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Abstract4

This paper presents the Dual Neural Network (DuNN) method, a physics-driven numerical method designed5

to solve elliptic partial differential equations and systems using deep neural network functions and a dual6

formulation. The underlying elliptic problem is formulated as an optimization of the complementary energy7

functional in terms of the dual variable, where the Dirichlet boundary condition is weakly enforced in8

the formulation. To accurately evaluate the complementary energy functional, we employ a novel discrete9

divergence operator. This discrete operator preserves the underlying physics and naturally enforces the10

Neumann boundary condition without penalization. For problems without reaction term, we propose an11

outer-inner iterative procedure that gradually enforces the equilibrium equation through a pseudo-time12

approach.13
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1. Introduction15

Neural networks (NNs) have demonstrated remarkable performance in computer vision, natural language16

processing, and various other artificial intelligence tasks. Recently, their application to solving partial17

differential equations (PDEs) has gained significant traction [1, 2, 3, 4, 5, 6, 7, 8]. As a new class of18

approximating functions, NNs exhibit exceptional approximation capabilities, surpassing those of continuous19

and discontinuous piecewise polynomials on fixed meshes (see, e.g., [9, 10, 11]). In particular, a NN function20

can automatically adapt to a target function through a “moving mesh” behavior, making it one of the most21

promising candidates among all known functional classes for addressing various challenging problems in22

scientific computing.23

Since NN functions are nonlinear with respect to their parameters, the discretization of a PDE using24

NN can be formulated as an optimization problem through either natural minimization or manufactured25

least-squares (LS) principles. Consequently, existing NN-based numerical methods for solving PDEs fall26
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into two main categories: (1) energy-based methods [1, 12, 13, 8], which utilize the principle of natural27

energy minimization, and (2) deep LS methods employing various types of manufactured least squares28

[2, 5, 3, 7, 14]. Most elliptic problems adhere to the basic minimization principle in the form of an energy29

functional. Therefore, when using NN as approximating functions, it is natural to discretize the underlying30

problem based on the energy formulation.31

For applications in continuum mechanics, the dual variable, such as stress in elasticity or flux in porous32

media flow, often stands as the primary physical quantity of interest. While it can be derived from methods33

based on the primal variable, such as displacement or pressure, through differentiation, this approach comes34

at the cost of degrading the order of the approximation for the dual variables. In this paper, we propose dual35

neural network (DuNN), a numerical method that solves elliptic partial differential equations and systems36

using NNs as the approximating functions for the dual variable, and the complementary energy functional37

as the loss function. Compared to existing physics-driven NN-based approaches, DuNN offers the following38

advantages:39

(1) In many continuum mechanics problems, accurately computing stress/flux is often more important40

than displacement/pressure. DuNN achieves this directly without differentiation, as stress/flux is the41

sole independent variable in the complementary energy functional.42

(2) DuNN is applicable to a wider range of problems, including those with or without discontinuities or43

singularities. Additionally, DuNN is suitable for incompressible materials, which are not adequately44

addressed by standard energy-based methods.45

(3) DuNN enforces both Dirichlet and Neumann boundary conditions naturally, eliminating the need for46

any penalty term in the loss functional. This results in fewer hyperparameters to adjust.47

The remainder of the paper is structured as follows. Section 2 reformulates an elliptic PDE into a48

minimization problem using a dual formulation. Section 3 presents the DuNN method in detail, and we49

show our numerical studies in Section 4 and conclude the paper in Section 5.50

2. Dual Formulation of Elliptic Partial Differential Equations51

Let Ω be a bounded, open, connected subset of Rd (d = 2 or 3) with a Lipschitz continuous boundary52

∂Ω. Let n = (n1, . . . , nd) be the outward unit vector normal to the boundary. Partition the boundary ∂Ω of53

the domain Ω into two open subsets ΓD and ΓN such that ∂Ω = ΓD ∪ΓN and ΓD ∩ΓN = ∅. For simplicity,54

we assume that ΓD is not empty (i.e., mes(ΓD) ̸= 0). Otherwise, solutions of partial differential equations55

considered in this paper are unique up to an additive constant or rigid motions.56

We will use the standard notation and definitions for the Sobolev space Hs(Ω)d and Hs(Γ) for a subset57

Γ of the boundary of the domain Ω ∈ Rd. The standard associated inner product and norms are denoted by58
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(·, ·)s,Ω,d and (·, ·)s,Γ,d and by ∥ · ∥s,Ω,d and ∥ · ∥s,Γ,d, respectively. When there is no ambiguity, the subscript59

Ω and d in the designation of norms will be suppressed. When s = 0, H0(Ω)d coincides with L2(Ω)d. In60

this case, the inner product and norm will be denoted by (·, ·) and ∥ · ∥, respectively.61

2.1. Second-order Elliptic Problems62

Consider the following self-adjoint second-order scalar elliptic partial differential equation:
−div (A∇u) + c u = f, in Ω,

u = g
D
, on ΓD,

n ·A∇u = g
N
, on ΓN ,

(1)

where div is the divergence operator; f ∈ L2(Ω), c ∈ L∞(Ω), g
D

∈ H1/2(ΓD), g
N

∈ H−1/2(ΓN ); A(x) is63

a d × d symmetric matrix-valued function in L2(Ω)d×d; and n is the outward unit vector normal to the64

boundary. We assume that A is uniformly positive definite and that c(x) ≥ 0 for almost all x ∈ Ω.65

