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Abstract. A least-squares neural network (LSNN) method was introduced for solving scalar linear and nonlinear5
hyperbolic conservation laws (HCLs) in [7, 6]. This method is based on an equivalent least-squares (LS) formulation6
and uses ReLU neural network as approximating functions, making it ideal for approximating discontinuous functions7
with unknown interface location. In the design of the LSNN method for HCLs, the numerical approximation of8
differential operators is a critical factor, and standard numerical or automatic differentiation along coordinate9
directions can often lead to a failed NN-based method. To overcome this challenge, this paper rewrites HCLs in10
their divergence form of space and time and introduces a new discrete divergence operator. As a result, the proposed11
LSNN method is free of penalization of artificial viscosity.12

Theoretically, the accuracy of the discrete divergence operator is estimated even for discontinuous solutions.13
Numerically, the LSNN method with the new discrete divergence operator was tested for several benchmark problems14
with both convex and non-convex fluxes, and was able to compute the correct physical solution for problems with15
rarefaction, shock or compound waves. The method is capable of capturing the shock of the underlying problem16
without oscillation or smearing, even without any penalization of the entropy condition, total variation, and/or17
artificial viscosity.18
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1. Introduction. Numerically approximating solutions of nonlinear hyperbolic conservation22

laws (HCLs) is a computationally challenging task. This is partly due to the discontinuous nature23

of HCL solutions at unknown locations, which makes approximation using fixed, quasi-uniform24

meshes very difficult. Over the past five decades, many advanced numerical methods have been25

developed to address this issue, including higher order finite volume/difference methods using26

limiters, filters, ENO/WENO, etc.(e.g., [31, 33, 32, 16, 19, 20, 25]) and discontinuous and/or27

adaptive finite element methods (e.g., [10, 3, 11, 14, 4, 21, 22]).28

Neural networks (NNs) as a new class of approximating functions have been used recently for29

solving partial differential equations (see, e.g., [9, 30, 34]) due to their versatile expressive power.30

One of the unique features of NNs is their ability to generate moving meshes implicitly by neurons31

that can automatically adapt to the target function and the solution of a PDE, which helps over-32

come the limitations of traditional approximation methods that use fixed meshes. For example, a33

ReLU NN generates continuous piece-wise linear functions with irregular and free/moving meshes.34

This property of ReLU NNs was used in [7] for solving linear advection-reaction problem with dis-35

continuous solution, without requiring information about the location of discontinuous interfaces.36

Specifically, the least-squares NN method studied in [7] is based on the least-squares formulation in37

([2, 12]), and it uses ReLU NNs as the approximating functions while approximating the differential38

operator by directional numerical differentiation. Compared to various adaptive mesh refinement39

(AMR) methods that locate discontinuous interfaces through an adaptive mesh refinement process,40

the LSNN method is significant more efficient in terms of the number of degrees of freedom (DoF)41

used.42

Solutions to nonlinear hyperbolic conservation laws are often discontinuous due to shock for-43
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2 Z. CAI, J. CHEN AND M. LIU

mation. It is well-known that the differential form of a HCL is not valid at shock waves, where the44

solution is discontinuous. As a result, the directional numerical differentiation of the differential45

operator based on the differential form used in [7] cannot be applied to nonlinear HCLs. To over-46

come this challenge, the integral form of HCLs (as seen in [25]) must be used, which is valid for47

problems with discontinuous solutions, particularly at the discontinuous interfaces. This is why48

the integral form forms the basis of many conservative methods such as Roe’s scheme [18], WENO49

[32, 33], etc.50

Approximating the divergence operator by making use of the Roe and ENO fluxes, in [6] we51

tested the resulting LSNN method for scalar nonlinear HCLs. Numerical results for the inviscid52

Burgers equation showed that the LSNN method with conservative numerical differentiation is53

capable of capturing the shock without smearing and oscillation. Additionally, the LSNN method54

has fewer DoF than traditional mesh-based methods. Despite the promising results in [6], limita-55

tions were observed with the LSNN method when using conservative numerical differentiation of56

the Roe and second-order ENO fluxes. For example, the resulting LSNN method is not accurate57

for complicated initial condition, and has problems with rarefaction waves and non-convex spatial58

fluxes. To improve accuracy, using “higher order” conservative methods such as ENO or WENO59

could be considered. However, these conservative schemes are designed for traditional mesh-based60

methods and the “higher order” here is measured at where solutions are smooth.61

In this paper, a new discrete divergence operator is proposed to accurately approximate the62

divergence of a vector filed even in the presence of discontinuities. This operator is defined based on63

its physical meaning: the rate of net outward flux per unit volume, and is approximated through64

surface integrals by the composite mid-point/trapezoidal numerical integration. Theoretically,65

the accuracy of the discrete divergence operator can be improved by increasing the number of66

surface integration points (as shown in Lemma 4.3 and Remark 4.4). The LSNN method, being a67

“mesh/point-free” space-time method, allows the use of all points on the boundary surfaces of a68

control volume for numerical integration.69

Theoretically, we show that the residual of the LSNN approximation using the newly developed70

discrete divergence operator is bounded by the best approximation of the class of NN functions71

in some measure as stated in Lemma 3.1 plus the approximation error from numerical integration72

and differentiation (Lemma 3.3). Numerically, our results show that the LSNN method with the73

new discrete divergence operator can accurately solve the inviscid Burgers equation with various74

initial conditions, compute the viscosity vanishing solution, capture shock without oscillation or75

smearing, and is much more accurate than the LSNN method in [6]. Note that the LSNN method76

does not use flux limiters. Moreover, the LSNN method using new discrete divergence operator77

works well for problems with non-convex flux and accurately simulates compound waves.78

Recently, several NN-based numerical methods have been introduced for solving scalar nonlin-79

ear hyperbolic conservation laws by various researchers ([1, 5, 6, 7, 15, 30, 29]). Those methods can80

be categorized as the physics informed neural network (PINN) [1, 15, 30, 29] and the least-squares81

neural network (LSNN) [5, 6, 7, 9] methods. First, both methods are based on the least-squares82

principle, but the PINN uses the discrete l2 norm and the LSNN uses the continuous Sobolev norm83

depending on the underlying problem. Second, the differential operator of the underlying prob-84

lem is approximated by either automatic differentiation or standard finite difference quotient for85

the PINN and by specially designed discrete differential operator for the LSNN. For example, the86

LSNN uses discrete directional differential operator in [7] for linear advection-reaction problems,87

and various traditional conservative schemes in [6] or discrete divergence operator in this paper88

(see [5] for its first version) for nonlinear scalar hyperbolic conservation laws.89

The original PINN has limitations that have been addressed in several studies (see, e.g., [15,90

29]). For nonlinear scalar hyperbolic conservation laws, [15] found that the PINN fails to provide91

reasonable approximate solution of the PDE and modified the loss function by penalizing the92

artificial viscosity term. [29] applied the discrete l2 norm to the boundary integral equations over93
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LEAST-SQUARES NEURAL NETWORK METHOD 3

control volumes instead of the differential equations over points and modified the loss function by94

penalizing the entropy, total variation, and/or artificial viscosity. Even though the least-squares95

principle permits freedom of various penalizations, choosing proper penalization constants can96

be challenging in practice and it affects the accuracy, efficiency, and stability of the method. In97

contrast, the LSNN does not require any penalization constants.98

The paper is organized as follows. Section 2 describes the hyperbolic conservation law, its99

least-squares formulation, and preliminaries. The space-time LSNN method and its block version100

are presented in Sections 3. The discrete divergence operator and its error bound is introduced and101

analyzed in Section 4. Finally, numerical results for various benchmark test problems are given in102

