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Abstract. This chapter offers a comprehensive introduction to the least-squares neural network (LSNN) method4
introduced in [5, 4], for solving scalar hyperbolic partial differential equations (PDEs), specifically linear advection-5
reaction equations and nonlinear hyperbolic conservation laws. The LSNN method is built on an equivalent least-6
squares formulation of the underlying problem on an appropriate solution space that accommodates discontinuous7
solutions. It employs ReLU neural networks (in place of finite elements) as the approximating functions, uses8
a carefully designed physics-preserving numerical differentiation, and avoids penalization techniques such as the9
artificial viscosity, entropy condition, and/or total variation. This approach captures shock features in the solution10
without oscillations or overshooting. Efficiently and reliably solving the resulting non-convex optimization problem11
posed by the LSNN method remains an open challenge.12
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1. Introduction. Over the past five decades, numerous advanced mesh-based numerical15

methods have been developed for solving nonlinear hyperbolic conservation laws (HCLs) (see,16

e.g., [25, 18, 31, 26, 35, 22]). However, accurately approximating solutions to HCLs remains com-17

putationally challenging due to two key difficulties. First, the location of the discontinuities in18

the solution is typically unknown in advance. Second, the strong form of the partial differential19

equation becomes invalid at points where the solution is discontinuous.20

Recently, neural networks (NNs) have emerged as a novel class of approximating functions21

for solving partial differential equations (see, e.g., [6, 16, 30, 32]). A neural network function is22

a linear combination of compositions of linear transformations and a nonlinear univariate activa-23

tion function. As demonstrated in [5, 7, 8], ReLU NNs can approximate discontinuous functions24

with unknown interfaces far more effectively than traditional approximating functions, such as25

polynomials or continuous/discontinuous piecewise polynomials defined on a quasi-uniform, pre-26

determined mesh. This makes ReLU NNs particularly suitable for addressing the first challenge.27

The strong form of a hyperbolic PDE is typically written with partial derivatives along co-28

ordinate directions, supplemented by the Rankine-Hugoniot (RH) jump condition at discontinu-29

ity interfaces. Due to the unknown location of these interfaces, enforcing the RH condition in30

computations is difficult. To address this, we reformulate the PDE using physically meaningful31

derivatives, allowing the new form of the PDE to remain well-defined at the interface (see (2.3) for32

the directional derivative and (2.11) for the divergence operator). By applying the L2 least-squares33

principle to this reformulated PDE, we derive an equivalent least-squares minimization problem on34

a suitable solution space that accommodates discontinuous solutions. Through appropriate numer-35

ical integration for the integral and physics-preserved numerical differentiation for the physically36

meaningful derivative, the LSNN method is established as minimizing the discrete counterpart of37

the least-squares functional over the set of NN functions.38

Without relying on penalization techniques such as inflow boundary conditions, artificial vis-39

cosity, entropy conditions, or total variation constraints, the LSNN method introduced in [5, 4]40

effectively captures the shock of the underlying problem without oscillations or overshooting. Ad-41

ditionally, the LSNN method is substantially more efficient in terms of degrees of freedom (DoF)42

compared to adaptive mesh refinement (AMR) methods, which locate the discontinuity interface43
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2 Z. CAI AND M. LIU

through an adaptive mesh refinement process.44

Despite the impressive approximation capabilities of NNs, the discretization resulting from45

NN-based methods leads to a non-convex optimization problem in the NN parameters. This high-46

dimensional, non-convex optimization is often computationally intensive and complex, presenting47

a significant bottleneck in using NNs for numerically solving PDEs. Nonetheless, considerable48

research efforts are underway, with some promising progress in developing efficient and reliable49

iterative solvers (training algorithms) and in designing effective initializations [9, 10, 11].50

The chapter is organized as follows. Section 2 describes the advection-reaction equation and the51

scalar nonlinear HCL, their equivalent least-squares formulations, and preliminaries. ReLU neural52

network and its approximation property to discontinuous functions are introduced in Section 3.53

The physics-preserved numerical differentiation and the LSNN method are defined in Section 4.54