Introducing the dual (flux) variable σ = −A∇u, then the dual problem is to maximize the complementary

energy functional (see, e.g., [15, 16]). Specifically, denote the collection of square-integrable vector fields

whose divergence are also square-integrable by

H(div; Ω) = {τ ∈ L2(Ω)d : div τ ∈ L2(Ω)},

which is a Hilbert space equipped with norm

∥τ∥div,Ω =
(
∥τ∥20,Ω + ∥div τ∥20,Ω

)1/2
.

Denote the subset of H(div; Ω) satisfying the Neumann boundary condition by

Hg,N (div; Ω) = H(div; Ω) ∩ {n · σ|Γ
N

= g
N
}

and the negative complementary functional by66

J1(τ ; γ) =
1

2

{∥∥∥A−1/2τ
∥∥∥2
0,Ω

+
∥∥∥γ1/2 (div τ − f)

∥∥∥2
0,Ω

}
+ (g

D
, τ ·n)0,Γ

D
, (2)

where γ is given by

γ =

 c−1(x), if c > 0,

0, if c = 0.
(3)

Then the dual problem is to find σ ∈ Σg such that

J1(σ; γ) = min
τ∈Σg

J1(τ ; γ), (4)

where Σg is given by

Σg =

 Hg,N (div; Ω), if c > 0,

{τ ∈ Hg,N (div; Ω) : div τ = f}, if c = 0.
(5)

The following proposition is well-known (see, e.g., [17]).67
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Proposition 1. Problem (4) has a unique solution σ ∈ Σg. Moreover, the solution σ satisfies the following

a priori estimate:

∥σ∥div,Ω ≤ C
(
∥f∥0,Ω + ∥g

D
∥1/2,Γ

D
+ ∥g

N
∥−1/2,Γ

N

)
.

2.2. Linear Elasticity and Stokes Equations68

In linear elasticity problems, it is often more useful to compute accurately stress rather than displacement.69

This can be achieved by using the dual formulation that maximizes the complementary energy functional70

for the stress (dual) variable σ. This section describes the dual formulation for both linear elasticity and71

Stokes equations.72

To this end, denote by u and σ the displacement/velocity field and the stress tensor, respectively. Then

the stress-displacement/velocity formulation (see, e.g., [17, 18, 19]) has the form
−divσ + cu = f , in Ω,

Aλ σ − ϵ(u) = 0, in Ω

(6)

with boundary conditions

u
∣∣
ΓD

= g
D

and
(
σn
)∣∣

ΓN
= g

N
,

where div is the divergence operator; c ∈ L∞(Ω) is a given scalar-valued function; f ∈ L2(Ω)d, g
D

∈73

H1/2(ΓD)d, and g
N

∈ H−1/2(ΓN )d are given vector-valued functions defined on Ω, ΓD, and ΓN , rep-74

resenting body force, boundary displacement/velocity, and boundary traction force, respectively; ϵ(u) =75

1
2

(
∇u+ (∇u)T

)
is the strain tensor; and Aλ is the compliance tensor of fourth order76

Aλ τ =
1

2µ

(
τ − λ

2µ+ dλ
(trτ ) δd×d

)
with trτ =

d∑
i=1

τii.

Here, δd×d is the d-dimensional identity tensor; µ and λ are the material Lamé constants. The material is

said to be nearly incompressible if λ ≫ 1 or incompressible if λ = ∞. It is easy to see that

A∞ τ =
1

2µ

(
τ − 1

d
(trτ ) δd×d

)
.

Hence the formulation in (6) is valid for both compressible and incompressible materials.77

Denote the collection of all symmetric stress whose divergence is square integrable by

Hs(div; Ω) =
{
τ ∈ L2(Ω)d×d : τ t = τ , div τ ∈ L2(Ω)d

}
and its subset satisfying the Neumann boundary condition by

Hs
g,N (div; Ω) =

{
τ ∈ Hs(div; Ω) : τn

∣∣
ΓN

= g
N

}
.

The negative complementary energy functional is given by

J2(τ ; γ) =
1

2

{(
Aλ τ , τ

)
0,Ω

+ ∥γ (div τ − f)∥20,Ω
}
−
∫
ΓD

g
D
· (τn) ds, (7)
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where the γ is given in (3) and

(
Aλ τ , τ )0,Ω =

1

2µ

∫
Ω

|A∞τ |2 dx+
1

d(2µ+ dλ)

∫
Ω

|trτ |2 dx.

Then the dual formulation of problem (6) is to seek σ ∈ Σg such that

J2(σ; γ) = min
τ∈Σg

J2(τ ; γ), (8)

where Σg is given by

Σg =

 Hs
g,N (div; Ω), if c > 0,

{τ ∈ Hs
g,N (div; Ω) : div τ + f = 0}, if c = 0.