Section 5.103

2. Problem Formulation. Let Ω̃ be a bounded domain in Rd (d = 1, 2, or 3) with Lipschitz104

boundary, and I = (0, T ) be the temporal interval. Consider the scalar nonlinear hyperbolic105

conservation law106

(2.1)


ut(x, t) +∇x · f̃(u) = 0, in Ω̃× I,

u = g̃, on Γ̃−,

u(x, 0) = u0(x), in Ω̃,

107

where ut is the partial derivative of u with respect to the temporal variable t; ∇x· is a divergence108

operator with respect to the spatial variable x; f̃(u) = (f1(u), ..., fd(u)) is the spatial flux vector109

field; Γ̃− is the part of the boundary ∂Ω̃×I where the characteristic curves enter the domain Ω̃×I;110

and the boundary data g̃ and the initial data u0 are given scalar-valued functions. Without loss111

of generality, assume that fi(u) is twice differentiable for i = 1, · · · , d.112

Problem (2.1) is a hyperbolic partial differential equation defined on a space-time domain113

Ω = Ω̃ × I in Rd+1. Denote the inflow boundary of the domain Ω and the inflow boundary114

condition by115

Γ− =

{
Γ̃−, t ∈ (0, T ),

Ω, t = 0
and g =

{
g̃, on Γ̃−,

u0(x), on Ω,
116

respectively. Then (2.1) may be rewritten as the following compact form117

(2.2)

{
div f(u) = 0, in Ω ∈ Rd+1,

u = g, on Γ−,
118

where div = (∂x1
, · · · , ∂xd

, ∂t) is a divergence operator with respect to both spatial and temporal119

variables z = (x, t), and f(u) = (f1(u), ..., fd(u), u) = (f̃(u), u) is the spatial and temporal flux120

vector field. Assume that u ∈ L∞(Ω). Then u is called a weak solution of (2.2) if and only if121

(2.3) − (f(u),∇φ)0,Ω + (n · f(u), φ)0,Γ− = 0, ∀ φ ∈ C1
Γ+

(ω̄),122

where Γ+ = ∂Ω \ Γ− is the outflow boundary and C1
Γ+

(ω̄) = {φ ∈ C1(ω̄) : φ = 0 on Γ+}.123

Denote the collection of square integrable vector fields whose divergence is also square inte-124

grable by125

H(div; Ω) =
{
τ ∈ L2(Ω)d+1|div τ ∈ L2(Ω)

}
.126

It is then easy to see that solutions of (2.2) are in the following subset of L2(Ω)127

(2.4) Vf =
{
v ∈ L2(Ω)| f(v) ∈ H(div; Ω)

}
.128

Define the least-squares (LS) functional129

(2.5) L(v; g) = ∥div f(v)∥20,Ω + ∥v − g∥20,Γ−
,130
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4 Z. CAI, J. CHEN AND M. LIU

where ∥ · ∥0,S denotes the standard L2(S) norm for S = Ω and Γ−. Now, the corresponding131

least-squares formulation is to seek u ∈ Vf such that132

(2.6) L(u; g) = min
v∈Vf

L(v; g).133

Proposition 2.1. Assume that u ∈ L∞(Ω) is a piece-wise C1 function. Then u is a weak134

solution of (2.2) if and only if u is a solution of the minimization problem in (2.6).135

Proof. The proposition is a direct consequence of Theorem 2.5 in [13].136

3. Least-Squares Neural Network Method. Based on the least-squares formulation in137

(2.6), in this section we first describe the least-squares neural network (LSNN) method for the scalar138

nonlinear hyperbolic conservation law and then estimate upper bound of the LSNN approximation.139

To this end, denote a scalar-valued function generated by a l-layer fully connected neural140

network by141

(3.1) N (z) = ω(l)
(
N (l−1) ◦ · · · ◦N (2) ◦N (1)(z)

)
− b(l) : z = (x, t) ∈ Rd+1 −→ R,142

where ω(l) ∈ Rnl−1 , b(l) ∈ R, and the symbol ◦ denotes the composition of functions. For k =143

1, · · · , l − 1, the N (k) : Rnk−1 → Rnk is called the kth hidden layer of the network defined as144

follows:145

(3.2) N (k)(z(k−1)) = τ(ω(k)z(k−1) − b(k)) for z(k−1) ∈ Rnk−1 ,146

where ω(k) ∈ Rnk×nk−1 , b(k) ∈ Rnk , z(0) = z, and τ(s) is the activation function whose application147

to a vector is defined component-wisely. In this paper, we will use the rectified linear unit (ReLU)148

activation function given by149

(3.3) τ(s) = max{0, s} =

{
0, if s ≤ 0,

s, if s > 0.
150

As shown in [7], the ReLU is a desired activation function for approximating discontinuous solution.151

Denote the set of neural network functions by152

MN = MN (l) =
{
N (z) defined in (3.1) : ω(k) ∈ Rnk×nk−1 , b(k) ∈ Rnk for k = 1, · · · , l

}
,153

where the subscript N denotes the total number of parameters θ =
{
ω(k),b(k)

}
given by154

N = Md(l) =

l∑
k=1

nk × (nk−1 + 1).155

Obviously, the continuity of the activation function τ(s) implies that MN is a subset of C0(Ω).156

Together with the smoothness assumption on spatial flux f̃(u), it is easy to see that MN is also a157

subset of Vf defined in (2.4).158

Since MN is not a linear subspace, it is then natural to discretize the HCL using a least-159

squares minimization formulation. Before defining the computationally feasible least-squares neu-160

ral network (LSNN) method, let us first consider an intermediate least-squares neural network161

approximation: finding uN (z;θ∗) ∈ MN such that162

(3.4) L
(
uN (·; θ∗); g

)
= min

v∈MN

L
(
v(·; θ); g

)
= min

θ∈RN
L
(
v(·; θ); g

)
.163
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Lemma 3.1. Let u be the solution of (2.2), and let uN ∈ MN be a solution of (3.4). Assume164

that f is twice differentiable, then there exists a positive constant C such that165

L
(
uN ; g

)
= inf

v∈MN

(
∥v − u∥20,Γ−

+
∥∥div [f(v)− f(u)]

∥∥2
0,Ω

)
≤ C inf

v∈MN

(
∥v − u∥20,Γ−

+
∥∥div [f ′(u)(v − u)]

∥∥2
0,Ω

)
+ h.o.t.,

(3.5)166

where h.o.t. means a higher order term comparing to the first term.167

Proof. For any v ∈ MN , (3.4) and (2.2) imply that168

L
(
uN ; g

)
≤ L

(
v; g
)
= ∥v − u∥20,Γ−

+
∥∥div [f(v)− f(u)]

∥∥2
0,Ω

,169

which proves the validity of the equality in (3.5). By the Taylor expansion, there exists {wi}di=1170

between u and v such that171

f(v)− f(u) = f ′(u)(v − u) +
1

2
f ′′(w)(v − u)2,172

where f ′(u) = (f ′
1(u), · · · , f ′

d(u), 1)
t and f ′′(w) = (f ′′

1 (w1), · · · , f ′′
d (wd), 0)

t. Together with the173

triangle inequality we have174

(3.6)
∥∥div [f(v)− f(u)]

∥∥
0,Ω

≤
∥∥div [f ′(u)(v − u)]

∥∥
0,Ω

+
1

2

∥∥div [f ′′(w)(v − u)2
]∥∥

0,Ω
.175

Notice that the second term in the right-hand side of (3.6) is a higher order term comparing to the176

first term. Now, the inequality in (3.5) is a direct consequence of the equality in (3.5) and (3.6).177

This completes the proof of the lemma.178

Remark 3.2. When u is sufficiently smooth, the second term179

div [f ′(u)(v − u)] = (v − u)div f ′(u) + f ′(u)·∇(v − u)180

may be bounded by the sum of the L2 norms of v − u and the directional derivative of v − u along181

the direction f ′(u).182

Evaluation of the least-squares functional L
(
v; g

)
defined in (2.5) requires integration and183

differentiation over the computational domain and the inflow boundary. As in [9], we evaluate the184

integral of the least-squares functional by numerical integration. To do so, let185