Section 5 discusses efficient iterative solvers. Finally, numerical results for various benchmark test55

problems are given in Section 6.56

2. Scalar Hyperbolic Partial Differential Equations. Let Ω be a bounded open domain57

in Rd (d = 1, 2, or 3) with Lipschitz boundary, and I = (0, T ) be the temporal interval. This58

section describes linear advection-reaction equations defined on Ω and scalar nonlinear hyperbolic59

conservation laws defined on Ω× I and their equivalent least-squares formulations.60

2.1. Advection-Reaction Equations. Let β(x) = (β1, · · · , βd)
t ∈ C1(Ω̄)d be the advective61

velocity field and γ ∈ C(Ω̄) be the reaction coefficient. Let f ∈ L2(Ω) and g ∈ L2(Γ−) be given62

scalar-valued functions, where Γ− is the inflow part of the boundary Γ = ∂Ω given by63

Γ− = {x ∈ Γ : β(x)·n(x) < 0}64

with n(x) the unit outward normal vector to Γ at x ∈ Γ. Consider the following linear advection-65

reaction equation66

(2.1)


d∑

i=1

βi(x)
∂u(x)

∂xi
+ γu = f in Ω,

u = g on Γ−.
67

Without loss of generality, assume that the magnitude of β(x) is one in Ω, i.e., |β(x)| ≡ 1.68

Otherwise, the equation in (2.1) may be rescaled by dividing |β(x)|. If the inflow boundary data69

g is discontinuous, so is the solution u(x). Hence, the PDE in (2.1) is not valid at where u is70

discontinuous.71

To deal with this issue, let us define the directional derivative of u along the direction β by72

(2.2) uβ = lim
ρ→0

u(x)− u
(
x− ρβ(x)

)
ρ

.73

Then (2.1) may be rewritten as74

(2.3)

{
uβ + γu = f in Ω,

u = g on Γ−.
75

Note that (2.3) is well-defined in the entire domain Ω.76

Denote the solution space by77

(2.4) Vβ = {v ∈ L2(Ω) : vβ ∈ L2(Ω)},78

and define the following least-squares functional79

(2.5) L(v; f) = ∥vβ + γ v − f∥20,Ω + ∥v − g∥2−β, ∀ v ∈ Vβ,80
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LEAST-SQUARES NEURAL NETWORK METHOD 3

where f = (f, g) and ∥ · ∥−β is the weighted L2(Γ−) norm on the inflow boundary given by81

∥v∥−β = ⟨v, v⟩1/2−β =

(∫
Γ−

|β ·n| v2 ds

)1/2

.82

Then the least-squares formulation of problem (2.3) studied in [1, 13, 2] is to seek u ∈ Vβ such83

that84

(2.6) L(u; f) = min
v∈Vβ

L(v; f).85

Remark 2.1. The advection-reaction equation is often given in a conservative form as follows86

87

(2.7)

{
div (βu) + γu = f in Ω,

u = g on Γ−.
88

If the solution u is discontinuous, then the divergence operator div should be understood in a weak89

sense as similarly defined in (2.9).90

2.2. Scalar Nonlinear Hyperbolic Conservation Laws. Let f(u) = (f1(u), ..., fd(u)) be91

the spatial flux vector field, Γ− be the part of the boundary ∂Ω × I where the characteristic92

curves enter the domain Ω× I ⊂ Rd+1, and the boundary data g and the initial data u0 be given93

scalar-valued functions defined on Γ− and Ω, respectively. Consider the following scalar nonlinear94

hyperbolic conservation law95

(2.8)


ut(x, t) +

d∑
i=1

∂fi (u(x, t))

∂xi
= 0, in Ω× I,

u = g, on Γ−,

u(x, 0) = u0(x), in Ω,

96

where ut is the partial derivative of u with respect to the temporal variable t. Without loss of97

generality, assume that fi(u) is twice differentiable for al i ∈ {1, . . . , d}.98

