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Abstract. This paper studies the approximation property of ReLU neural networks (NNs) to piecewise constant4
functions with unknown interfaces in bounded regions in Rd. Under the assumption that the discontinuity interface5
Γ may be approximated by a connected series of hyperplanes with a prescribed accuracy ε > 0, we show that a6
three-layer ReLU NN is sufficient to accurately approximate any piecewise constant function and establish its error7
bound. Moreover, if the discontinuity interface is convex, an analytical formula of the ReLU NN approximation8
with exact weights and biases is provided.9
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1. Introduction. For simplicity, consider the d-dimensional unit cube Ω = (0, 1)d with d ≥ 2.13

Let {Ω1,Ω2} be a partition of the domain Ω; that is, Ω1 and Ω2 are open and connected subdomains14

of Ω such that15

Ω1 ∩ Ω2 = ∅ and Ω̄ = Ω̄1 ∪ Ω̄2.16

Let χ(x) be a piece-wise constant function defined on Ω given by17

(1.1) χ(x) =

{
0, x ∈ Ω1,

1, x ∈ Ω2.
18

Denote by Γ = ∂Ω1 ∩ ∂Ω2 the discontinuity interface of χ(x), where ∂Ωi is the boundary of the19

subdomain Ωi. In this paper, we assume that the interface Γ is in C0 and that its (d−1)-dimensional20

measure |Γ| is finite.21

Functions of the form in (1.1) are encountered in many applications such as classification tasks22

in data science and linear and nonlinear hyperbolic conservation laws with discontinuous solutions23

(see, e.g., [1, 13, 5, 7]). Generally, a piecewise constant function has the form24

(1.2) χ(x) =

m∑
i=1

αiχi(x),25

where αi is a real number, χi(x) = 1Ωi(x) is the indicator function of a subdomain Ωi ⊂ Ω,26

and {Ωi}mi=1 forms a partition of the domain Ω. The partition means that {Ω1, . . . ,Ωm} are open,27

connected, and disjoint subdomains of Ω and that Ω̄ = ∪m
i=1Ω̄i. Once we know how to approximate28

χ(x) in (1.1) by neural networks (NNs), then approximating (1.2) is a matter of concatenation or29

parallelization of the NNs (see, e.g., [10]).30

A critical component of using NNs as a model is the use of a properly designed architecture31

(e.g., the number of layers), and carelessly chosen architectures could lead to poor performance32

regardless of the size of the network (see, e.g., [7, 8]). To efficiently approximate piecewise constant33

functions with unknown interface location, several practical guidelines on the architecture of NNs34

have been provided recently (see, e.g., [12, 15, 9, 7]). The first notable work was done by Petersen35
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2 Z. CAI, J. CHOI, AND M. LIU

and Voigtlaender in their 2018 paper [15]. For any prescribed accuracy ε > 0, if the discontinuity36

interface Γ is in Cβ with β > 0, they showed that there exists a NN function N (x), generated by a37

ReLU NN with at most (3 + ⌈log2 β⌉)(11 + 2β/d) layers and at most cε−p(d−1)/β nonzero weights38

for some constant c > 0, such that39

(1.3) ∥χ−N∥Lp(Ω) ≤ ε.40

In the case that Γ can locally be parametrized by functions of Barron-type, it was proved in [9]41

that for every N ∈ N, there exists a NN function N (x), generated by a four-layer ReLU NN with42

a total of O(d+N) neurons, such that43

∥χ−N∥Lp(Ω) ≤ C d
3
2pN− α

2p ,44

where C and α are positive constants independent of N . Here, the magnitude of the weights and45

biases can be chosen to be O(d+N1/2).46

Recently, we studied this problem in [7] through an explicit construction based on the two-47

layer ReLU approximation p(x) in Lemma 3.2 of [6]. Under the assumption that the interface Γ48

may be approximated such that there exists a region of ε width containing the interface, we were49

able to construct a continuous piecewise linear (CPWL) function with a sharp transition layer50

of ε width whose approximation to the piecewise constant function χ(x) has the approximation51

accuracy ε. Combining with the main results in [2], this indicates that a ReLU NN with at most52