T = {K : K is an open subdomain of Ω} and E− = {E = ∂K ∩ Γ− : K ∈ T }186

be partitions of the domain Ω and the inflow boundary Γ−, respectively. For each K ∈ T and187

E ∈ E−, let QK and QE be Newton-Cotes quadrature of integrals over K and E, respectively. The188

corresponding discrete least-squares functional is defined by189

LT

(
v; g
)
=
∑
K∈T

Q2
K

(
divT f(v)

)
+
∑

E∈E−

Q2
E

(
v − g

)
,(3.7)190

where divT denotes a discrete divergence operator. The discrete divergence operators of the Roe191

and ENO type were studied in [6]. In the subsequent section, we will introduce new discrete192

divergence operators tailor to the LSNNmethod that are accurate approximations to the divergence193

operator when applying to discontinuous solution.194

With the discrete least-squares functional LT

(
v; g

)
, the least-squares neural network (LSNN)195

method is to find uN
T (z,θ∗) ∈ MN such that196

(3.8) LT

(
uN

T
(·, θ∗); g

)
= min

v∈MN

LT

(
v(·; θ); g

)
= min

θ∈RN
LT

(
v(·; θ); g

)
.197
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Lemma 3.3. Let u, uN , and uN
T
be the solutions of problems (2.5), (3.4), and (3.8), respectively.198

Then we have199

(3.9) L
(
uN

T
; g
)
≤
∣∣∣(L − LT

)(
uN

T
; g
)∣∣∣+ ∣∣∣(L − LT

)(
uN ; g

)∣∣∣+ ∣∣∣L(uN ; g
)∣∣∣.200

Proof. By the fact that LT (u
N
T
; f) ≤ LT (u

N ; f), we have201

L
(
uN

T
; g
)

=
(
L − LT

)(
uN

T
; g
)
+ LT

(
uN

T
; g
)
≤
(
L − LT

)(
uN

T
; g
)
+ LT

(
uN ; g

)
202

=
(
L − LT

)(
uN

T
; g
)
+
(
LT − L

)(
uN ; g

)
+ L

(
uN ; g

)
,(3.10)203

which, together with the triangle inequality, implies (3.9).204

This lemma indicates that the minimum of the discrete least-squares functional LT over MN205

is bounded by the minimum of the least-squares functional L over MN plus the approximation206

error of numerical integration and differentiation in MN .207

In the remainder of this section, we describe the block space-time LSNN method introduced208

in [6] for dealing with the training difficulty over a relative large computational domain Ω. The209

method is based on a partition {Ωk−1,k}nb

k=1 of the computational domain Ω. To define Ωk−1,k, let210

{Ωk}nb

k=1 be subdomains of Ω satisfying the following inclusion relation211

∅ = Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ωnb
= Ω.212

Then set Ωk−1,k = Ωk \Ωk−1 for k = 1, · · · , nb. Assume that Ωk−1,k is in the range of influence of213

Γk−1,k = ∂Ωk−1,k ∩ ∂Ωk−1 and Γk
− = ∂Ωk−1,k ∩ Γ−.214

Denote by uk = u|Ωk−1,k
the restriction of the solution u of (2.2) on Ωk−1,k, then uk is the215

solution of the following problem:216

(3.11)


divT f(u

k) = 0, in Ωk−1,k ∈ Rd+1,

uk = uk−1, on Γk−1,k,

uk = g, on Γk
−.

217

Let218

Lk
(
v;uk−1, g

)
= ∥div f(v)∥20,Ωk−1,k

+ ∥v − uk−1∥20,Γk−1,k
+ ∥v − g∥20,Γk

−
,219

and define the corresponding discrete least-squares functional Lk
T

(
v;uk−1, g

)
over the subdomain220

Ωk−1,k in a similar fashion as in (3.7). Now, the block space-time LSNN method is to find221

uk
T (z,θ∗

k) ∈ MN such that222

(3.12) Lk
T

(
uk

T
(·, θ∗k);uk−1, g

)
= min

v∈MN

Lk
T

(
v(·; θ); uk−1, g

)
= min

θ∈RN
Lk

T

(
v(·; θ);uk−1, g

)
223

for k = 1, · · · , nb.224

4. Discrete Divergence Operator. As seen in [7, 6], numerical approximation of the dif-225

ferential operator is critical for the success of the LSNN method. Standard numerical or automatic226

differentiation along coordinate directions generally results in an inaccurate LSNN method, even227

for linear problems when solutions are discontinuous. This is because the differential form of the228

HCL is invalid at discontinuous interface. To overcome this difficulty, we used the discrete direc-229

tional differentiation for linear problems in [7] and the discrete divergence operator of the Roe and230

ENO type for nonlinear problems in [6].231

In this section, we introduce a new discrete divergence operator based on the definition of232

the divergence operator. Specifically, for each K ∈ T , let zi
K

= (xi
K
, ti

K
) and ωi for i ∈ J be233

This manuscript is for review purposes only.



LEAST-SQUARES NEURAL NETWORK METHOD 7

the quadrature points and weights for the quadrature QK , where J is the index set. Hence, the234

discrete least-squares functional becomes235

LT

(
v; g
)
=
∑
K∈T

(∑
i∈J

ωi divT f
(
v(zi

K
)
))2

+
∑

E∈E−

Q2
E

(
v − g

)
.236

To define the discrete divergence operator divT , we first construct a set of control volumes237

V = {V : V is an open subdomain of Ω}238

such that V is a partition of the domain Ω and that each quadrature point is the centroid of a239

control volume V ∈ V. Denote by V i
K

the control volume corresponding to the quadrature point240

zi
K
, by the definition of the divergence operator, we have241

(4.1) div f
(
u(zi

K
)
)
≈ avgV i

K
div f(u) =

1

|V i
K
|

∫
∂V i

K

f(u) · n dS,242

where the average of a function φ over V i
K

is defined by243

avgV i
K
φ =

1

|V i
K
|

∫
V i
K

φ(z) dz.244

The average of φ with respect to the partition V is denoted by avg
V
φ and defined as a piece-wise245

constant function through its restriction on each V ∈ V by246

avg
V
φ
∣∣
V
= avgV φ.247

Now we may design a discrete divergence operator divT acting on the total flux f(u) by approxi-248

mating the surface integral on the right-hand side of (4.1).249

All existing conservative schemes of various order such as Roe, ENO, WENO, etc. may be250

viewed as approximations of the surface integral using values of f(u) at some mesh points, where251

most of them are outside of V̄ . These conservative schemes are nonlinear methods because the252

procedure determining proper mesh points to be used for approximating the average of the spatial253

flux is a nonlinear process due to possible discontinuity.254

Because the LSNN method is a “mesh/point-less” space-time method, all points on ∂V ∈ Rd+1255

are at our disposal for approximating the surface integral. Hence, the surface integral can be256

approximated as accurately as desired by using only points on ∂V . When u and hence fi(u) are257

discontinuous on ∂V , the best linear approximation strategy is to use piece-wise constant/linear258

functions on a sufficiently fine partition of each face of ∂V , instead of higher order polynomials on259

each face. This suggests that a composite lower-order numerical integration such as the composite260

mid-point/trapezoidal quadrature would provide accurate approximation to the surface integral261

in (4.1), and hence the resulting discrete divergence operator would be accurate approximation to262

the divergence operator, even if the solution is discontinuous.263

4.1. One Dimension. For clarity of presentation, the discrete divergence operator described264

above will be first introduced in this section in one dimension. To this end, to approximate single265

integral I(φ) =
∫ d

c
φ(s) ds, we will use the composite midpoint/trapezoidal rule:266

(4.2) Q(φ(s); c, d, p) =


d− c

p

p−1∑
i=0

φ
(
si+1/2

)
, midpoint,

d− c

2p

(
φ(c) + φ(d) + 2

p−1∑
i=1

φ
(
si
))

