is to approximate them separately. Hence, a DNN to be employed consists of two branches: the 
upper and lower branches for the respective u and σ (see Fig. 4.1). These two branches have no neuron connection. For 
numerical experiments in this paper, we use a four-layer neural network. Within each branch, a fully connected layer is 
implemented.

Let 	u and 	σ represent all parameters in the upper and lower branches, respectively. Denote by N l
u and N l

σ the fully 
connected layer defined in (3.2) for the respective upper and lower branches. The four-layer neural network (see Fig. 4.1) 
defines two functions u(x, 	u) and σ (x, 	σ ) by the upper and lower branches:

u(x,	u) = N 4
u ◦N 3

u ◦N 2
u ◦N 1

u (x) and σ (x,	σ ) = N 4
σ ◦N 3

σ ◦N 2
σ ◦N 1

σ (x),

respectively. Activation functions for the hidden and the output layers are usually different depending on the underlying 
application. In this paper, we use the same activation function for the hidden layers and identity for the output layer. 
In the numerical experiments, both the leaky ReLU and sigmoid functions are tested for the deep Ritz and the FOSLS 
methods, while the leaky ReLU activation function may not be used for the deep LS method as discussed in section 3.1. 
Now, the deep FOSLS method is to find (σ (x, 	σ ), u(x, 	u)) by minimizing the discrete FOSLS functional defined in (3.6)
over parameters 	 = (	u, 	σ ). The deep LS and Ritz methods are to find u(x, 	u) (using only the upper branch) by 
minimizing the corresponding discrete LS and energy functionals over parameters 	u (Remark 3.1).

To train (numerically compute) parameters 	 associated with the DNN functions u(x, 	u) and σ (x, 	σ ), the Adam 
optimizer version of gradient descent [8] is implemented as an iterative method to numerically solve the minimization 
problem in (3.7). The iterative parameter (may vary at each iteration) of the method of gradient decent is called the step 
size or learning rate.

Test problems in this section consist of a Poisson, a singularly perturbed reaction-diffusion equation, and an interface 
problem, all in one dimension. As discussed in section 3.2, the FOSLS functional, similarly the energy and the LS functionals, 
are evaluated numerically based on a partition of the domain. For numerical results reported in sections 4.1, 4.2, and 
4.3, we use a uniform partition of interval [a, b]: a = x0 < x1 < · · · < xn = b with xi = a + i h and h = (b − a)/n for i =
0, 1, ..., n. Quadrature points in (3.6) are chosen to be the midpoints of subintervals: xi−1/2 = a + h(2i − 1)/2 for i =
1, 2, ..., n. First-order derivative at midpoints in the functionals are approximated by the forward finite difference quotient, 
v(xi−1/2) − v(xi−1/2 − τ )

τ
with τ = h/2.

All experiments are replicated three times to reduce variability of random initialization of the method of gradient decent 
and the medians of three training results are reported. Numerical results are reported through the true error in the relative 
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Table 4.1
Relative errors of Poisson equation with different number of quadrature points.

Quadrature points
Relative errors ‖u − ūτ ‖0

‖u‖0

|u − ūτ |1
|u|1

‖σ − σ̄ τ ‖0

‖σ‖0

G1/2(σ̄ τ , ūτ ; f)
|||(σ , u)|||

200 0.065238 0.109056 0.056508 0.098030
400 0.048421 0.167703 0.026564 0.095498
800 0.025238 0.106552 0.020481 0.068702
1600 0.024631 0.114932 0.020091 0.063403

L2 norm and the H1 seminorm (or the energy norm) (see Tables 4.2, 4.3, and 4.4). Moreover, the exact solution vs numerical 
approximations are depicted in Figs. 4.2, 4.3, and 4.4. Note that only the figures for the FOSLS functional are presented as 
reference in Figs. 4.2 and 4.3 since results for the energy and the LS functionals are similar. For the deep FOSLS method, we 
also report numerical results on the approximation to the flux variable σ in the relative L2 norm and the relative value of 
the FOSLS functional. A PyTorch implementation is released at https://github .com /janiechen8 /DeepLSMethod.