(9)

The following existence, uniqueness, and stability are also well-known [17].78

Proposition 2. Problem (8) has a unique solution σ ∈ Σg. Moreover, there exists a positive constant such

that

∥σ∥div,Ω ≤ C
(
∥f∥0,Ω + ∥g

D
∥1/2,Γ

D
+ ∥g

N
∥−1/2,Γ

N

)
.

2.3. Abstract Setting79

For convenience, this section uses an abstract setting to unify the dual formulations in (4) and (8). To

this end, for any σ, τ ∈ Σg, introduce the following bilinear and linear forms

a(σ, τ ; γ) =


(A−1σ, τ )0,Ω + (γ divσ, div τ )0,Ω, problem (1),

(Aλ σ, τ )0,Ω + (γ divσ,div τ )0,Ω, problem (6)

and

b(τ ; f, γ) =


(γ f, div τ )0,Ω −

∫
ΓD

g
D
τ ·n ds, problem (1),

(γ f ,div τ )0,Ω +
∫
ΓD

g
D
· (τn) ds, problem (6)

respectively, where Σg is a subset of H(div; Ω)d satisfying constraints like essential boundary condition,

symmetry, and/or the equilibrium equation (see (5) and (9)). Define the negative complementary functional

by

J(τ ; γ) =
1

2
a(τ , τ ; γ)− b(τ ; f, γ) +

1

2
c2(f ; γ), (10)

where c(f ; γ) = ∥γ1/2f∥0,Ω or c(f ; γ) = ∥γ1/2f∥0,Ω for problems (1) or (6), respectively, is a constant. Then

the dual formulation is to seek σ ∈ Σg such that

J(σ; γ) = min
τ∈Σg

J(τ ; γ). (11)

Assume that there exists a positive γ0 > 0 such that γ(x) ≥ γ0. Then the solution σ ∈ Σg of (11) satisfies

a(σ, τ ; γ) = b(τ ; f, γ), ∀ τ ∈ Σ0. (12)

5



3. Dual neural network (DuNN) method80

In this section, we describe the dual neural network (DuNN) method. Simply, the DuNN method is a81

discretization method for solving a partial differential equation or system based on the dual formulation82

of the underlying problem. DuNN includes a standard fully connected DNN as the class of approximating83

functions and the negative complementary energy functional JT (σ; γ) as the loss functional estimated by84

numerical integration and differentiation (discrete divergence operator). The general structure of the DuNN85

is illustrated in Figure 1.86

Figure 1: DuNN architecture. A fully connected L-layer network is employed to generate the map from an arbitrary spatial

point x in Ω to its flux σ(x), quadrature based numerical integration and discrete divergence operator are used to approximate

the discrete complementary energy functional JT (σ; γ) as the DuNN loss.

3.1. Deep Neural Network87

For j = 1, · · · , l − 1, let N (j) : Rnj−1 → Rnj be the vector-valued ridge function of the form

N (j)(x(j−1)) = ζ(ω(j)x(j−1) − b(j)) for x(j−1) ∈ Rnj−1 , (13)

where ω(j) ∈ Rnj×nj−1 and b(j) ∈ Rnj are the respective weights and biases to be determined; x(0) = x; and88

ζ(t) is the activation function and its application to a vector is defined component-wise. There are many89

choices of activation functions such as ReLU, logistic, Gaussian, hyperbolic tangent, and sigmoids (see, e.g.90

[20]).91

Let ω(l) ∈ Rdo×nl−1 and b(l) ∈ Rdo be the output weights and bias, respectively, where do = d for92

problem (1) and do = 3(d− 1) for problem (6). Then a l-layer neural network generates the following set of93

vector-valued functions in Rdo94

MM = MM (ζ) = MM (ζ, l)

=
{
ωl
(
N (l−1) ◦ · · · ◦N (1)(x)

)
− bl : ω(j)∈ Rnj×nj−1 ,b(j) ∈ Rnj for all j

}
, (14)
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where the symbol ◦ denotes the composition of functions.95

This class of functions is rich enough to accurately approximate any continuous function defined on a96

compact set Ω ∈ Rd (see [21, 22] for the universal approximation property). However, this is not the main97

reason why NNs are so effective in practice. One way to understand its approximation power is from the98

point view of polynomial spline functions with free knots ([23]). The set MM (ζ, 2) may be regarded as a99

beautiful extension of free knot splines from one dimensional scalar-valued function to multi-dimensional100

vector-valued function. It has been shown that the approximation of functions by splines can generally be101

dramatically improved if the knots are free.102

3.2. DuNN method103

The DuNN method is a discretization method for approximating the solution of partial differential equa-104

tions or systems based on the dual formulation and using neural networks as approximating functions. The105

resulting discrete, non-convex minimization problem of the DuNN method is sophisticated and computa-106

tionally intensive and can be numerically solved using existing iterative methods such as ADAM, BFGS,107

etc.108

Notice that M
M

is a subset of C0(Ω)do due to the continuity of the activation function ζ(t). Hence,109

M
M
(ζ) ∩ Σg is the set of admissible functions for the minimization problem in (11). The DuNN method110

is then to seek an approximation by minimizing the negative complimentary functional in the set of neural111

network functions M
M
(ζ) ∩ Σg. To design a viable DuNN method, we need to address the following112

three numerical issues: (1) numerical integration, (2) discrete divergence operator, and (3) the constraints113

(Neumann boundary conditions and symmetry of the stress for the PDE system) on Σg.114

First, unlike finite element methods, numerical integration for NN-based methods is a nontrivial matter.