, trapezoidal,

267
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where {si}pi=0 uniformly partitions the interval [c, d] into p sub-intervals.268

Let Ω = (a, b)× (0, T ). For simplicity, assume that the integration partition T introduced in269

Section 3 is a uniform partition of the domain Ω; i.e.,270

T = {K = Kij : i = 0, 1, · · · ,m− 1; j = 0, 1, · · · , n− 1} with Kij = (xi, xi+1)× (tj , tj+1),271

where xi = a+ ih and tj = jτ with h = (b− a)/m and δ = T/n. For integration subdomain Kij ,272

the set of quadrature points is273

Mij = {zi+ 1
2 ,j+

1
2
} for the midpoint rule,

Tij = {zi,j , zi+1,j , zi,j+1, zi+1,j+1} for the trapezoidal rule,

and Sij = Mij ∪ Tij ∪ {zi+ 1
2 ,j

, zi,j+ 1
2
, zi+1,j+ 1

2
, zi+ 1

2 ,j+1} for the Simpson rule,

274

where zi+k,j+l =
(
xi + kh, tj + lδ

)
for k, l = 0, 1/2, or 1. Based on those quadrature points, the275

sets of control volumes may be defined accordingly. For example, the control volume Vm for the276

midpoint rule is T ; the control volume Vt for the trapezoidal rule is obtained by shifting control277

volumes in Vm by
1

2
(h, δ) plus half-size control volumes along the boundary; and the control278

volume Vs for the Simpson rule is obtained in a similar fashion as Vt on the element size of h/2279

and δ/2 for space and time, respectively.280

For simplicity of presentation, we define the discrete divergence operator only for the midpoint281

rule for it can be defined in a similar fashion for other quadrature. Since Vm = T , i.e., the control282

volume of Vm is the same as the element of T , for each control volume V = Kij , denote its centroid283

by284

zV = zij = (xi + h/2, tj + δ/2).285

Denote by σ = f(u) the spatial flux, then the total flux is the two-dimensional vector field f(u) =286

(σ, u). Denote the first-order finite difference quotients by287

σ(xi, xi+1; t) =
σ(xi+1, t)− σ(xi, t)

xi+1 − xi
and u(x; tj , tj+1) =

u(x, tj+1)− u(x, tj)

tj+1 − tj
.288

Then the surface integral in (4.1) becomes289

1

|Kij |

∫
∂Kij

f(u) · n dS = δ−1

∫ tj+1

tj

σ(xi, xi+1; t) dt+ h−1

∫ xi+1

xi

u(x; tj , tj+1) dx.(4.3)290

Approximating single integrals by the composite midpoint/trapezoidal rule, we obtain the following291

discrete divergence operator292

(4.4) divT f
(
u(zij)

)
= δ−1Q(σ(xi, xi+1; t); tj , tj+1, n̂) + h−1Q(u(x; tj , tj+1);xi, xi+1, m̂).293

Remark 4.1. Denote by ui,j as approximation to u(xi, tj). (4.4) with m̂ = n̂ = 1 using the294

trapezoidal rule leads to the following implicit conservative scheme for the one-dimensional scalar295

nonlinear HCL:296

(4.5)
ui+1,j+1 + ui,j+1

δ
+

f
(
ui+1,j+1

)
− f

(
ui,j+1

)
h

=
ui+1,j + ui,j

δ
−

f
(
ui+1,j

)
− f

(
ui,j

)
h

297

for i = 0, 1, · · · ,m− 1 and j = 0, 1, · · · , n− 1.298

Below, we state error estimates of the discrete divergence operator defined in (4.4) and post-299

pone their proof to Appendix.300
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Lemma 4.2. For any Kij ∈ T , assume that u is a C2 function on every edge of the rectangle301

∂Kij. Then there exists a constant C > 0 such that302

∥divT f(u)− avg
T
div f(u)∥Lp(Kij)303

≤ C

(
h1/pδ2

n̂2
∥σtt(xi+1, xi; ·)∥Lp(tj ,tj+1) +

h2δ1/p

m̂2
∥uxx(·; tj+1, tj)∥Lp(xi,xi+1)

)
.(4.6)304

This lemma indicates that m̂ = 1 and n̂ = 1 are sufficient if the solution is smooth on305

∂Kij . In this case, we may use higher order numerical integration, e.g., the Gauss quadrature,306

to approximate the surface integral in (4.3) for constructing a higher order discrete divergence307

operator.308

When u is discontinuous on ∂Kij , error estimate on the discrete divergence operator becomes309

more involved. To this end, first we consider the case that the discontinuous interface Γij (a straight310

line) intersects two horizontal boundary edges of Kij . Denote by uij = u|Kij the restriction of u311

in Kij and by [[uij ]]tl the jump of uij on the horizontal boundary edge t = tl of Kij , where l = j312

and l = j + 1.313

Lemma 4.3. Assume that u is a C2 function of t and a piece-wise C2 function of x on two314

vertical and two horizontal edges of Kij, respectively. Moreover, u has only one discontinuous315

point on each horizontal edge. Then there exists a constant C > 0 such that316

∥divT f(u)− avg
T
div f(u)∥Lp(Kij)317

≤ C

(
h1/pδ2

n̂2
+

h2δ1/p

m̂2
+

hδ1/p

m̂1+1/q

)
+

(hδ)1/p

m̂

j+1∑
l=j

[[uij ]]tl .(4.7)318

Remark 4.4. Lemma 4.3 implies that the choice of the number of sub-intervals of (xi, xi+1)319

on the composite numerical integration depends on the size of the jump of the solution and that320

large m̂ would guarantee accuracy of the discrete divergence operator when u is discontinuous on321

∂Kij.322

Remark 4.5. Error bounds similar to (4.7) hold for the other cases: Γij intercepts (i) two323

vertical edges or (ii) one horizontal and one vertical edges of Kij. Specifically, we have324

∥divT f(u)− avg
T
div f(u)∥Lp(Kij) ≤ C

(
h1/pδ2

n̂2
+

h2δ1/p

m̂2
+

h1/pδ

n̂1+1/q

)
+

(hδ)1/p

n̂

i+1∑
l=i

[[σij ]]xl
325

for the case (i) and326

∥divT f(u)− avg
T
div f(u)∥Lp(Kij) ≤ C

(
h1/pδ2

n̂2
+

h2δ1/p

m̂2
+

hδ1/p

m̂1+1/q
+

h1/pδ

n̂1+1/q

)
+ Eij327

for the case (ii), where Eij = (hδ)1/p
(

1

m̂
[[uij ]]tl +

1

n̂
[[σij ]]xl

)
with xl = xi or xi+1 and tl = tj or328

tj+1.329

4.2. Two Dimensions. This section describes the discrete divergence operator in two di-330

mensions. As in one dimension, the discrete divergence operator is defined as an approximation to331

the average of the divergence operator through the composite mid-point/trapezoidal quadrature332

to approximate the surface integral (4.1). Extension to three dimensions is straightforward.333
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10 Z. CAI, J. CHEN AND M. LIU

To this end, we first describe the composite mid-point/trapezoidal numerical integration for334

approximating a double integral over a rectangle region T = (c1, d1)× (c2, d2)335

I(φ) =

∫
T

φ(s1, s2) ds1ds2336

≈ Q
(
φ(s1, s2); c1, d1, p1; c2, d2, p2

)
≡ Q

(
Q
(
φ(s1, ·); c1, d1, p1

)
(s2); c2, d2, p2

)
,337

where Q
(
φ(s1, ·); c1, d1, p1

)
is the composite quadrature defined in (4.2).338

For simplicity, let Ω = Ω̃ × I = (a1, b1) × (a2, b2) × (0, T ), and assume that the integration339

partition T introduced in Section 3 is a uniform partition of the domain Ω; i.e.,340