⌈log2(d + 1)⌉ + 1 layers is sufficient to achieve the prescribed accuracy ε. However, [7] does not53

provide an estimate of the minimum number of neurons in each layer.54

The purpose of this paper is to address the following two questions:55

(1) What is the minimum number of hidden-layers of a ReLU NN in order to approximate a56

piecewise constant function with the prescribed accuracy?57

(2) How many neurons per each hidden-layer are needed?58

Under the assumption that the interface Γ may be approximated by a connected series of hyper-59

planes with a prescribed accuracy ε > 0 (see Figure 1(b)), we show that a three-layer (two-hidden-60

layer) ReLU NN is sufficient and necessary to accurately approximate the piecewise constant61

function χ(x), in any dimensions, with an error bound of O(ε1/p) in the Lp(Ω) norm (see Theorem62

3.2). Again, this is done through an explicit construction based on a novel three-layer ReLU NN63

approximation (see, e.g, N (x) in (4.2) when the interface is a hyperplane). Moreover, the number64

of neurons at the first hidden-layer and their locations depend on the hyperplanes used for approx-65

imating the interface and the number of neurons of the second hidden-layer depends on convexity66

of the interface.67

For classification problems or partial differential equations with a discontinuous solution, our68

approximation results would provide a guideline on the choice of ReLU NN architectures and on69

initialization for any training algorithm. It is well-known that initialization is critical for success70

of any optimization/iterative/training scheme when the resulting discrete problem is a non-convex71

optimization.72

The remainder of the paper is organized as follows. Three-layer ReLU NN functions with73

relevant concepts and terminology are described in Section 2. Then in Section 3, we describe74

how to approximate the interface Γ with necessary assumptions, and state the main result of the75

approximation theory by three-layer ReLU NN functions. The proof of a lemma for the theorem76

is provided in Section 4. Finally, multiple examples with d ≥ 2 are given in Section 5 to confirm77

our theoretical findings.78

2. Three-layer ReLU neural network functions. In this paper, we will restrict our atten-79

tion to three-layer (two-hidden-layer) neural network functions that are scalar-valued. A function80

N : Rd → R is a three-layer neural network (NN) function if the function N has a representation81

as a composition of 3 functions x(l) : Rnl−1 → Rnl (n0 = d, n3 = 1) for l = 1, 2, 3:82

(2.1) N = x(3) ◦ x(2) ◦ x(1),83
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RELU NEURAL NETWORK APPROXIMATION 3

where x(3) is affine linear, and x(2) and x(1) are affine linear with a function σ : R → R, called84

an activation function, applied to each component of the functions. Such a function is called a85

d–n1–n2–1 NN function.86

As the activation function, we use the rectified linear unit (ReLU):87

σ(t) = ReLU(t) := max{0, t} =

{
0, if t ≤ 0,

t, if t > 0,
88

and refer to such a three-layer NN function as a three-layer (two-hidden-layer) ReLU NN function.89

Therefore, the collection of all three-layer ReLU NN functions from Rd to R is the collection of all90

functions N : Rd → R defined by91

N (x) = ω(3)σ
(
ω(2)σ

(
ω(1)x− b(1)

)
− b(2)

)
− b(3),92

where for each l = 1, 2, 3, ω(l) ∈ Rnl×nl−1 , b(l) ∈ Rnl for nl, nl−1 ∈ N. We may also assume that93

each row of the matrix ω(1) has unit length by adjusting the entries of ω(2) and b(1) (see, e.g.,94

[10]).95

We will follow the same terminology in [7]. Finally, in the numerical examples in this paper,96

as in [7], we will see the breaking hyperplanes of the first- and second-(hidden-) layers, which are97

defined as follows. For l = 1, 2, let98

ω(l) = (w
(l)
1 , . . . ,w(l)

nl
)T ∈ Rnl×nl−1 , and b(l) = (b

(l)
1 , . . . , b(l)nl

)T .99

Then the first- (hidden-) layer breaking hyperplanes are for i = 1, . . . , n1,100

P
(1)
i =

{
x ∈ Rd : w

(1)
i x− b

(1)
i = 0

}
,101

and the second- (hidden-) layer breaking (poly-) hyperplanes are for i = 1, . . . , n2,102

P
(2)
i =

{
x ∈ Rd : w

(2)
i σ

(
ω(1)x− b(1)

)
− b

(2)
i = 0

}
.103

ReLU NN functions are continuous piecewise linear with respect to the partition of Ω ⊂104

Rd determined by the breaking hyperplanes. The constructions of approximations to piecewise105

constant functions in this paper will be better understood with the help of breaking hyperplanes.106

3. Main results. Let Γ = ∂Ω1 ∩ ∂Ω2 be an interface in C0. For any given ε > 0, assume107

that there exists a connected series of hyperplanes108

(3.1) ai · x− bi = 0 for i = 1, . . . , n109

approximating the interface Γ such that the hyperplanes divide the domain Ω by a partition110 {
Ω̂1, Ω̂2