The solution of (2.8) is often discontinuous due to a discontinuous initial or inflow boundary99

condition, or a shock formation. Hence, the strong form in (2.8) is only valid at where the solution100

is differentiable. The Rankine-Hugoniot (RH) jump condition (see, e.g., [25, 19]) is supplemented101

at the discontinuity interface. But the interface is unknown a priori, it is then difficult to enforcing102

the RH jump condition in computation.103

To deal with this difficulty, denote the total flux by104

F(u) = (f(u), u) = (f1(u), . . . , fd(u), u)105

and define the space-time divergence operator div in a weak sense as follows:106

(2.9) div F(u(x, t)) = lim
ϵ→0

1

|Bϵ(x, t)|

∫
∂Bϵ(x,t)

F(u) · n dS,107

where Bϵ(x, t) is a ball in Rd+1 centered at (x, t) with the radius ϵ, ∂Bϵ(x, t) is the boundary of108

Bϵ(x, t), and n is the unit outward vector normal to ∂Bϵ(x, t). Clearly, if u is differentiable at109

(x, t), then110

(2.10) div F(u(x, t)) = ut(x, t) +

d∑
i=1

∂fi (u(x, t))

∂xi
.111
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4 Z. CAI AND M. LIU

If u is discontinuous at (x, t), then div F(u(x, t)) defined in (2.9) leads to the continuity condition112

of the normal component of the space-time flux F(u) that is identical to the RH jump condition.113

Now, problem (2.8) may be rewritten as the following form114

Find u ∈ VF =
{
v ∈ L2(Ω× I)|F(v) ∈ H(div; Ω× I)

}
such that115

u = argmin
v∈VF

L(v; f), where L(v; f) = ∥div F(v)∥20,Ω×I + ∥v − u0∥20,Ω×{0}116

117

(2.11)


div F(u) = 0, in Ω× I ∈ Rd+1,

u = g, on Γ−,

u(x, 0) = u0(x), in Ω.

118

Denote the collection of square integrable vector fields whose divergence is also square integrable119

by120

H(div; Ω× I) =
{
τ ∈ L2(Ω× I)d+1|div τ ∈ L2(Ω× I)

}
.121

It is then easy to see that solutions of (2.11) are in the following subset of L2(Ω× I)122

(2.12) VF =
{
v ∈ L2(Ω× I)|F(v) ∈ H(div; Ω× I)

}
.123

Define the least-squares (LS) functional as124

(2.13) L(v; f) = ∥div F(v)∥20,Ω×I + ∥v − g∥20,Γ−
+ ∥v − u0∥20,Ω×{0},125

where f = (g, u0), ∥ · ∥0,S denotes the standard L2(S) norm for S = Ω× I, Γ−, or Ω× {0}. Now,126

the corresponding least-squares formulation is to seek u ∈ VF such that127

(2.14) L(u; g, u0) = min
v∈VF

L(v; g, u0).128

Proposition 2.2. Assume that u ∈ L∞(Ω× I) is a piece-wise C1 function. Then u is a weak129

solution of (2.11) if and only if u is a solution of the minimization problem in (2.14).130

Proof. The proposition is a direct consequence of Theorem 2.5 in [14].131

3. ReLU Neural Network and its Approximation to Discontinuous Functions. This132

section describes l-hidden-layer ReLU neural network as a set of continuous piece-wise linear func-133

tions and illustrates its striking approximation power to discontinuous functions with unknown134

interface locations [5, 8].135

ReLU refers to the rectified linear activation function defined by136

(3.1) σ(t) = max{0, t} =

{
t, t > 0,

0, t ≤ 0.
137

The σ(t) is a continuous piece-wise linear function with one breaking point t = 0. For k = 1, . . . , l,138

let nk denote the number of neurons at the kth hidden-layer; denote by139

b(k) ∈ Rnk and ω(k) ∈ Rnk×nk−1140

the biases and weights of neurons at the kth hidden-layer, respectively. Their ith rows are denoted141

by b
(k)
i ∈ R and ω

(k)
i ∈ Rnk−1 , that are the bias and weights of the ith neuron at the kth hidden-142

layer, respectively. Introduce a vector-valued function N(k) : Rnk−1 → Rnk as143

(3.2) N(k)
(
x(k−1)