T = {K = Kijk : i = 0, 1, · · · ,m1 − 1; j = 0, 1, · · · ,m2 − 1; k = 0, 1, · · · , n− 1}341

with Kijk = (xi, xi+1)× (yj , yj+1)× (tk, tk+1), where342

xi = a1 + ih1, yj = a2 + jh2, and tk = kδ,343

and hl = (bl − al)/ml for l = 1, 2 and δ = T/n are the respective spatial and temporal sizes of344

the integration mesh. Again, we define the discrete divergence operator only corresponding to the345

midpoint rule. Denote the mid-point of Kijk by346

zijk = (xi +
h1

2
, yj +

h2

2
, tk +

δ

2
).347

Let σ = (σ1, σ2) = (f1(u), f2(u)), then the space-time flux is the three-dimensional vector348

field: f(u) = (σ, u) = (σ1, σ2, u). Denote the the first-order finite difference quotients by349

σ1(y, t;xi, xi+1) =
σ1(xi+1, y, t)− σ1(xi, y, t)

xi+1 − xi
, σ2(x, t; yj , yj+1) =

σ2(x, yj+1, t)− σ1(x,yj , t)

yj+1 − yj
,350

and u(x, y; tk, tk+1) =
u(x, y, tk+1)− u(x, y, tk)

tk+1 − tk
.351

Denote three faces of ∂Kijk by352

Kxy
ij = (xi, xi+1)× (yj , yj+1), Kxt

ik = (xi, xi+1)× (tk, tk+1), and Kyt
jk = (yj , yj+1)× (tk, tk+1).353

Then the surface integral in (4.1) becomes354

1

|Kijk|

∫
∂Kijk

f(u) · n dS = (h2δ)
−1

∫
Kyt

jk

σ1(y, t;xi+1, xi) dydt355

+(h1δ)
−1

∫
Kxt

ik

σ2(x, t; yj+1, yj) dxdt+ (h1h2)
−1

∫
Kxy

ij

u(x, y; tk+1, tk) dxdy.(4.8)356

Approximating double integrals by the composite midpoint/trapezoidal rule, we obtain the follow-357

ing discrete divergence operator358

divT f
(
u(zijk)

)
= (h2δ)

−1Q
(
σ1(y, t;xi+1, xi); yj , yj+1, m̂2; tk, tk+1, n̂

)
359

+(h1δ)
−1Q

(
σ2(x, t; yj+1, yj);xi, xi+1, m̂1; tk, tk+1, n̂

)
360

+(h1h2)
−1Q

(
u(x, y; tk+1, tk);xi, xi+1, m̂1; yj , yj+1, m̂2

)
.(4.9)361
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4.3. Integration mesh size. The discrete divergence operator defined in (4.4) and (4.9) for362

the respective one- and two- dimension is based on the composite midpoint/trapezoidal rule. As363

shown in Lemmas 4.2 and 4.3 and Remark 4.5, the discrete divergence operator can be as accurate364

as desired for the discontinuous solution provided that the size of integration mesh is sufficiently365

small.366

To reduce computational cost, note that the discontinuous interfaces of the solution u lie on367

d-dimensional hyper-planes. Hence, they only intersect with a small portion of control volumes368

in T . This observation suggests that sufficiently fine meshes are only needed for control volumes369

at where the solution is possibly discontinuous. To realize this idea, we divide the set of control370

volumes into two subsets:371

T = Tc ∪ Td,372

where the solution u is continuous in each control volume of Kl
c and possibly discontinuous at some373

control volumes of Td; i.e.,374

Tc = {K ∈ T : u ∈ C(K)} and Td = T \ Tc.375

Next, we describe how to determine the set of control volumes Td in one dimension by the range376

of influence. It is well-known that characteristic curves are straight lines before their interception377

and are given by378

(4.10) x = x(Tl) + (t− Tl) f
′(u (x(Tl), Tl)

)
.379

For i = 0, 1, · · · ,m, let380

x̂i = xi + (Tl+1 − Tl) f
′(ul

N
(xi, Tl)

)
,381

where ul
N
(xi, Tl) is the neural network approximation from the previous time block382

Ω× Il−1 = (a, b)× (Tl−1, Tl).383

Clearly, the solution u is discontinuous in a control volume Vi × Ikl if either (1) u(x, Tl) is384

discontinuous at the interval Vi or (2) there are two characteristic lines intercepting in Vi × Ikl . In385

the first case, Vi × Ikl is in Kl
d if ul

N
(x, Tl) has a sharp change in the interval Vi; moreover, either386

Vi−1 × Ikl ∈ Kl
d if x̂i < xi or Vi+1 × Ikl ∈ Kl

d if x̂i+1 > xi+1. In the second case, assume that387

x̂i > x̂i+1, then Vi × Ikl ∈ Kl
d if x̂i < xi+1.388

5. Numerical Experiments. This section presents numerical results of the block space-time389

LSNN method for one and two dimensional problems. Let Ω = Ω̃ × (0, T ). The kth space-time390

block is defined as391

Ωk−1,k = Ωk \ Ωk−1 = Ω̃×
(
(k − 1)T

nb
,
kT

nb

)
for k = 1, · · · , nb,392

where Ωk = Ω̃ × (0, kT/nb). For efficient training, the least-squares functional is modified as393

follows:394

(5.1) Lk
(
v;uk−1, g

)
= ∥div f(v)∥20,Ωk−1,k

+ α(∥v − uk−1∥20,Γk−1,k
+ ∥v − g∥20,Γk

−
),395

where α is a weight to be chosen empirically.396

Unless otherwise stated, the integration mesh Tk is a uniform partition of Ωk−1,k with h = δ =397

0.01, and the discrete divergence operator defined in (4.4) is based on the composite trapezoidal398

rule with m̂ = n̂ = 2. Three-layer or four-layer neural network are employed for all test problems399

and are denoted by din-n1-n2(-n3)-1 with n1, n2 and n3 neurons in the respective first, second and400

third (for a four-layer NN)layers. The same network structure is used for all time blocks.401
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12 Z. CAI, J. CHEN AND M. LIU

The network is trained by using the ADAM [24] (a variant of the method of gradient descent)402

with either a fixed or an adaptive learning rate to iteratively solve the minimization problem in403

(3.12). Parameters of the first block is initialized by an approach introduced in [27], and those for404

the current block is initialized by using the NN approximation of the previous block (see Remark405

4.1 of [6]).406

The solution of the problem in (3.11) and its corresponding NN approximation are denoted by407

uk and uk
T
, respectively. Their traces are depicted on a plane of given time and exhibit capability408

of the numerical approximation in capturing shock/rarefaction.409

5.1. Inviscid Burgers’ equation. This section reports numerical results of the block space-410

time LSNN method for the one dimensional inviscid Burgers equation, where the spatial flux is411

f̃(u) = f(u) = 1
2u

2.412

Table 1
Relative L2 errors of Riemann problem (shock) for Burgers’ equation

Network structure Block
∥uk−uk

T
∥0

∥uk∥0

2-10-10-1
Ω0,1 0.048774
Ω1,2 0.046521
Ω2,3 0.044616

(a) Exact solution u on Ω (b) Traces at t = 0.2

(c) Traces at t = 0.4 (d) Traces at t = 0.6

Fig. 1. Approximation results of Riemann problem (shock) for Burgers’ equation

The first two test problems are the Riemann problem with the initial condition: u0(x) =413

u(x, 0) = u
L
if x ≤ 0 or u

R
if x ≥ 0.414

Shock formation. When u
L
= 1 > 0 = u

R
, a shock is formed immediately with the shock speed415

s = (u
L
+ u

R
) /2. The first test problem is defined on a computational domain Ω = (−1, 1)×(0, 0.6)416
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with inflow boundary417