}
(see Figures 1(a), 1(b), and 1(c)) and that111

(3.2)
∣∣Ω1 \ Ω̂1

∣∣+ ∣∣Ω2 \ Ω̂2

∣∣ ≤ ε,112

where
∣∣Ωi \ Ω̂i

∣∣ is the d-dimensional measure of Ωi \ Ω̂i. Let χ̂ be the indicator function of the113

subdomain Ω̂2, i.e.,114

(3.3) χ̂(x) =

{
0, x ∈ Ω̂1,

1, x ∈ Ω̂2.
115

Then it is easy to see that (3.2) implies that116

(3.4) ∥χ− χ̂∥Lp(Ω) =
(∣∣Ω1 \ Ω̂1

∣∣+ ∣∣Ω2 \ Ω̂2

∣∣)1/p ≤ ε1/p.117
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4 Z. CAI, J. CHOI, AND M. LIU

(a) The interface Γ (b) An approximation of the interface by con-
nected series of hyperplanes

(c) χ̂

Fig. 1. An approximation of the interface Γ

Lemma 3.1. Let Γ̂ = ∂Ω̂1 ∩ ∂Ω̂2. There exists a d–n1–n2–1 ReLU NN function N such that118

(3.5) ∥χ̂−N∥Lp(Ω) ≤ C(|Γ̂|) ε1/p,119

where n1 and n2 are integers depending on, respectively, the number of the hyperplanes and con-120

vexity of Γ̂, and C(|Γ̂|) is a positive constant depending on the (d− 1)-dimensional measure of the121

interface |Γ̂|.122

Proof. The proof of the lemma is provided in Section 4.123

Theorem 3.2. Under the assumption on the interface Γ, there exists a d–n1–n2–1 ReLU NN124

function N such that125

(3.6) ∥χ−N∥Lp(Ω) ≤ C(|Γ̂|) ε1/p,126

where n1 and n2 are integers depending on, respectively, the number of the hyperplanes and con-127

vexity of Γ̂, and C(|Γ̂|) is a positive constant depending on the (d− 1)-dimensional measure of the128

interface |Γ̂|.129

Proof. It follows from (3.4), Lemma 3.1 and the triangle inequality that there exists a d–n1–130

n2–1 ReLU NN function N for some n1, n2 ∈ N such that131

(3.7) ∥χ−N∥Lp(Ω) = ∥χ− χ̂+ χ̂−N∥Lp(Ω) ≤ ∥χ− χ̂∥Lp(Ω)+∥χ̂−N∥Lp(Ω) ≤
(
C(|Γ̂|) + 1

)
ε1/p,132

which completes the proof of the theorem.133
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RELU NEURAL NETWORK APPROXIMATION 5

4. Proof of Lemma 3.1 . This section proves Lemma 3.1 in Subsection 4.1 and Subsection134

4.2 when the subdomain Ω̂1 is convex and non-convex, respectively.135

4.1. Convex Ω̂1. This section shows the validity of Lemma 3.1 in a special case that the136

subdomain Ω̂1 is convex (see Figure 2(a)).137

(a) The interface Γ̂ when Ω̂1 is convex (b) Ω̂ε

(c) The region Ω̂ε is divided by the extension
of ai · x− bi.

(d) Subdividing each of the convex quadrilat-
erals with blue sides into two triangles

(e) Removing the triangles not adjacent to the

interface Γ̂

Fig. 2. The subdomain Ω̂1 is convex.

Without loss of generality, assume that the normal vectors ai of the hyperplanes are the unit138

vectors and point toward Ω̂2. Then we approximate the unit step function χ̂(x) in (3.3) by the139
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6 Z. CAI, J. CHOI, AND M. LIU

following ReLU NN function140

(4.1) N (x) = 1− σ

(
1− 1

ε

n∑
i=1

σ(ai · x− bi)

)
.141

The N (x) is a d–n–1–1 ReLU NN function.142

When the interface Γ̂ is a hyperplane a · x− b = 0 in Rd, i.e., n = 1, the N (x) has the form143

(4.2) N (x) = 1− σ

(
1− 1

ε
σ(a · x− b)

)
.144

The second term of N (x), a three-layer ReLU NN function, is a ramp function that equals negative145

one in Ω̂1 and vanishes in Ω̂2 \ Yε, where Yε = {x ∈ Ω : 0 < a · x− b < ε} is a strip with ε-width.146