The difficulty stems from the fact that the NN approximation function is unknown, and hence so is its

physical partition [24, 14]. To overcome this obstacle, we recently introduced an adaptive quadrature

method in [8] to achieve the prescribe accuracy with fewer integration points. In this paper, we consider

only the composite midpoint quadrature rule on a fixed partition for simplicity of presentation and refer

readers to [8] for accurate and efficient numerical integration. To this end, partition the domain Ω by a

collection of subdomains

T = {K : K is an open subdomain of Ω}

such that

Ω̄ = ∪K∈T K̄ and K ∩ T = ∅, ∀ K, T ∈ T .

That is, the union of all subdomains of T equals to the whole domain Ω, and any two distinct subdomains

of T have no intersection. The resulting partitions of the boundary Γ
D

and Γ
N

are

E
D
= {E = ∂K ∩ Γ

D
: K ∈ T } and E

N
= {E = ∂K ∩ Γ

N
: K ∈ T },
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respectively. Denote by x
K

and |K| the respective centroid and volume of element K ∈ T , and by x
E

and

|E| the respective centroid and area of boundary element E ∈ E
S

for S = D and N . Then∫
Ω

v(x) dx ≈
∑
K∈T

v(xK)|K| and
∫
ΓS

v(x) ds ≈
∑
E∈ES

v(xE)|E|. (15)

Second, numerical differentiation becomes a critical component for a viable DuNN method. This difficulty115

stems from the fact that the admissible solution set Σg whose functions may not be continuous in tangential116

directions across some interfaces. Hence, the divergence differential operator can not be approximated by117

standard finite difference scheme along coordinate directions or auto-differentiation. To circumvent this118

obstacle, we use a newly developed discrete divergence operator introduced in [25] to approximate the119

divergence operator. Below let us briefly define the discrete divergence operator denoted by divT τ for any120

τ ∈ Σg = Hs
g,N (div; Ω), that may be defined for any τ ∈ Σg = Hg,N (div; Ω) in a similar fashion. The121

divT τ is a piece-wise constant vector field and its restriction on each K ∈ T is an approximation to the122

average of div τ , i.e.,123

divT τ
∣∣
K

≈ avgKdiv τ =
1

|K|

(∫
∂K\Γ

N

τn dS +

∫
∂K∩Γ

N

g
N
dS

)
, (16)

where n is the outward unit vector normal to ∂K, the boundary of K. Surface integrals in (16) may be124

approximated by either proper standard or adaptive numerical integration.125

Third, the symmetry of Σg = Hs
g,N (div; Ω) for problem (6) can be easily enforced strongly by setting126

σij = σji so that the stress has only do = 3(d − 1) variables. The Neumann boundary condition in Σg for127

both problems becomes an essential boundary condition in the dual formulation (11). One may penalize128

the complementary functional in (10) by adding either the H−1/2 or a weighted L2 norm of the residual of129

the Neumann boundary condition. This type of treatments has been discussed for the deep Ritz method130

(see, e.g., [8]). An attractive feature of the discrete divergence operator defined in (16) is that the Neumann131

boundary condition is already weakly enforced. Therefore, it is not necessary to enforce it by adding132

penalization terms. Adjusting the penalization coefficient is, in general, nontrieval, and therefore, using the133

discrete divergence operator simplifies the training process.134

Now, for the simple composite midpoint quadrature rule, we are ready to define the discrete negative

complementary functional as

JT (τ ; γ) =
1

2
aT (τ , τ ; γ)− bT (τ ; f, γ) +

1

2
c2
T
(f ; γ), (17)

where cT (f ; γ) =
∑

K∈T
|K|
(
γ f2

)
(x

K
) for problem (1) and cT (f ; γ) =

∑
K∈T

|K|
(
γ |f |2

)
(x

K
) for problem (6),

and the discrete quadratic and linear forms are given by

aT (τ , τ ; γ) =


∑

K∈T
|K|

{
τTA−1τ + γ

(
divT τ

)2}
(x

K
), problem (1),

∑
K∈T

|K|
{

1

2µ

∣∣τD
∣∣2 + 1

d(2µ+ dλ)
|trτ |2 + γ

∣∣divT τ
∣∣2} (x

K
), problem (6),
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and

bT (τ ; f, γ) =


∑

K∈T
|K|
(
γ f divτ

)
(x

K
)−

∑
E∈ED

|E|
(
g
D
τ · n

)
(x

E
), problem (1),

∑
K∈T

|K|
(
γ f · div τ

)
(x

K
) +

∑
E∈ED

|E|
(
g

D
· (τn)