Γ− = ΓL
− ∪ ΓR

− ≡ {(−1, t) : t ∈ [0, 0.6]} ∪ {(1, t) : t ∈ [0, 0.6]}418

and boundary conditions: g = u
L
= 1 on ΓL

− and g = u
R
= 0 on ΓR

−. With nb = 3 blocks, weight419

α = 20, a fixed learning rate 0.003, and 30000 iterations for each block, the relative errors in the420

L2 norm are reported in Table 1. Traces of the exact solution and numerical approximation on the421

planes t = kT/nb for k = 1, 2, 3 are depicted in Fig. 1(b)-(d), which clearly indicate that the LSNN422

method is capable of capturing the shock formation and its speed. Moreover, it approximates the423

solution well without oscillations.424

Table 2
Relative L2 errors of Riemann problem (rarefaction) for Burgers’ equation

Network structure Block
∥uk−uk

T
∥0

∥uk∥0

2-10-10-1
Ω0,1 0.013387
Ω1,2 0.010079

(a) Exact solution u on Ω (b) Traces at t = 0.2 (c) Traces at t = 0.4

Fig. 2. Approximation results of Riemann problem (rarefaction) for Burgers’ equation

Rarefaction waves. When u
L
= 0 < 1 = u

R
, the range of influence of all points in R is a proper425

subset of R × [0,∞). Hence, the weak solution of the scalar hyperbolic conservation law is not426

unique. The second test problem is defined on a computational domain Ω = (−1, 2)× (0, 0.4) with427

inflow boundary condition g = 0 on Γ− = {(−1, t) : t ∈ [0, 0.4]}. As shown in Section 5.1.2 of428

[6], the LSNN method using Roe’s scheme has a limitation to resolve the rarefaction. Numerical429

results of the LSNN method using the discrete divergence operator (nb = 2, α = 10, a fixed430

learning rate 0.003, and 40000 iterations) are reported in Table 2. Traces of the exact solution431

and numerical approximation on the planes t = 0.2 and t = 0.4 are depicted in Fig. 2. This test432

problem shows that the LSNN method using the divT is able to compute the physically relevant433

vanishing viscosity solution (see, e.g., [25, 35]) without special treatment. This is possibly due to434

the fact that the LSNN approximation is continuous.435

Sinusoidal initial condition. The third test problem has smooth initial condition u0(x) =436

0.5+sin(πx) and is defined on the computational domain Ω = (0, 2)×(0, 0.8) with inflow boundary437

Γ− = ΓL
− ∪ ΓR

− ≡ {(0, t) : t ∈ [0, 0.8]} ∪ {(2, t) : t ∈ [0, 0.8]}.438

The shock of the problem appears at t = 1/π ≈ 0.318. This is the same test problem as in Sec-439

tion 5.2 of [6] (see also [23, 36]). The goal of this experiment is to compare numerical performances440

of the LSNN methods using the divT introduced in this paper and the ENO scheme in [6].441
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Since the solution of this problem is implicitly given, to accurately measure the quality of NN442

approximations, a benchmark reference solution û is generated using the traditional mesh-based443

method. In particular, the third-order accurate WENO scheme [32] and the fourth-order Runge-444

Kutta method are employed for the respective spatial and temporal discretizations with a fine445

mesh (∆x = 0.001 and ∆t = 0.0002) on the computational domain Ω.446

The LSNN using divT is implemented with the same set of hyper parameters as in Section 5.2447

of [6], i.e., training weight α = 5 and an adaptive learning rate which starts with 0.005 and reduces448

by half for every 25000 iterations. Setting nb = 16 and on each time block, the total number of449

iterations is set as 50000 and the size of the NN model is 2-30-30-1. Although we observe some error450

accumulation when the block evolves for both the LSNN methods, the one using divT performs451

better than that using ENO (see Table 3 for the relative L2 norm error and Fig. 3(a)-(h) for graphs452

near the left side of the interface).453

Table 3
Relative L2 errors of Burgers’ equation with a sinusoidal initial condition

Network structure Block LSNN using divT
∥uk−uk

T
∥0

∥uk∥0

LSNN using ENO [6]
∥uk−uk

T
∥0

∥uk∥0

2-30-30-1

Ω0,1 0.010641 0.010461
Ω1,2 0.011385 0.012517
Ω2,3 0.012541 0.019772
Ω3,4 0.014351 0.022574
Ω4,5 0.016446 0.029011
Ω5,6 0.018634 0.038852
Ω6,7 0.031103 0.075888
Ω7,8 0.053114 0.078581
Ω8,9 0.053562 –
Ω9,10 0.064933 –
Ω10,11 0.061354 –
Ω11,12 0.077982 –
Ω12,13 0.061145 –
Ω13,14 0.070554 –
Ω14,15 0.068539 –
Ω15,16 0.065816 –

Table 4
Relative L2 errors of the problem with f(u) = 1

4
u4 using the composite trapezoidal rule (4.2)

Time block
Number of sub-intervals

m̂ = n̂ = 2 m̂ = n̂ = 4 m̂ = n̂ = 6

Ω0,1 0.067712 0.010446 0.004543
Ω1,2 0.108611 0.008275 0.009613

5.2. Riemann problem with f(u) = 1
4u

4. The goals of this set of numerical experi-454

ments are twofold. First, we compare the performance of the LSNN method using the com-455

posite trapezoidal/mid-point rule in (4.2). Second, we investigate the impact of the number of456

sub-intervals of the composite quadrature rule on the accuracy of the LSNN method.457

The test problem is the Riemann problem with a convex flux f(u) = (f(u), u) = ( 14u
4, u)458

and the initial condition u
L

= 1 > 0 = u
R
. The computational domain is chosen to be Ω =459
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(a) Traces at t = 0.05 (b) Traces at t = 0.1 (c) Traces at t = 0.15

(d) Traces at t = 0.2 (e) Traces at t = 0.25 (f) Traces at t = 0.3

(g) Traces at t = 0.35 (h) Traces at t = 0.4 (i) Traces at t = 0.8

Fig. 3. Approximation results of Burgers’ equation with a sinusoidal initial condition

Table 5
Relative L2 errors of the problem with f(u) = 1

4
u4 using the composite mid-point rule (4.2)

Time block
Number of sub-intervals

m̂ = n̂ = 2 m̂ = n̂ = 4 m̂ = n̂ = 6

Ω0,1 0.096238 0.007917 0.003381
Ω1,2 0.159651 0.007169 0.005028

(−1, 1) × (0, 0.4). Relative L2 errors of the LSNN method using the divT (2-10-10-1 NN model,460

nb = 2, α = 20, a fixed learning rate 0.003 for the first 30000 iterations and 0.001 for the remaining)461

are reported in Tables 4 and 5; and traces of the exact and numerical solutions are depicted in462

Fig. 4.463

Clearly, Tables 4 and 5 indicate that the accuracy of the LSNN method depends on the464

number of sub-intervals (m̂ and n̂) for the composite quadrature rule; i.e., the larger m̂ and n̂ are,465

the more accurate the LSNN method is. Moreover, the accuracy using the composite trapezoidal466

and mid-point rules in the LSNN method is comparable.467
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(a) Traces at t = 0.2 (trapezoidal) (b) Zoom-in plot near the discontin-
uous interface of sub-figure (a)

(c) Traces at t = 0.4 (trapezoidal)

(d) Traces at t = 0.2 (mid-point) (e) Zoom-in plot near the discontin-
uous interface of sub-figure (d)

(f) Traces at t = 0.4 (mid-point)

Fig. 4. Numerical results of the problem with f(u) = 1
4
u4 using the composite trapezoidal and mid-point rules