It is then easy to see that147

χ̂(x)−N (x) =

{
0, x ∈ Ω̂1 ∪

(
Ω̂2 \ Yε

)
,

σ
(
1− 1

εσ(a · x− b)
)
, x ∈ Yε,

148

which, together with a simple calculation, implies the upper bound in (3.5).149

Now, we consider the case n ≥ 2. For simplicity of presentation, the proof of the error bound150

in (3.5) is carried out in two dimensions d = 2. Denote by Ω̂ε ⊂ Ω the region produced by151

translating ai · x − bi = 0 toward Ω̂2 along ai by ε (see Figure 2(b)). By extending the line152

segments ai · x− bi = 0, we partition the region Ω̂ε into convex subregions (see Figure 2(c)).153

The subregions of the first type are denoted by {Υ1i}ni=1, where Υ1i is the subregion bounded154

by the line ai · x − bi = 0, its translated line ai · x − bi = ε, and two neighboring lines or one155

neighboring line and the boundary of Ω (the convex quadrilaterals with red sides in Figure 2(c)).156

More precisely, we have that157

Υ11 =
{
x ∈ Ω̂ε : 0 < a1 · x− b1 < ε and a2 · x− b2 < 0

}
,158

Υ1n =
{
x ∈ Ω̂ε : 0 < an · x− bn < ε and an−1 · x− bn−1 < 0

}
,159

and that for i = 2, . . . , n− 1160

Υ1i =
{
x ∈ Ω̂ε : 0 < ai · x− bi < ε, ai−1 · x− bi−1 < 0, and ai+1 · x− bi+1 < 0

}
.161

Notice that Ω̂ε \ (∪n
i=1Υ1i) consists of n − 1 convex quadrilaterals (with blue sides in Figure162

2(c)). Subdividing each of these convex quadrilaterals into two triangles (see Figure 2(d)) and163

removing the triangles not adjacent to the interface Γ̂ (see Figure 2(e)), the remaining triangles164

are denoted by {Υ2i}n−1
i=1 , where Υ2i is given by165

Υ2i =
{
x ∈ Ω̂ε : aj · x− bj > 0 for j = i, i+ 1, and (ai + ai+1) · x− (bi + bi+1) < ε

}
.166

We then have the following lemma.167

Lemma 4.1. Let N (x) be the three-layer ReLU NN function defined in (4.1), then we have168

(4.3) χ̂(x)−N (x) =



0, x ∈ Ω \

(
2⋃

j=1

n+1−j⋃
i=1

Υji

)
,

χ̂(x)− 1

ε
(ai · x− bi), x ∈ Υ1i for i = 1, . . . n,

χ̂(x)− 1

ε
[(ai + ai+1) · x− (bi + bi+1)] , x ∈ Υ2i for i = 1, . . . n− 1.

169
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RELU NEURAL NETWORK APPROXIMATION 7

Proof. Let170

Ω̂3 = Ω̂2 \

 2⋃
j=1

n+1−j⋃
i=1

Υji

 .171

Since ai points toward Ω̂2, clearly, we have σ(ai · x− bi) = 0 for all x ∈ Ω̂1 and i = 1, . . . , n. This172

implies173

(4.4) N (x) = 1− σ(1) = 0, ∀ x ∈ Ω̂1.174

Clearly, we have175

1− 1

ε

n∑
i=1

σ(ai · x− bi) =


1− 1

ε
(ai · x− bi), x ∈ Υ1i,

1− 1

ε
[(ai + ai+1) · x− (bi + bi+1)] , x ∈ Υ2i.

176

It is easy to see that177

1− 1

ε
(ai · x− bi)

{
> 0, 0 < ai · x− bi < ε,

≤ 0, ε ≤ ai · x− bi
178

and that similar inequalities hold for 1− 1

ε
[(ai + ai+1) · x− (bi + bi+1)]; furthermore, by the def-179

inition of Ω̂3, we have180

1− 1

ε

n∑
i=1

σ(ai · x− bi) < 0, ∀ x ∈ Ω̂3.181

Now, applying the activation function σ, multiplying by −1, and adding 1 imply182

N (x) =


(ai · x− bi)/ε, x ∈ Υ1i,

[(ai + ai+1) · x− (bi + bi+1)] /ε, x ∈ Υ2i,

1 x ∈ Ω̂3,

183

which, together with (4.4), leads to (4.3). This completes the proof of the lemma.184

Proof of Lemma 3.1 for convex Ω̂1. When Ω̂1 is convex, to show the validity of Lemma 3.1,185

notice that for all p ∈ [1,∞), we have by Lemma 4.1,186

|χ̂(x)−N (x)|p =

∣∣∣∣χ̂(x)− 1

ε
(ai · x− bi)