)
= σ

(
ω(k)x(k−1) + b(k)

)
for x(k−1) ∈ Rnk−1 ,144
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LEAST-SQUARES NEURAL NETWORK METHOD 5

where application of the activation function σ to a vector-valued function is defined component-145

wisely and n0 is the input dimension.146

A ReLU neural network with l hidden-layers and nk neurons at the kth hidden-layer may be147

defined as the collection of continuous piece-wise linear functions:148

(3.3) M(l) =

{
c1
(
N(l) ◦· · ·◦N(1)(x)

)
+ c0 : (c0, c1) ∈ Rnl+1, ω(k) ∈ Rnk×nk−1 ,

b(k) ∈ Rnk for k = 1, . . . , l

}
,149

where the symbol ◦ denotes the composition of functions. The total number of parameters of M(l)150

is given by151

(3.4) M(l) = (nl + 1) +

l∑
k=1

nk × (nk−1 + 1).152

In the remainder of this section, we use the step function with a hyper-plane interface to153

illustrate the remarkable approximation property of the ReLU NN function. To this end, let χ(x)154

be a piece-wise constant function defined on Ω given by155

(3.5) χ(x) =

{
0, x ∈ Ω1,

1, x ∈ Ω2,
156

where Ω1 and Ω2 are open, connected subdomains of Ω such that157

Ω1 ∩ Ω2 = ∅ and Ω̄ = Ω̄1 ∪ Ω̄2.158

Let ∂Ωi be the boundary of the subdomain Ωi, assume that the interface Γ = ∂Ω1 ∩ ∂Ω2 is C0159

and that its (d− 1)-dimensional measure |Γ| is finite.160

When the interface Γ is part of a hyper-plane161

Γ =
{
x ∈ Ω ⊂ Rd : a · x = b

}
,162

the step function in (3.5) can be approximated by either a two-layer or a three-layer NN function:163

164

(3.6) p1(x) =
1

2ε

(
σ(a · x− b+ ε)− σ(a · x− b− ε)

)
or p2(x) = 1− σ

(
−1

ε
σ(a · x− b) + 1

)
165

within any prescribed accuracy ε > 0, where p1(x) and p2(x) were introduced in [5] and [8],166

respectively.167

Lemma 3.1. There exists a positive constant C such that for all r ∈ [0,∞), we have168

(3.7) ∥χ− p∥Lr(Ω) ≤ C |Γ|1/rε1/r and ∥χ−N∥Lr(Ω) ≤ C |Γ|1/rε1/r,169

where |Γ| is the (d− 1)-dimensional measure of the interface Γ.170

Proof. Let171

Ωp1 = {x ∈ Ω : −ε < a · x− b < ε} and Ωp2 = {x ∈ Ω : 0 < a · x− b < ε} .172

Clearly, we have173

(3.8) χ(x)− p1(x) = 0, ∀x ∈ Ω \ Ωp1 and χ(x)− p2(x) = 0, ∀x ∈ Ω \ Ωp2 .174
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6 Z. CAI AND M. LIU

(a) The interface Γ (b) An approximation of the interface by con-
nected series of hyperplanes

Fig. 1. Approximation of the interface Γ

It is then easy to see that175

(3.9) |χ(x)− p1(x)|r ≤ 1, ∀x ∈ Ω \ Ωp1
and |χ(x)− p2(x)|r ≤ 1, ∀x ∈ Ω \ Ωp2

,176

which, together with the facts that177 ∣∣Ωp1

∣∣ ≤ C
∣∣Γ∣∣ε and

∣∣Ωp2

∣∣ ≤ C
∣∣Γ∣∣ε,178

implies the validity of (3.7). This completes the proof of the lemma.179

Remark 3.2. In the case that the interface Γ is not a hyper-plane, but can be approximated180

by a connected series of hyper-planes with a prescribed accuracy ε > 0 (see Figure 1 and [8]), then181

the piece-wise constant function χ(x) may be approximated by a ReLU NN function with given182

architecture satisfying the error bound in (3.7).183

More precisely, based on the one-hidden-layer ReLU NN approximation p1(x) in (3.6), we184

showed in [7] that a ReLU NN with at most ⌈log2(d + 1)⌉ + 1 layers is sufficient to achieve the185

prescribed accuracy ε. However, [7] does not provide an estimate on the minimum number of186

neurons at each layer.187

Based on the two-hidden-layer ReLU NN approximation p2(x) in (3.6), we showed in [8] that188