Table 6
Relative L2 errors of Riemann problem with a non-convex flux f(u) = 1

3
u3

Network structure Block
∥uk−uk

T
∥0

∥uk∥0

2-64-64-64-1

Ω0,1 0.03277
Ω1,2 0.03370
Ω2,3 0.03450
Ω3,4 0.03578

5.3. Riemann problem with non-convex fluxes. The test problem for a non-convex flux468

is a modification of the test problem in Section 5.2 by replacing the flux with f(u) = 1
3u

3 and the469

initial condition with uL = 1 > −1 = uR. The Riemann solution consists partly of a rarefaction470

wave together with a shock wave which brings a new level of challenge with a compound wave.471

The exact solution is obtained through Osher’s formulation [28] which has a shock speed s=0.25472

and a shock jump from 1 to −0.5 when t > 0.473

The block space-time LSNN method using the divT with m̂ = n̂ = 4 is utilized for this474

problem. Four time blocks are computed on the temporal domain (0, 0.4) and a relative larger475

network structure (2-64-64-64-1) is tested with a smaller integration mesh size h = δ = 0.005476

to compute the compound wave more precisely. We tune the hyper parameter α = 200, and477

all time blocks are computed with a total of 60000 iterations (learning rate starts with 1e-3 and478

decay to 20% every 20000 iterations). Due to the random initial guess for the second hidden layer479

parameters, the experiment is replicated several times. Similar results are obtained as the best480

result reported in Table 6 and Fig. 5 (a)-(e). These experiments demonstrate that the LSNN481

method can capture the compound wave for non-convex flux problems as well.482
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(a) Traces at t = 0.1 (b) Traces at t = 0.2 (c) Traces at t = 0.3

(d) Traces at t = 0.4 (e) Numerical Solution uN on Ω

Fig. 5. Numerical results of Riemann problem with a non-convex flux f(u) = 1
3
u3

5.4. Two-dimensional problem. Consider a two-dimensional inviscid Burgers equation,483

where the spatial flux vector field is f̃(u) = 1
2 (u

2, u2). Given a piece-wise constant initial data484

(5.2) u0(x, y) =


−0.2, if x < 0.5 and y > 0.5,
−1.0, if x > 0.5 and y > 0.5,
0.5, if x < 0.5 and y < 0.5,
0.8, if x > 0.5 and y < 0.5,

485

this problem has an exact solution given in [17].486

The test problem is set on computational domain Ω = (0, 1)2 × (0, 0.5) with inflow boundary487

conditions prescribed by using the exact solution. Our numerical result using a 4-layer LSNN488

(3-48-48-48-1) with 3D divT (m̂ = n̂ = k̂ = 2) are reported in Table 7. The corresponding hyper489

parameters setting is as follows: nb = 5, α = 20, the first time block is trained with 30000 iteration490

where the first 10000 iterations are using learning rate 0.003 and the rest iterations are trained491

using learning rate of 0.001; all remaining time blocks are trained with 20000 iterations using fixed492

learning rate of 0.001. Fig. 6 presents the graphical results at time t = 0.1, 0.3, and 0.5. This493

experiment shows that the proposed LSNN method can be extended to two dimensional problems494

and can capture the shock and rarefaction waves in two dimensions.495

6. Discussion and Conclusion. The ReLU neural network provides a new class of approx-496

imating functions that is ideal for approximating discontinuous functions with unknown interface497

location [7]. Making use of this unique feature of neural networks, this paper studied the least-498

squares ReLU neural network (LSNN) method for solving scalar nonlinear hyperbolic conservation499

laws.500

In the design of the LSNN method for HCLs, the numerical approximation of differential501

operators is a critical factor, and standard numerical or automatic differentiation along coordinate502
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Table 7
Relative L2 errors of Riemann problem (shock) for 2D Burgers’ equation

Network structure Block
∥uk−uk

T
∥0

∥uk∥0

3-48-48-48-1
Ω0,1 0.093679
Ω1,2 0.121375
Ω2,3 0.163755
Ω3,4 0.190460
Ω4,5 0.213013

(a) t = 0.1 (b) t = 0.3 (c) t = 0.5

Fig. 6. Numerical results of 2D Burgers’ equation.

directions can often lead to a failed NN-based method. To overcome this challenge, this paper503

introduced a new discrete divergence operator divT based on its physical meaning.504

Numerical results for several test problems show that the LSNN method using the divT does505

overcome limitations of the LSNN method with conservative flux in [6]. Moreover, for the one506

dimensional test problems with fluxes f(u) = 1
4u

4 and 1
3u

3, the accuracy of the method may be507

improved greatly by using enough number of sub-intervals in the composite trapezoidal/mid-point508

quadrature.509

Compared to other NN-based methods like the PINN and its variants, the LSNN method510

introduced in this paper free of any penalization such as the entropy, total variation, and/or511

artificial viscosity, etc. Usually, choosing proper penalization constants can be challenging in512

practice and it affects the accuracy, efficiency, and stability of the method.513

Even though the number of degrees of freedom for the LSNN method is several order of magni-514

tude less than those of traditional mesh-based numerical methods, training NN is computationally515

intensive and complicated. For a network with more than one hidden layer, random initialization516

of the parameters in layers beyond the first hidden layer would cause some uncertainty in training517

NN (iteratively solving the resulting non-convex optimization) as observed in Section 5.2. This518

issue plus designation of a proper architecture of NN would be addressed in a forthcoming paper519

using the adaptive network enhancement (ANE) method developed in [27, 26, 8].520
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7. Appendix. In the appendix, we provide the proofs of Lemmas 4.2 and 4.3. First, denote594

the integral and the mid-point/trapezoidal rule of a function φ over an interval [0, ρ] by595

I(φ) =

∫ ρ

0

φ(s) ds and Q(φ; 0, ρ, 1) =

 ρφ(ρ/2), midpoint,

ρ

2

(
φ(0) + φ(ρ)

)
, trapezoidal,

596

respectively. Let p, q ∈ (1,∞] such that 1/p + 1/q = 1. It is easy to show the following error597

bounds:598

(7.1)
∣∣I(φ)−Q(φ; 0, ρ, 1)

∣∣ ≤ { Cρ2+1/q∥φ′′∥Lp(0,ρ), if φ ∈ C2(0, ρ),

Cρ1+1/q∥φ′∥Lp(0,ρ), if φ ∈ C1(0, ρ).
599

Proof of Lemma 4.2. We prove Lemma 4.2 only for the mid-point rule because it may be600

proved in a similar fashion for the trapezoidal rule. To this end, denote uniform partitions of the601

intervals [xi, xi+1] and [tj , tj+1] by602

xi = x0
i < x1

i < · · · < xm̂
i = xi+1, and tj = t0j < t1j < · · · < tn̂j = tj+1,603

respectively, where xk
i = xi + kĥ and tkj = tj + kδ̂; and ĥ = h/m̂ and δ̂ = δ/n̂ are the numerical604

integration mesh sizes. By (7.1), we have605 ∣∣∣∣∣
∫ tk+1

j

tkj

σ(xi, xi+1; t) dt− δ̂σ(xi, xi+1; t
k+1/2
j )

∣∣∣∣∣ ≤ C δ̂2+1/q∥σtt(xi, xi+1; ·)∥Lp(tkj ,t
k+1
j ),606

and

∣∣∣∣∣
∫ xk+1

i

xk
i

u(x; tj , tj+1) dx− ĥu(x
k+1/2
i ; tj , tj+1)

∣∣∣∣∣ ≤ C ĥ2+1/q∥uxx(·; tj , tj+1)∥Lp(xk
i ,x

k+1
i ),607

which, together with (4.3), (4.4), and the triangle and the Hölder inequalities, implies608

|Kij |1/q
∥∥divT f(u)− avg

T
div f(u)

∥∥
Lp(Kij)