∣∣∣∣p ≤ 1, ∀x ∈ Υ1i,187

and |χ̂(x)−N (x)|p =

∣∣∣∣χ̂(x)− 1

ε
[(ai + ai+1) · x− (bi + bi+1)]

∣∣∣∣p ≤ 1, ∀x ∈ Υ2i,188

which implies189

(4.5) ∥χ̂−N∥pLp(Υ1i)
≤
∣∣Υ1i

∣∣ and ∥χ̂−N∥pLp(Υ2i)
≤
∣∣Υ2i

∣∣,190

where
∣∣Υji

∣∣ denotes the area of the quadrilateral Υji. It follows from (4.3) and (4.5) that191

(4.6) ∥χ̂−N∥pLp(Ω) =

n∑
i=1

∥χ̂−N∥pLp(Υ1i)
+

n−1∑
i=1

∥χ̂−N∥pLp(Υ1i)
≤

n∑
i=1

∣∣Υ1i

∣∣+ n−1∑
i=1

∣∣Υ2i

∣∣ ≤ ∣∣Ω̂ε

∣∣,192

which, together with the fact that
∣∣Ω̂ε

∣∣ ≤ C
∣∣Γ̂∣∣ ε for a positive constant C, implies the error bound193

in (3.5). This completes the proof of Lemma 3.1.194
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8 Z. CAI, J. CHOI, AND M. LIU

4.2. Non-Convex Ω̂1. This section shows the validity of Lemma 3.1 when Ω̂1 is non-convex195

(see, e.g., Figure 3(a)). Our proof is again through explicit constructions. Specifically, we present196

two approaches: one is based on the convex hull of Ω̂1 (see Subsubsection 4.2.1) and the other uses197

a convex decomposition of Ω̂1 (see Subsubsection 4.2.2).198

(a) A non-convex Ω̂1 (b) Thue convex hull of Ω̂1

(c) A convex decomposition of Ω̂1 (d) A subset of K2

Fig. 3. The subdomain Ω̂1 is non-convex.

4.2.1. Convex hull. Let199

(4.7) Ω
(1)
1 = Ω̂1 ∪

(
∪k
i=1Ki

)
,200

be the convex hull of Ω̂1 (see Figure 3(b)) generated by a convex hull algorithm (see, e.g., [14, 4, 3]),201

where Ki are polytopes and pairwise disjoint. Without loss of generality, we assume that all Ki202

(i = 1, . . . , k) are convex. Otherwise, the procedure presented in this section may be applied to203

non-convex Kis for the indicator functions 1Ω\Ki
(x) of the subdomains Ω \ Ki. Note that the204

procedure may be needed for several times recursively.205

Let χ̂0(x) be the unit step function defined on the convex hull Ω
(1)
1 of the non-convex subdomain206

Ω̂1:207

(4.8) χ̂0(x) =

 0, x ∈ Ω
(1)
1 ⊂ Ω,

1, x ∈ Ω \ Ω(1)
1 ,

208

then its discontinuity interface is Γ̂0 = ∂Ω
(1)
1 ∩ ∂

(
Ω \ Ω(1)

1

)
consisting of n1,0 faces. As proved in209

Subsection 4.1 (see (4.6)), there exists a d–n1,0–1–1 ReLU NN function approximation N0(x) such210
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RELU NEURAL NETWORK APPROXIMATION 9

that211

(4.9) ∥χ̂0 −N0∥Lp(Ω) = ∥χ̂0 −N0∥Lp(Ω̂ε,0)
≤
∣∣Ω̂ε,0

∣∣1/p,212

where Ω̂ε,0 is the region with ε-width containing the interface Γ̂0 by translating the faces of Γ̂0213

towards the subdomain Ω \ Ω(1)
1 .214

For each convex polytope Ki (i = 1, . . . , k) in (4.7) having n1,i faces, let χ̂i(x) be the unit step215

function defined on Ki:216

χ̂i(x) =

{
1, x ∈ Ki ⊂ Ω,

0, x ∈ Ω \Ki.
217

Define the following d–n1,i–1–1 ReLU NN function218

(4.10) Ni(x) = σ

1− 1

ε

n1,i∑
j=1

σ(ai,j · x− bi,j)

 ,219

where the hyperplanes ai,j · x − bi,j = 0 (j = 1, . . . , n1,i) are the faces of ∂Ki with ai,j pointing220

toward Ω \Ki. In a similar fashion as in Subsection 4.1, it is easy to check that221