4.1. Poisson equation

The first test problem is a one-dimensional Poisson equation used in [7]:{ −u′′(x) = f (x), x ∈ � = (0, 1),

u = 0, x ∈ ∂� = {0, 1} (4.1)

with f = −40000(x3 − 2x2/3 + 173x/1800 + 1/300)e−100(x−1/3)2
. Problem (4.1) has the following exact solution

u(x) = x
(

e−(x− 1
3 )2/0.01 − e− 4

9 /0.01
)

.

A four-layer neural network (m1 = n1 = 24 and m2 = m3 = n2 = n3 = 14) with total 1246 parameters is implemented for the 
deep FOSLS method.

The first numerical experiment is to show that with sufficient quadrature points for evaluating the FOSLS functional, 
accuracy of the deep FOSLS method is determined by the approximation property of the DNN structure (3.8). Denote ūτ

and σ̄ τ as the network outputs of u and σ , respectively. Using the leaky ReLU activation function, a fixed learning rate 
of 0.0005 and 10000 iterations, Table 4.1 shows that 800 quadrature points are enough to accurately evaluate the FOSLS 
functional.

The goal of the second numerical experiment is to report numerical performances when using different functionals as 
well as activation functions. With the same learning rate and iteration number, Table 4.2 and Fig. 4.2 show that all three 
methods are able to accurately approximate the solution of the Poisson equation. Due to smoothness of the exact solution, 
the deep LS method performs slightly better than the other two methods; moreover, the sigmoid function is more accurate 
than the leaky ReLU function possibly because of exponential feature of the exact solution.

4.2. Singularly perturbed reaction-diffusion equation

The second test problem is a singularly perturbed reaction-diffusion equation:{
−ε2u′′(x) + u(x) = f (x), x ∈ � = (−1, 1),

u = 0, x ∈ ∂� = {−1, 1}.
(4.2)

For f = −2 
(
ε − 4x2tanh( 1

ε (x2 − 1
4 ))

) (
1/cosh( 1

ε (x2 − 1
4 ))

)2 + tanh( 1
ε (x2 − 1

4 )) − tanh( 3
4ε ), problem (4.2) has the following 

exact solution

u(x) = tanh

(
1

ε
(x2 − 1

4
)

)
− tanh

(
3

4ε

)
.

With σ = −ε2u′ , the corresponding FOSLS functional defined in (2.12) is of the form

G(τ , v; f ) = ‖τ ′ + v − f ‖2
0,� + ∥∥τ/ε + εv ′∥∥2

0,�
+ α ‖u‖2

1/2,∂�,

and the corresponding energy norms are |||(τ , v)||| = (|||τ |||2 + |||v|||2)1/2
with

|||v||| =
(
‖v‖2

0,� + ‖εv ′‖2
0,�

)1/2
and |||τ ||| =

(
‖τ/ε‖2

0,� + ‖τ ′‖2
0,�

)1/2
.

The goal of this numerical experiment is to test the performance of deep learning based method for problems with 
boundary and/or interior layers which pose difficulty for mesh-based methods such as finite element, finite difference, etc. 

https://github.com/janiechen8/DeepLSMethod
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Table 4.2
Relative errors of Poisson equation with different functionals, activation functions and quadrature points.

Loss and activation
Relative errors ‖u − ūτ ‖0

‖u‖0

|u − ūτ |1
|u|1

‖σ − σ̄ τ ‖0

‖σ‖0

G1/2(σ̄ τ , ūτ ; f)
|||(σ , u)|||

Energy (LeakyReLU & 800 points) 0.029161 0.160666 — —
FOSLS (LeakyReLU & 800 points) 0.025238 0.106552 0.020481 0.068702
Energy (Sigmoid & 200 points) 0.013144 0.026246 — —
LS (Sigmoid & 200 points) 0.008876 0.009108 — —
FOSLS (Sigmoid & 200 points) 0.013505 0.019830 0.008897 0.045650

Fig. 4.2. Poisson equation approximation results with FOSLS functional and sigmoid activation.

The four-layer neural network depicted in Fig. 4.1 is implemented with the following setting: m1 = n1 = 32 and m2 = m3 =
n2 = n3 = 24. This network has 2962 parameters. Uniformly distributed 2000 quadrature points are used for evaluating 
different cost functionals. The learning rate starts with 0.001, and is reduced by half for every 5000 iterations. This learning 
rate decay strategy is adopted for accelerating the training (iterative) process.