χ(x) may be approximated with the same accuracy by a two-hidden-layer ReLU NN. Moreover, the189

number of neurons at the first hidden-layer and their locations depend on the hyper-planes used190

for approximating the interface and the number of neurons of the second hidden-layer depends on191

convexity of the interface (see Theorem 3.2 in [8]).192

Remark 3.3. Let {Ωi}ki=1 be a partition of the domain Ω. Let χ(x) be a piece-wise constant193

function with respect to the partition with χ(x) = αi in Ωi for i = 1, . . . , k. Then we have194

χ(x) =

k∑
i=1

αi1Ωi(x),195

where 1Ωi
(x) is the indicator function of the subdomain Ωi. As indicated in Remark 3.2, each196

indicator function may be approximated by a ReLU function with a prescribed accuracy, and so is197

χ(x).198

4. Least-Squares Neural Network (LSNN) Method. This section introduces the least-199

squares neural network (LSNN) method for solving advection-reation equations in (2.1) and scalar200
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LEAST-SQUARES NEURAL NETWORK METHOD 7

nonlinear hyperbolic conservation laws in (2.11) based on the equivalent least-squares formula-201

tions in (2.6) and (2.14), respectively. To evaluate the least-squares functionals, we discuss ef-202

ficient numerical integration in subsection 4.1 and physics-preserved numerical differentiation in203

subsection 4.2. Finally, the LSNN method is defined in subsection 4.3.204

4.1. Numerical Integration. Evaluation of the least-squares functional L(v; f) defined in205

(2.5) or (2.13) requires integrations over the computational domain Ω ⊂ Rd or Ω × I ⊂ Rd+1206

(d = 1, 2, or 3) and their partial boundaries. In practice, each integration is approximated by207

a numerical integration. This section describes basic numerical integration and discusses some208

strategies in the application of the LSNN method.209

To this end, let210

T = {K : K is an open subdomain of Ω}211

be a partition of the domain Ω. Here, the partition means that union of all subdomains of T212

equals to the whole domain Ω and that any two distinct subdomains of T have no intersection;213

more precisely,214

Ω̄ = ∪K∈T K̄ and K ∩ T = ∅, ∀ K, T ∈ T .215

On the integration mesh T , we denote a composite numerical integration as follows216 ∑
K∈T

QK(w) ≈
∑
K∈T

∫
K

w(x) dx =

∫
Ω

w(x) dx,217

where QK(w) ≈
∫
K
w(x) dx denotes a quadrature rule over K. First, QK may vary on K ∈ T .218

Second, its choice is one of the standard quadrature rules like the Gaussian quadrature or Newton–219

Cotes formulas such as the midpoint, trapezoidal, or Simpson rule (see [33]). In the case of the220

midpoint rule for all K ∈ T , QK(w) = w(xK)|K|, where xK is the centroid of K and |K| is the221

d-dimensional measure of K.222

In the application of the LSNN method, integrands depend on NN approximations to the223

solution u of the underlying PDE. Each NN approximation is a continuous piece-wise linear function224

with respect to a physical partition [27] that is in general unknown and moving. Moreover, the225

solution u is unknown and has some local features.226

Because of these considerations, adaptive numerical integration was introduced in [27] (see227