)
(x

E
), problem (6),

respectively. Then, the dual neural network (DuNN) method is to find σT ∈ M
M

∩Σ such that

JT (σT ; γ) = min
τ∈M

M
∩Σ

JT (τ ; γ), (18)

where Σ = H(div; Ω) for problem (1) and Σ = Hs(div; Ω) for problem (6).135

To understand the effect of numerical integration and differentiation, we extend the first Strang lemma136

for the Galerkin approximation over a subspace (see, e.g, [26]) to the DuNN approximation over a subset.137

Theorem 1. Assume that there exists a positive constant α independent of M2M ∩Σ such that

α ∥τ∥2a ≤ aT (τ , τ ), ∀ τ ∈ M2M ∩Σ. (19)

Let σ and σT ∈ M
M

be the solutions of (11) and (18), respectively. Then there exists a positive constant C

such that

∥σ − σT ∥a ≤ C
(

inf
τ∈M

2M
∩Σ

E(τ ) + sup
τ∈M

2M
∩Σ

|f(τ )− fT (τ )|/∥τ∥a
)
, (20)

where E(τ ) = ∥σ − τ∥a + supv∈M
2M

∩Σ |a(τ ,v)− aT (τ ,v)|/∥v∥a.138

Proof. For any τ ∈ M
M

∩Σ, let eT (τ ) = σϵ
T
− τ . It is easy to see that

JT (σ
ϵ
T
; γϵ) ≤ JT (τ ; γϵ) and a(σϵ, eT (τ )) = f(eT (τ )) + g(eT (τ )),

where g(eT (τ )) =. This, together with the assumption in (19), implies139

α

2
∥eT (τ )∥

2
a ≤ 1

2
aT

(
eT (τ ), eT (τ )

)
≤ fT

(
eT (τ )

)
− aT

(
τ , eT (τ )

)
=

(
fT

(
eT (τ )

)
− f

(
eT (τ )

))
+
(
a
(
τ , eT (τ )

)
− aT

(
τ , eT (τ )

))
+ a
(
σ − τ , eT (τ )

)
.

Since
∣∣f(τ ) − fT (τ )

∣∣ ≤ ∥τ∥a supw∈M
2M

|f(w) − fT (w)|/∥w∥a, by the Cauchy-Schwarz inequality and the140

fact that eT (τ ) ∈ M
2M

, we have141

∥eT (τ )∥
2
a ≤ C

(
E(τ ) + sup

τ∈M
2M

|f(τ )− fT (τ )|/∥τ∥a

)
.

Now, the validity of (20) follows from using the triangle inequality and taking infimum over all τ ∈ M
2M

∩Σ.142

This completes the proof of the theorem.143

Theorem 1 indicates that the total error in the energy norm is bounded by the approximation error of144

the set of neural network functions plus the numerical integration and differentiation error.145
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3.3. Constrained minimization146

In the case that γ = 0, i.e., c = 0 in (1) or (6), (11) is a constrained minimization problem. One may use147

the method of Lagrange multiplier or penalty. The former leads to a saddle point problem and the latter148

has difficulty to choose a proper penalization parameter that is good in both accuracy and efficiency. On149

one hand, a standard perturbation theory [17] suggests that the penalization parameter (still denoted by γ)150

should be γ = ϵ−1 with 0 < ϵ ≪ 1 for accuracy. On the other hand, this choice leads to an ill-conditioned151

algebraic problem.152

This section introduces an iterative procedure to gradually enforce the equilibrium equation. For sim-

plicity of presentation, we describe the procedure at the continuous level. Let δk−1 be the previous time

step size and u(k) and u(k) are the previous approximation to the solution of problem (1) and problem (6),

respectively. Set

f (k) =


f + δ−1

k u(k), problem (1),

f + δ−1
k u(k), problem (6).

Given the previous approximation σ(k) to the solution of (11), define the following negative complementary

functional at the kth step by

J (k)(τ ) =
1

2
a(τ , τ ; δk)− b(τ ; f (k), δk) +

1

2
c2(f (k); δk). (21)

Then the iterative procedure is to find σ(k+1) ∈ Σg such that

J (k)
(
σ(k+1)

)
= min

τ∈Σg

J (k)(τ ) (22)

and set
u(k+1) = δk

(
f − divσ(k+1)

)
+ u(k), problem (1),

u(k+1) = δk
(
f − divσ(k+1)

)
+ u(k), problem (6)

and f (k+1) =


f + δ−1

k u(k+1), problem (1),

f + δ−1
k u(k+1), problem (6).