For ε = 0.01 and α = 1, after 20000 iterations, the median results are reported in Table 4.3 and Fig. 4.3. All three 
methods exhibit accurate approximation to the solution with interior layers. For both the leaky ReLU and sigmoid activation 
functions, the deep FOSLS method is more accurate than the deep Ritz method. Again, the DNN using the sigmoid function 
is more accurate than that using the leaky ReLU function, possibly due to exponential feature of the exact solution.

An interesting observation from Fig. 4.1 is that the DNN-based methods do not produce overshooting and oscillations, 
unlike mesh-based traditional numerical methods without strategies such as limiter, etc. This could indicate that the deep 
FOSLS, LS, and Ritz methods have potential to accurately approximate problems with boundary and/or interior layers.

4.3. Interface problem

To test the performance of three cost functionals for non-smooth problems, we experimented a one-dimensional interface 
equation as follows.{

− (
au′(x)

)′ = f (x), x ∈ � = (0, 1),

u = 0, x ∈ ∂� = {0, 1},
(4.3)

where a = 1 for x ∈ (0, 1
2 ) and a = k for x ∈ ( 1

2 , 1). It is well-known that solutions of interface problems are not smooth, in 
particular, not in H2(�). For

f (x) =
{

8k(3x − 1), x ∈ (0, 1
2 ),

4k(k + 1), x ∈ ( 1
2 , 1),

problem (4.3) has the following exact solution

u(x) =
{

4kx2(1 − x), x ∈ (0, 1
2 ),

[2(k + 1)x − 1](1 − x), x ∈ ( 1
2 , 1).

Note that derivative of the true solution is discontinuous at point x = 0.5. With σ = −au′ , the corresponding FOSLS func-
tional defined in (2.3) has the form
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Table 4.3
Relative errors of singularly perturbed equation with different loss and activation functions.

Loss and activation
Relative errors ‖u − ūτ ‖0

‖u‖0

|||u − ūτ |||
|||u|||

‖σ − σ̄ τ ‖0

‖σ‖0

G1/2(σ̄ τ , ūτ ; f)
|||(σ , u)|||

Energy functional (LeakyReLU) 0.011316 0.026179 — —
FOSLS functional (LeakyReLU) 0.006654 0.020810 0.099863 0.031482
Energy functional (Sigmoid) 0.003019 0.004612 — —
LS functional (Sigmoid) 0.000910 0.002088 — —
FOSLS functional (Sigmoid) 0.001403 0.001711 0.211490 0.014825

Fig. 4.3. Singularly perturbed equation: approximation results with FOSLS functional and Leaky ReLU.

G(τ , v; f ) = ‖τ ′ − f ‖2
0,� + ∥∥a−1/2τ + a1/2 v ′∥∥2

0,�
+ α ‖u‖2

1/2,∂�.

The same network structure is implemented as the one used in section 4.2. Numerical evaluations of the functionals are 
done on a uniform partition of the interval [0, 1] with h = 0.002. A same learning rate decay strategy is adopted here as 
described in section 4.2.

For k = 10 and α = 1, the numerical result after 20000 iterations are reported in Table 4.4 and Fig. 4.4. The results show 
that the deep FOSLS method is significantly better than the deep Ritz method, while the deep LS method fails to approxi-
mate the solution well. This verifies Remark 2.1, i.e., the deep LS method is only applicable to sufficiently smooth problems. 
Moreover, since the true solution of this problem is a piecewise polynomial, as expected that the leaky ReLU activation 
function gives a better performance than the sigmoid function. This indicates that the choice of activation function is prob-
lem dependent, and we may use the relative value of the FOSLS functional to guide this choice in real-world applications 
where the true solutions are unknown.

4.4. Adaptive numerical quadrature

Numerical results reported in the previous sections employed uniform quadrature points. As discussed in section 1, one 
appealing feature of FOSLS function is that the value of the corresponding FOSLS functional is an accurate a posteriori error 
estimator which can be used to guide an adaptive control of the quadrature points selection. In this section, we report 
numerical results of the deep FOSLS method with the leaky ReLU using local and global refined partitions for the test 
problem in section 4.1. The same network structure and learning rate as those in section 4.1 are used.