= |Kij |
∣∣∣avgKij

div f(u)− divT f
(
u(mij)

∣∣∣609

≤ C

{
hδ̂2+1/q

n̂−1∑
k=0

∥σtt(xi, xi+1; ·)∥Lp(tkj ,t
k+1
j ) + δĥ2+1/q

m̂−1∑
k=0

∥uxx(·; tj , tj+1)∥Lp(xk
i ,x

k+1
i )

}
610

≤ C
{
hδ̂2+1/qn̂1/q∥σtt(xi, xi+1; ·)∥Lp(tj ,tj+1) + δĥ2+1/qm̂1/q∥uxx(·; tj , tj+1)∥Lp(xi,xi+1)

}
.611

This completes the proof of Lemma 4.2. □612

To prove Lemma 4.3, we need to estimate an error bound of numerical integration for piece-wise613

smooth and discontinuous integrant over interval [0, ρ].614
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Lemma 7.1. For any 0 < ρ̂ < ρ/2, assume that φ ∈ C1
(
(0, ρ̂)

)
∩C1

(
(ρ̂, ρ)

)
is a piece-wise C1615

function. Denote by jφ = |φ(ρ̂+)− φ(ρ̂−)| the jump of φ(s) at s = ρ̂. Then there exists a positive616

constant C such that617

∣∣I(φ)−Q(φ; 0, ρ, 1)
∣∣ ≤ Cρ1+1/q∥φ′∥

Lp
(
(0,ρ)\{ρ̂}

) +
 ρ̂ jφ, mid-point,∣∣∣ρ

2
− ρ̂
∣∣∣ jφ, trapezoidal

618

≤ Cρ1+1/q∥φ′∥
Lp
(
(0,ρ)\{ρ̂}

) + ρ

2
jφ.(7.2)619

Proof. Denote the linear interpolant of φ on the interval [0, ρ] by φ1(s) = φ(0)
ρ− s

ρ
+φ(ρ)

s

ρ
.620

For any s ∈ (0, ρ̂), by the fact that φ(0)− φ1(0) = 0, a standard argument on the error bound of621

interpolant yields that there exists a ξ− ∈ (0, ρ̂) such that622

φ(s)− φ1(s) = φ′(ξ−)s−
s

ρ
(φ(ρ)− φ(0)),623

which implies624 ∫ ρ̂

0

(φ(s)− φ1(s)) ds =

∫ ρ̂

0

φ′(ξ−)s ds−
ρ̂2

2ρ
(φ(ρ)− φ(0)) .625

In a similar fashion, there exists a ξ− ∈ (ρ̂, ρ) such that626 ∫ ρ

ρ̂

(φ(s)− φ1(s)) ds =

∫ ρ

ρ̂

φ′(ξ+)(s− ρ) ds+
(ρ− ρ̂)2

2ρ
(φ(ρ)− φ(0)) .627

Combining the above inequalities and using the triangle and the Hölder inequalities give628

∣∣I(φ)−Qt(φ)
∣∣ =

∣∣∣∣∣
∫ ρ̂

0

φ′(ξ−)sds+

∫ ρ

ρ̂

φ′(ξ+)(s− ρ)ds+
ρ− 2ρ̂

2
(φ(ρ)− φ(0))

∣∣∣∣∣629

≤ 1

(1 + q)1/q
ρ1+1/q

(
∥φ′∥Lp(0,ρ̂) + ∥φ′∥Lp(ρ̂,ρ)

)
+
∣∣∣ρ
2
− ρ̂
∣∣∣ |φ(ρ)− φ(0)|630

≤ 21/q

(1 + q)1/q
ρ1+1/q∥φ′∥

Lp
(
(0,ρ)\{ρ̂}

) + ∣∣∣ρ
2
− ρ̂
∣∣∣ |φ(ρ)− φ(0)| .631

It follows from the triangle and the Hölder inequalities that632

|φ(ρ)− φ(0)| ≤
∣∣∣∣∫ ρ

ρ̂

φ′(s) ds

∣∣∣∣+
∣∣∣∣∣
∫ ρ̂

0

φ′(s) ds

∣∣∣∣∣+ jφ633

≤ ρ1/q
(
∥φ′∥Lp(0,ρ̂) + ∥φ′∥Lp(ρ̂,ρ)

)
+ jφ ≤ (2ρ)

1/q ∥φ′∥Lp((0,ρ)\{ρ̂}) + jφ.634

Now, the above two inequalities and the fact that
∣∣∣ρ
2
− ρ̂
∣∣∣ ≤ ρ

2
imply (7.2) for the trapezoidal rule.635

To prove the validity of (7.2) for the mid-point rule, note that for any s ∈ (0, ρ̂) we have636

φ(s)− φ(ρ/2) =

∫ s

ρ̂

φ′(s) ds+

∫ ρ̂

ρ/2

φ′(s) ds+ φ(ρ̂−)− φ(ρ̂+)637

≤ (ρ̂− s)1/q∥φ′∥Lp(s,ρ̂) + (ρ/2− ρ̂)1/q∥φ′∥Lp(ρ̂,ρ/2) + φ(ρ̂−)− φ(ρ̂+),638
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which, together with the triangle inequality, implies639 ∣∣∣∣∣
∫ ρ̂

0

(
φ(s)− φ(ρ/2)

)
ds

∣∣∣∣∣ ≤ (ρ2)1+1/q (
∥φ′∥Lp(0,ρ̂) + ∥φ′∥Lp(ρ̂,ρ/2)

)
+ ρ̂jφ.640

Similarly, we have641 ∣∣∣∣∫ ρ

ρ̂

(
φ(s)− φ(ρ/2)

)
ds

∣∣∣∣ ≤ 2q

1 + q

(ρ
2

)1+1/q

∥φ′∥Lp(ρ̂,ρ).642

Now, (7.2) for the mid-point rule follows from the triangle inequality and the above two inequalities.643

This completes the proof of the lemma.644

Now, we are ready to prove the validity of Lemma 4.3.645

Proof of Lemma 4.3. By the assumption, the discontinuous interface Γij intercepts two hori-646

zontal edges at (x̂l
i, tl) for l = j, j + 1. Without loss of generality, assume that x̂j

i ∈
(
x
kj

i , x
kj+1
i

)
647

and x̂j+1
i ∈

(
x
kj+1

i , x
kj+1+1
i

)
for some kj and kj+1 in {0, 1, · · · , m̂}. Let Îij =

(
x
kj

i , x
kj+1
i

)
∪648 (

x
kj

i , x
kj+1
i

)
. The same proof of Lemma 4.2 leads to649 ∥∥divT f(u)− avg

T
div f(u)

∥∥
Lp(Kij)

650

≤ C

{
h1/pδ2

n̂2
∥σtt(xi, xi+1; ·)∥Lp(tj ,tj+1) +

h2δ1/p

m̂2
∥uxx(·; tj , tj+1)∥

Lp
(
(xi,xi+1)\Îij

)}651

+
δ

(hδ)1/q

j+1∑
l=j

∣∣∣∣∣
∫ x

kl+1

i

x
kl
i

u(x; tj , tj+1) dx− ĥu(x
kl+

1
2

i ; tj , tj+1)

∣∣∣∣∣ ,652

which, together with Lemma 7.1, implies653 ∥∥divT f(u)− avg
T
div f(u)

∥∥
Lp(Kij)

654

≤ C

(
h1/pδ2

n̂2
+

h2δ1/p

m̂2

)
+

ĥδ

(hδ)1/q

j+1∑
l=j

{
Cĥ1/q∥ux(·; tj , tj+1)∥

Lp
(
(xi,xi+1)\{x̂l

i}
) + [[u(x̂l

i, tl)]]

}
.655

Now, (4.7) follows from ĥ = h/m̂. This completes the proof of Lemma 4.3. □656
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