4. Numerical Studies153

In this section, we present our numerical studies on several second-order elliptic PDEs. Existing NN-based154

methods include the deep Ritz [1] and PINN [5], which are based on primal and primitive LS formulations,155

respectively. Essential boundary condition(s) (Dirichlet for the primal and both Dirichlet and Neumann156

for the primitive LS) are enforced by penalizing them in the loss functional. The deep Ritz has recently157

been extended to linear elasticity in [27, 8]. We will compare the proposed DuNN with the aforementioned158

NN-based methods.159

In all experiments, the structure of the DNN used is expressed as d-n1-n2 · · ·nl−1-do for a l-layer network160

with n1, n2 and nl−1 neurons in the respective first, second, and (l − 1)th layers. The d and do represent161
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the input and output dimensions of the network. For DuNN, do = 3(d − 1), and for deep Ritz and PINN,162

do = d. The minimization of the loss functionals in all experiments is solved using the Adam optimization163

algorithm [28].164

4.1. Test Example I: a two-dimensional singularly perturbed reaction-diffusion problem165

Consider the following 2D scalar reaction-diffusion problem:

−ε2∆u+ u = f in Ω, u = 0 on ∂Ω,

with the true solution u = tanh( 1ε (x
2 + y2 − 1

4 )) − tanh( 3
4ε ) defined in the unit disc Ω = {(x, y) ∈ R2 :166

x2 + y2 < 1}. Consider the problem in two cases: ε = 0.05 and ε = 0.005, and note that there is a sharp167

interior transition layer at r =
√

x2 + y2 = 1/2 with a width of order ε in the solution. When ε is small,168

there is a numerical difficulty in solving these types of problem.169

Set the flux σ = −ε2∇u, and with the vanish boundary condition, the corresponding DuNN loss func-170

tional using the complementary energy (2) is reduced to171

J∗(τ ) =
1

2

{∥∥ε−1τ
∥∥2
0,Ω

+ ∥ (divτ − f)∥20,Ω
}
. (23)

To compare, we tested the deep Ritz and PINN methods as well. Both deep Ritz and PINN use DNNs172

to approximate the primary variable u. Deep Ritz employs the following energy-based loss functional,173

J(v) =
1

2

{
∥ε∇v∥20,Ω + ∥v∥20,Ω + γD∥v∥21/2,∂Ω

}
− (v, f), (24)

while PINN uses a direct least square loss functional,174

L(v) = ∥ − ε2∆v + v − f∥20,Ω + γD∥v∥20,∂Ω, (25)

where γD is the penalization coefficient.175

Table 1 reports the results of the three methods. As shown in the table, for both material cases and176

the three different DNN structures(a three-layer DNN with 128 neurons in the hidden layer, and two four-177

layer DNNs with 64 and 96 neurons in the hidden layer, respectively), DuNN achieves better accuracy in178

approximating the flux σ, and Deep Ritz performs better in approximating the primary variable u. As179

illustrated in Figure 2, the DuNN method yields a direct approximation of the flux σ, which results in fewer180

numerical oscillations; see Figures 2(a) and 2(b). The other two methods calculate the flux σ indirectly181

using σ = −ε2∇u, which involves a differential operation 3 on the DNN output function u. As shown in182

Figures 2(d) 2(e) and 2(g) 2(h)), this leads to some numerical oscillations in flux simulation.183

3In our experiments, numerical differentiation was used to obtain the results
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Table 1: Relative L2 errors for test example I using three DNN structures ( 2-128-128-do |2-64-64-64-do |2-96-96-96-do, where

do = 2 for DuNN, and do = 1 for PINN and Deep Ritz).

Method
∥u− uN ∥

∥u∥
∥σ − σN ∥

∥σ∥

ε = 0.05

PINN 13.19% | 12.63% | 12.38% 48.04% | 42.63% | 37.97%

Deep Ritz 0.984% | 0.910% | 0.904% 16.73% | 12.00% | 12.07%

DuNN 4.248% | 2.682% | 2.227% 4.957% | 2.826% | 2.190%

ε = 0.005

PINN 8.522% | 5.814% | 2.727 % 73.01% | 57.81% | 34.33%

Deep Ritz 2.382% | 1.056% | 0.997% 32.18% | 28.67% | 28.49%

DuNN 3.019% | 1.751% |1.524% 24.04% | 12.57% |9.385%

*training details:

1. Activation function: ReLU;

2. numerical integration: 400× 360 uniformly distributed quadrature points;

3. Adam optimization: 80,000 iterations; learning rate starts with 0.004 and decays 50% per 10,000 iterations;

4. penalization coefficient in loss function: for PINN, γD = 100, and for Deep Ritz, γD = 1.

4.2. Test Example II: two-dimensional Poisson Equation184

The second test problem is a two-dimensional Poisson equation defined on a square unit Ω = (0, 1)×(0, 1).

The exact solution for the primary variable u = sin(π2x)sin(πy) + x2y2. And the dual variable σ has the

analytic form,

σ = −∇u =

 −π
2 cos(

π
2x)sin(πy)− 2xy2

−πsin(π2x)cos(πy)− 2x2y

 .