(4.11) ∥χ̂i −Ni∥Lp(Ω) = ∥χ̂i −Ni∥Lp(Ω̂ε,i)
≤
∣∣Ω̂ε,i

∣∣1/p,222

where Ω̂ε,i is a region having ε-width.223

Now, we are ready to define the following d–n1–n2–1 ReLU NN function:224

(4.12) N (x) = N0(x) +

k∑
i=1

Ni(x),225

where N0(x) is given in a similar fashion as in (4.1).226

Proof of Lemma 3.1 for non-convex Ω̂1. Note that227

χ̂ =

k∑
i=0

χ̂i.228

Then it follows from (4.12), the triangle inequality, (4.9), and (4.11) that229

(4.13) ∥χ̂−N∥Lp(Ω) ≤
k∑

i=0

∥χ̂i −Ni∥Lp(Ω) ≤
k∑

i=0

∣∣Ω̂ε,i

∣∣1/p,230

which, together with the fact that
∣∣Ω̂ε,i

∣∣ ≤ Ci

∣∣Γ̂i

∣∣ ε for a positive constant Ci, implies the error231

bound in (3.5). Here Γ̂i = ∂Ki ∩ ∂ (Ω \Ki) for i = 1, . . . , k This completes the proof of Lemma232

3.1.233

4.2.2. Convex decomposition. Assume that Ω̂1 has a convex decomposition (see, e.g., [11])234

given by235

Ω̂1 =

l⋃
i=1

Ki,236

where all Ki are convex polytopes. For simplicity of presentation, assume that l = 2, i.e., the237

decomposition has only two convex polytopes: Ω̂1 = K1 ∪K2 (see Figure 3(c)).238
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Denote the indicator function of the subdomain K1 by239

χ̂1(x) =

{
1, x ∈ K1 ⊂ Ω,

0, x ∈ Ω \K1.
240

Let a · x − b = 0 be the hyperplane that divides Ω̂1 into K1 and K2 (blue line in Figure 3(c)).241

Assume that a points toward K2. Translate a ·x− b = 0 toward K2 by ε to obtain the hyperplane242

a · x− b− ε = 0 (red line in Figure 3(d)). Partition K2 by {K22,K23} (see Figure 3(d)), where243

K22 = {x ∈ Ω̂1 : ε < a · x− b} and K23 = {x ∈ Ω̂1 : 0 < a · x− b < ε}.244

Denote by χ̂22(x) and χ̂23(x) the respective indicator functions of K22 and K23:245

χ̂22(x) =

{
1, x ∈ K22 ⊂ Ω,

0, x ∈ Ω \K22.
and χ̂23(x) =

{
1, x ∈ K23 ⊂ Ω,

0, x ∈ Ω \K23.
246

Assume that polygonal domains K1 and K22 have n1 and n2 faces, respectively. In a similar247

fashion as in (4.10) and (4.11), there exist d–n1–1–1 and d–n2–1–1 ReLU NN functions N1 and248

N22 such that249

(4.14)

 ∥χ̂1 −N1∥Lp(Ω) = ∥χ̂1 −N1∥Lp(Ω̂ε,1)
≤
∣∣Ω̂ε,1

∣∣1/p
and ∥χ̂22 −N22∥Lp(Ω) = ∥χ̂22 −N22∥Lp(Ω̂ε,22)

≤
∣∣Ω̂ε,22

∣∣1/p,250

where Ω̂ε,1 and Ω̂ε,22 are regions having ε-width. Clearly, there exist positive constants C1, C22,251

and C23 such that252

(4.15)
∣∣Ω̂ε,1

∣∣ ≤ C1

∣∣Γ̂1

∣∣ ε, ∣∣Ω̂ε,22

∣∣ ≤ C22

∣∣Γ̂22

∣∣ ε, and
∣∣K23

∣∣ ≤ C23

∣∣Γ̂23

∣∣ ε253

where Γ̂1, Γ̂22, and Γ̂23 are the boundaries of K1, K22, and K23.254

Proof of Lemma 3.1 for non-convex Ω̂1. Let255

N (x) = 1−N1(x)−N22(x).256

Note that257

χ̂(x)−N (x) = (χ̂1 −N1) + (χ̂22 −N22) + χ̂23.258

It follows from the triangle inequality, (4.14), and (4.15) that259

∥χ̂−N∥Lp(Ω) ≤ ∥χ̂1 −N1∥Lp(Ω) + ∥χ̂22 −N22∥Lp(Ω) + ∥χ̂23∥Lp(Ω)260

≤
∣∣Ω̂ε,1

∣∣1/p + ∣∣Ω̂ε,22

∣∣1/p + |K23|1/p ≤ C ε.(4.16)261

This completes the approximation.262

Remark 4.2. The ε-width region K23 is a subdomain of Ω̂1, and its boundary contains the263

hyperplanes a · x− b = 0 (blue line in Figure 3(c)) and a · x− b− ε = 0 (red line in Figure 3(d))264

which are not part of the interface Γ̂. For any x ∈ K23, it is easy to see that265