To this end, we first describe adaptive numerical quadrature. Let T old be the current partition of the domain �. For each 
subdomain K ∈ T old , let xK ∈ K be the quadrature point (e.g., the centroid of K ). Let (σ (x,	σ ), u(x,	u)) be the deep FOSLS 
approximation associated with the current partition T old . If the relative value of the FOSLS functional at (σ (x,	σ ), u(x,	u))

is not within the prescribed tolerance, we create a new partition T new by refining the old partition T old as follows:

• for each K ∈ T old , compute local indicator

η(xK ) =
((

divσ + Xu − f
)2

(xK ,	) + (
A−1/2σ + A1/2∇u

)2
(xK ,	)

)
|K |,

• refine subdomain K ∈ T old if η(xK ) is among the top 10% of the largest indicators.

A subdomain may be refined, e.g., by bisection in low dimensions or by some aggressive refinements in high dimensions.
Starting with a uniform partition of interval [0, 1] with h = 0.005, Table 4.5 reports relative values of the FOSLS func-

tional at the current approximations on both local and global refined, and uniformly distributed partitions. All three methods 
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Table 4.4
Relative errors of interface problem with different loss and activation functions.

Loss function
Relative errors ‖u − ūτ ‖0

‖u‖0

‖σ − σ̄ τ ‖0

‖σ‖0

G1/2(σ̄ τ , ūτ ; f)
|||(σ , u)|||

Energy functional (Sigmoid) 0.054705 — —
LS functional (Sigmoid) 0.397965 — —
FOSLS functional (Sigmoid) 0.007137 0.001870 0.005073
Energy functional (Leaky ReLU) 0.041087 — —
FOSLS functional (Leaky ReLU) 0.002840 0.000686 0.001406

Fig. 4.4. Interface problem approximation results using different loss functions (all with Sigmoid activation function).

used a total of 10000 iterations. The local refinement method refines the quadrature points adaptively at every 2000 iter-
ations, and global refinement method refines only once after 5000 iterations. Clearly, Table 4.5 shows that locally refined 
partition is better than globally uniform partitions.
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Table 4.5
Comparison of locally refined and uniform partitions.

Methods
Relative errors G1/2(σ̄ τ , ūτ ; f)

|||(σ̄ τ , ūτ )|||
Local refinement of 200 to 292 quadrature points 0.085691
Global refinement of 200 to 400 quadrature points 0.100553
Uniform distribution of 292 quadrature points 0.102849

5. Discussion and conclusion

We proposed the deep FOSLS method by using DNNs to approximate solutions of PDEs and modified the deep Ritz 
and the deep LS methods by treating boundary conditions in a balance way. While the deep Ritz and LS methods are 
applicable to problems having underlying minimization principle and smooth problems, respectively, the deep FOSLS method 
is applicable to a much larger class of problems.

Both the deep LS and FOSLS methods are based on the least-squares principle applied to the respective original PDEs and 
a first-order system of the original PDEs. A striking feature of the least-squares principle is that values of the LS and FOSLS 
functionals provide feedback for automatically controlling numerical processes such as the numbers of neurons and layers 
in DNN, the number and the location of quadrature points for evaluating the functionals. Adaptive control first on numerical 
evaluation of the least-squares functionals (see preliminary numerical results in section 4.4) and then on DNN structure will 
be topics of our further study on the deep least-squares methods. Finally, unlike finite elements, DNN generates function in 
H2(�) when using smooth activation functions. This means that the deep LS method is a competitive method for smooth 
problems.

With limited knowledge on approximation theory of DNNs, in order to accurately evaluate the functionals, inequality 
(3.8) and similar inequalities in the H1 and H2 norms for the respective deep Ritz and LS methods shed some lights on 
how to adaptively choose quadrature points for a fixed DNN structure. Similarly, inequality (3.9) plus an algebraic error 
estimator provides a guidance on when to terminate the iterative process.

Comparing with traditional mesh-based numerical methods such as finite difference, finite volume, and finite element, 
etc., DNN provides a new class of functions that is meshless and “pointless” and that has the attractive feature of the 
moving mesh method. This explains why the deep FOSLS, LS, and Ritz methods approximate well the singularly perturbed 
reaction diffusion equation with a sharp interior layer (see section 4.2); in particular, the DNN approximations exhibit no 
overshooting and no oscillation which are common numerical defects for mesh-based traditional numerical methods without 
strategies such as limiter, etc.
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