With the right-hand side f = divσ = 5π2

4 sin(π2x)sin(πy)−2(x2+y2), and the Dirichlet boundary condition185

defined in x = 0 and y = 0, the Neumann boundary prescribed in x = 1 and y = 1, we tested the186

performance of DuNN and compared it with the deep Ritz and PINN. Specifically, for DuNN, since the187

primary variable term vanishes in the Poisson equation (c = 0), we tested two approaches to solve the188

corresponding constrained minimization problem. The first is the penalization method that uses the added189

penalty term γ ∥( div τ − f)∥20,Ω, where γ is a penalization coefficient that needs to be adjusted. And the190

second method is the outer-inner iterative procedure using pseudo-time described in section 3.3.191

Using the penalization method, DuNN needs to tune one parameter γ for the force balance term, deep192

Ritz needs one parameter γD for the Dirichlet boundary condition term, and PINN needs two parameters,193

γD and γN for both the Dirichlet and Neumann boundary condition terms. Table 2 reports the results of the194

comparison. In all three methods, we adjusted the penalization coefficients in their respective loss functions195

and reported the best results. Note that in the DuNN method, the primary variable u is reconstructed196

using another DNN of the same structure (2-50-50-1), and the loss function for reconstructing u is L(v) =197
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(a) DuNN σx (b) DuNN σy (c) DuNN u

(d) Ritz σx (e) Ritz σy (f) Ritz u

(g) PINN σx (h) PINN σy (i) PINN u

Figure 2: Numerical Results of test example I (ε = 0.005) using three NN-based methods.

∥∇v+σN∥20,Ω+γD∥v−gD∥20,∂Ω, where σN is the obtained numerical flux from DuNN. The tuned penalization198

parameters are shown in the second row of the table 2. From the error measures shown in the last row of199

the table, we can see that for smooth problems like the one in this test, all three methods perform well if200

the hyper parameters are tuned into the appropriate scales.201

We then tested the outer-inner pseudo-time method for the constrained minimization problem. The202

same DNN structure (2-50-50-2) and activation function (Sigmoid) were used as in the penalization method203

previously. In the experiment, the pseudo-time step size remained constant throughout the outer-inner204

iterations. Table. 3 records the numerical results of using different pseudo-time step sizes δ. It is found that205
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Table 2: Relative L2 errors for test example II using penalization method ( DNN structure: 2-50-50-do).

DuNN Deep Ritz PINN

γ = 20 γD = 1000 γD = 10000, γN = 10000

∥u− uN ∥
∥u∥

∥σ − σN ∥
∥σ∥

∥u− uN ∥
∥u∥

∥σ − σN ∥
∥σ∥

∥u− uN ∥
∥u∥

∥σ − σN ∥
∥σ∥

0.740% 1.307% 0.949% 3.730% 0.594% 1.3224%

*training details:

1. activation function: Sigmoid;

2. numerical integration: 100× 100 uniform distributed quadrature points (h = 0.02).

3. Adam optimization: 200,000 iterations;

learning rate starts with 0.01 and decays 90% per 20,000 iterations until reaches 1e-5.

Table 3: Relative L2 errors for test example II using pseudo-time method ( DNN structure: 2-50-50-2).

Time step size δ 0.1 0.05 0.01 0.005 0.001

Inner iteration per time step 5,000 2,500 500 250 50

Outer iteration number 20 40 200 400 2000
∥σ − σN ∥

∥σ∥
0.273% 0.221% 0.182% 0.134% 0.173%

*training details:

1. Total number of iterations: 100,000;

2. learning rate is 1e− 3 for the first 50,000 iterations and 1e− 4 for the rest.
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the pseudo-time iterative method, compared to the penalization method, is less sensitive to the parameter206

(time-step size) and converges to a better solution in fewer iterations (a total of 100,000 iterations). We also207

observed that, in general, a larger step size requires more inner iterative steps, as reported in the second208

row of the table. Figure. 3(a) and 3(b) plot the numerical results for the approximate flux σ using the time209

step size δ = 0.005.

(a) DuNN σx (b) DuNN σy (c) DuNN uN (obtained from pseudo-

time iterative process)

(d) DuNN uN (reconstructed using an-

other DNN (2-50-50-1)

(e) The negative complementary energy function

and the force balance term values along iterative

training process.

Figure 3: Numerical Results of Poisson equation using pseudo-time outer-inner iterative method (δ = 0.005).

210

Another benefit of the pseudo-time method is that the added term ut converges to uN , becoming a211

byproduct of the iterative process. Figure 3(c) illustrates the resulting uN . Alternatively, one may also212

reconstruct uN using another DNN, as previously used. Recovering uN using another DNN requires addi-213

tional time and resources to form the approximated primary variable u, but produces a smoother result in214

this case, as shown in Figure 3(d). The effectiveness of the pseudo-time method is further demonstrated in215

Figure 3(e). For each time step, the force balance term ∥( div τ − f)∥20,Ω continuously decays to nearly zero,216
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and the negative complementary energy converges to the true value of this problem, which is 1.571.217

4.3. Test Example III: L-shaped linear elastic plate under stress218

The last test example is a common benchmark problem for linear elasticity equation (6) featuring a

re-entrant corner and a resulting point singularity[29]. This problem is posed on a L−shaped domain

Ω = (−1, 1)2 \ ([0, 1]× [−1, 0]) with a body force f = 0. The analytical solution for displacement u is,

u = [A cos θ −B sin θ,A sin θ −B cos θ]T ,

where A and B are defined in polar coordinates:
A = rα

2µ

(
− (1 + α) cos

(
(1 + α)θ

)
+ C1(C2 − 1− α) cos

(
(1− α)θ

))
,

B = rα

2µ

(
(1 + α) sin

(
(1 + α)θ

)
− C1(C2 − 1 + α) sin

(
(1− α)θ

))
.