χ̂(x)−N (x) = N1(x) +N22(x) =

(
1− 1

ε
(a · x− b)

)
+

(
1− 1

ε
(−a · x+ b+ ε)

)
= 0,266

which, together with (4.16), implies that the ReLU NN functionN (x) approximates the discontinu-267

ous step function χ̂(x) without overshooting. Moreover, it is clear from the construction that N (x)268

has no oscillation. No overshooting and no oscillation remain true for the ReLU NN approximation269

N (x) constructed in Subsubsection 4.2.1.270
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5. Examples. This section validates our theoretical findings with several examples in d ≥ 2271

dimensions. The first three examples demonstrate Theorem 3.2 for convex Ω̂1, with the third272

example extending to the case of d = 10000. The final example illustrates a non-convex case using273

the twp decomposition procedures outlined in Subsection 4.2.274

5.1. A two-dimensional circular interface. Let Ω = (0, 1)2,275

Ω1 = {(x, y) ∈ Ω : (x− 0.5)2 + (y − 0.5)2 < 0.252}, and Ω2 = Ω \ Ω1.276

The piecewise constant function χ(x) is shown in Figure 4(a). The interface Γ is a circle centered277

at (0.5, 0.5) with a radius of 0.25 (see Figure 4(b)):278

Γ = {(x, y) ∈ Ω : (x− 0.5)2 + (y − 0.5)2 = 0.252}.279

Consider approximations of the interface Γ by n = 6 and 50 line segments (see Figures 4(c) and280

4(d)), respectively. The 2–6–1–1 and 2–50–1–1 ReLU NN approximations given in (4.1) with281

ε = 1/25 and 1/2000 are shown in Figures 4(e) and 4(f), respectively. Figures 4(g) and 4(h)282

illustrate the breaking lines of the first and second layers, with the distances between them equal283

to ε.284

5.2. A three-dimensional spherical interface. Let Ω = (0, 1)3,285

Ω1 = {(x, y, z) ∈ Ω : z <
√
0.72 − x2 − y2}, and Ω2 = Ω \ Ω1.286

The intersection between the piecewise constant function χ(x, y, z) and the hyperplane z = 0.205287

is shown in Figure 5(a). The interface Γ is part of a sphere centered at (0, 0, 0) with a radius of288

0.7 (see Figure 5(b)):289

Γ = {(x, y, z) ∈ Ω : x2 + y2 + z2 = 0.72},290

which is approximated by n = 9 and 100 plane segments (see Figures 5(c) and 5(d)), respectively.291

The 3–9–1–1 and 3–100–1–1 ReLU NN approximations given in (4.1) with ε = 1/15 and 1/100292

are depicted in Figures 5(e) and 5(f), respectively. Figures 5(g) and 5(h) illustrate the first- and293

second-layer breaking hyperplanes on z = 0.205.294

5.3. A 10000-dimensional hypercube interface. Let d = 10000, Ω = (0, 1)d,295

Ω1 = {x = (x1, . . . , xd) ∈ Ω : x1 < 1/2, . . . , xd < 1/2}, and Ω2 = Ω \ Ω1.296

The intersection between the piecewise constant function χ(x) and the hyperplanes xi = 0.255 for297

i = 3, . . . , 10000 is shown in Figure 6(a). The interface Γ is the boundary of a hypercube in Ω (see298

Figure 6(b) for a three-dimensional section of it):299

Γ =

d⋃
i=1

{x = (x1, . . . , xd) ∈ Ω : xi = 1/2, and 0 ≤ xj ≤ 1/2 for j ̸= i}.300

In this example, we can simply take χ̂ = χ. Noting that the hypercube consists of 10000 hy-301

perplanes of the form xi − 1/2 = 0 for i = 1, . . . , 10000, the corresponding NN approximation is302

303

(5.1) N (x) = 1− σ

(
1− 1

ε

d∑
i=1

σ(xi − 1/2)