Here α ≈ 0.544483737 is the critical exponent and the definition of C1, C2 together with the exact form of219

stress σ are referenced in [29]. We tested two materials with Young’s modulus E = 100000 and Poisson’s220

ratio ν = 0.3 for a compressible material and ν = 0.49999 for a nearly incompressible material. The Lamé221

constants are given by µ = E
2(1+ν) and λ = Eν

(1+ν)(1−2ν) .222

The method of PINN does not apply here due to the existence of a stress singularity at the origin point223

(0, 0). Therefore, we compare only the numerical results of the two energy-based methods: Deep Ritz [8]224

and DuNN.225

Material case I (ν = 0.3): we used only the penalization method in this case. For penalization226

coefficients, we tested various values and finally adjusted them to γ = 1e − 4 for DuNN and γD = 10 for227

deep Ritz. Uniform quadrature methods with the midpoint quadrature rule and two set of the integration228

mesh sizes were tested and the corresponding results are reported in Table 4. The numerical experiments229

show that both energy-based methods (deep Ritz and DuNN) have the capability of handling reentrant corner230

singularity, while DuNN performs better in terms of relative L2 approximation error for the numerical stress,231

using both integration mesh sizes.232

Material case II (ν = 0.49999): since the deep Ritz method does not accurately characterize the233

stress under the near-incompressible condition (locking phenomenon), we tested DuNN alone and compared234

the penalization method with the pseudo-time method for the constrained minimization problem. Both235

the uniform and non-uniform quadrature methods were tested in this material case. For the non-uniform236

quadrature method, a manual integration mesh was constructed using progressive refinement near the singu-237

lar point (see the corresponding non-uniform quadrature points in Figure 3(d)). Note that this non-uniform238

integration mesh can be constructed adaptively using the adaptive quadrature refinement (AQR) method239

proposed in [8]. Since numerical integration is not a main focus of this work, we used this manually generated240

set of quadrature points to investigate the effect of numerical integration.241
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From the result shown in Table 4, we can see that both the penalization method and the pseudo-time242

method can handle incompressibility and simulate the stress distribution with point singularity reasonably243

well. The non-uniform quadrature method produced slightly better result with fewer number of quadrature244

points. During the training process, we also observed that the pseudo-time-based minimization, although245

also having a time step δt parameter to be determined, converges faster due to the gradual enforcement246

of the equilibrium equation. In this test, the penalization method required 200,000 iterations, while the247

pseudo-time method required less than 10,000 iterations to converge. The corresponding numerical results248

are plotted in Figure 4, where subfigures (a)-(c) represent the numerical stress distributions of DuNN.249

The results show that both the point singularity and incompressibility of the material are well handled250

using DuNN. Figure 4(e) illustrates the pseudo-time-based negative complementary function minimization251

process. During the iterative process, the force balance term quickly decreases to near zero, while the252

negative complementary energy converges to its theoretic value.253

Table 4: Relative L2 errors of numerical stress for the L-shaped problem(Network: 2-48-48-48-do, Activation: sigmoid)

Method Quadrature
∥σ − σ

N
∥

∥σ∥

ν = 0.3

Deep Ritz (penalization)
uniform h = 0.02 38.59 %

uniform h = 0.01 31.62 %

DuNN (penalization)
uniform h = 0.02 10.81 %

uniform h = 0.01 10.08 %

ν = 0.49999

DuNN (penalization)
uniform: h = 0.01 12.44 %

Non-uniform 12.39 %

DuNN (pseudo-time)
uniform h = 0.01 10.96%

Non-uniform 10.30%

*training details:

1. penalization Method: DuNN: γ = 1e− 4, Deep Ritz: γD = 10

200,000 iterations and learning rate starts from 0.01 and decays 50% every 50,000 iterations.

2. pseudo-time method: δ = 1e− 6

inner iteration: 10,000; number of time-step:10; total iteration: 100,000 .

5. Conclusion254

In this paper, we established a physics-driven deep neural network-based computational framework to255

solve elliptic partial differential equations and systems. The problem is formulated as an optimization of256

the complementary energy functional with the benefit of using the sole dual variable. Combined with the257
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(a) σxx (b) σyy (c) σxy

(d) 30465 non-uniform quadrature

points (from h = 1/50, refined 3

times to 24,543 points)

(e) The complementary energy and the

force balance term along training pro-

cess

Figure 4: Numerical results using DuNN for the L-shaped elastic plate problem, case II (ν = 0.49999) (structure: 2-48-48-48-3,

activate function: sigmoid, non-uniform quadrature and pseudo-time outer-inner iterative method).

physics-preserved discrete divergence operator, all boundary conditions can be enforced naturally without258

using any penalization term. For problems without the primary variable term, a pseudo- time-based iterative259

method was developed to gradually enforce the equilibrium equation.260

Numerical studies demonstrate that DuNN accurately approximates dual variables for elliptic problems.261

Compared to existing neural network-based methods, DuNN offers superior flux prediction accuracy and is262

applicable to a broader range of problems, including those with discontinuities or singularities. It is also263

effective for problems involving both compressible and incompressible materials.264
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