)
.304

Two sectional views of N (x) are shown in Figures 6(c) and 6(d) with ε = 1/20 and 1/200,305

respectively. Figures 6(e) and 6(f) plot the corresponding breaking hyperplanes.306
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(a) The piecewise constant function χ(x) (b) The circular interface

(c) An approximation of the interface by n = 6
line segments

(d) An approximation of the interface by n =
50 line segments

(e) An approximation of χ(x) by the 2–6–1–1
ReLU NN function in (4.1) with ε = 1/25

(f) An approximation of χ(x) by the 2–50–1–1
ReLU NN function in (4.1) with ε = 1/2000

(g) The breaking hyperplanes of the approxi-
mation in Figure 4(e)

(h) The breaking hyperplanes of the approxi-
mation in Figure 4(f)

Fig. 4. A convex example to illustrate Theorem 3.2 for the case d = 2
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(a) The piecewise constant function χ(x) on
z = 0.205

(b) The spherical interface

(c) An approximation of the interface by n = 9
plane segments

(d) An approximation of the interface by n =
100 plane segments

(e) An approximation of χ(x) by the 3–9–1–1
ReLU NN function in (4.1) with ε = 1/15 on
z = 0.205

(f) An approximation of χ(x) by the 3–100–1–1
ReLU NN function in (4.1) with ε = 1/100 on
z = 0.205

(g) The breaking hyperplanes of the approxi-
mation in Figure 5(e) on z = 0.205

(h) The breaking hyperplanes of the approxi-
mation in Figure 5(f) on z = 0.205

Fig. 5. A convex example to illustrate Theorem 3.2 for the case d = 3
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(a) The piecewise constant function χ(x) on
xi = 0.255 for i = 3, . . . , 10000

(b) The interface on xi = 0.255 for i =
4, . . . , 10000

(c) An approximation of χ(x) by the 10000–
10000–1–1 ReLU NN function in (4.1) with ε =
1/20 on xi = 0.255 for i = 3, . . . , 10000

(d) An approximation of χ(x) by the 10000–
10000–1–1 ReLU NN function in (4.1) with ε =
1/200 on xi = 0.255 for i = 3, . . . , 10000

(e) The breaking hyperplanes of the approxi-
mation in Figure 6(c) on xi = 0.255 for i =
3, . . . , 10000

(f) The breaking hyperplanes of the approxi-
mation in Figure 6(d) on xi = 0.255 for i =
3, . . . , 10000

Fig. 6. A convex example to illustrate Theorem 3.2 for the case d = 10000

5.4. A two-dimensional non-convex example. Let Ω = (−2, 2)2 and Ω1 be the H-shaped307

region depicted in Figure 7(b) whose boundary is the interface Γ = ∂Ω1 ∩ ∂Ω2 = ∂Ω1. The unit308

step function χ(x) is depicted in Figure 7(a). Again, in this example, we can simply take χ̂ = χ.309

We construct 2–12–3–1 ReLU NN functions using 2–4–1–1 ReLU NN functions as discussed in310

Subsections 4.2.1 and 4.2.2 (see Figures 7(c) and 8(a)). The approximations with ε = 1/12 and311

1/200 are depicted in Figures 7(d) and 7(e) for the convex hull and Figures 8(b) and 8(c) for the312

convex decomposition, respectively. Their corresponding breaking lines are plotted in Figures 7(f)313
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and 7(g) for the convex hull and Figures 8(d) and 8(e) for the convex decomposition, respectively.314
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(a) The piecewise constant function χ(x) (b) The interface

(c) The convex hull of Ω̂1 (d) An approximation of χ(x) by the 2–12–3–1
ReLU NN function with ε = 1/12

(e) An approximation of χ(x) by the 2–12–3–1
ReLU NN function with ε = 1/200

(f) The breaking hyperplanes of the approxi-
mation in Figure 7(d)

(g) The breaking hyperplanes of the approxi-
mation in Figure 7(e)

Fig. 7. A non-convex example to illustrate Theorem 3.2 for the case d = 2 (convex hull)
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(a) A convex decomposition of Ω̂1 (b) An approximation of χ(x) by the 2–12–3–1
ReLU NN function with ε = 1/12

(c) An approximation of χ(x) by the 2–12–3–1
ReLU NN function with ε = 1/200

(d) The breaking hyperplanes of the approxi-
mation in Figure 8(b)

(e) The breaking hyperplanes of the approxi-
mation in Figure 8(c)

Fig. 8. A non-convex example to illustrate Theorem 3.2 for the case d = 2 (convex decomposition)
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