Algorithm 5.2) and in [28] (see Algorithm 3.1). Below, we briefly describe the adaptive mesh228

refinement for numerical integration with a fixed NN in Algorithm 4.1 for problem (2.1). As usual,229

we start with a uniform and coarse partition T of the domain Ω. Assume that the inflow boundary230

data g can be approximated with a prescribed accuracy by continuous linear function with respect231

to the partition T . Let uT be a NN approximation based on an initial partition T . For each232

subdomain K ∈ T , the local error indicator is given by233

η
K
= ∥ (uT )β + γ uT − f∥0,K .234

Then the global error estimator is given by η =

( ∑
K∈T

η2
K

)1/2

. The adaptive mesh refinement is235

summarized in Algorithm 4.1.236

As indicated in [27, 28], the stopping criterion used in Algorithm 4.1 is based on whether or237

not the quadrature refinement on numerical integration improves approximation accuracy. When238

the refinement does not improve accuracy much, the adaptive quadrature stops and outputs the239

current integration mesh.240

Remark 4.1. In the case that computational cost is not an issue, one may use a uniform241

partition T that is fine enough to approximate the unknown solution well by a piece-wise constant242

function.243
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8 Z. CAI AND M. LIU

Algorithm 4.1 Adaptive Quadrature Refinement (AQR) with a fixed NN.
(1) for each K ∈ T , compute the local error indicator ηK ;
(2) mark T by the either bulk or average marking strategy (see, e.g., [27]) and refine marked

subdomain to obtain a new partition T ′;
(3) compute new NN approximation uT ′ on the refined integration mesh T ′;
(4) if η(uT ′ ) ≤ γη(uT ), go to Step (1) with T = T ′; otherwise, output T .

4.2. Physics-preserved Numerical Differentiation. Solutions of hyperbolic PDEs in244

(2.1) and (2.8) could be discontinuous. This indicates that numerical and auto-differentiations245

along coordinates based on (2.1) and (2.8) are inadequate. In this section, we describe the physics-246

preserved numerical differentiation based on (2.3) and (2.11) introduced in [5, 4].247

When u is discontinuous, as discussed in Subsection 2.1 and Subsection 2.2, the directional248

derivative uβ(x) and the divergence of the total flux div F(u) may be defined, respectively, in249

(2.2) and (2.9) through the limit process. Any approximation to those limits leads to the so-called250

physics-preserved numerical differentiation.251

Based on (2.2), for any x ∈ Ω, define the discrete differential operator Dβ by252

(4.1) Dβv(x) :=
v(x)− v

(
x− ρβ(x)

)
ρ

≈ vβ(x),253

where ρ is the directional derivative “mesh” size and the 0 < ρ ≪ 1 is a parameter. That is, the254

directional derivative vβ along the β direction is approximated by the backward finite difference255

quotient with the “mesh” size ρ. The Dβ defined in (4.1) ensures that the derivative is computed256

without crossing the discontinuous interface.257

To define the discrete divergence operator based on (2.9), for each integration point z, we258

associate with a subdomain (control volume)Kz containing the point. Then the discrete divergence259

operator at z is defined as260

(4.2) divT F(v(z)) =
1∣∣Kz

∣∣Q∂Kz (F(v)·n) ,261

where Q∂Kz(·) is a composite quadrature rule over the boundary ∂Kz of the control volume Kz262

and n is the unit outward vector normal to the boundary ∂Kz.263

For the midpoint rule QK , there is only one integration point zK = (xK , tK) that is the264

centroid of the subdomain K ∈ T , then the control volume is the subdomain K, i.e., KzK
= K.265

For a quadrature rule QK having J integration points266

zKj = (xKj , tKj ) ∈ K ∈ T , for j = 1, . . . , J,267

Let TK = {Kj}Jj=1 be a partition of K such that zKj
∈ Kj , where Kj is referred to the control268

volume of the integration point zKj
. LetQ∂Kj

(·) be a composite quadrature rule over the boundary269

∂Kj , then the discrete divergence operator divT at the integration point zKj
can be similarly270

defined as in (4.2).271

The generic definition of the discrete divergence operator divT in (4.2) depends on the quad-272

rature rule over the boundary ∂K, Q∂K(·), and in turn on the shape of K. Since the partition273

T is an integration mesh independent of the physical partition of the NN approximation, in prac-274

tice, it is then convenient to choose the integration mesh T to be a composite mesh generated275

by the AQR in Algorithm 4.1 so that each K ∈ T is a rectangle, cuboid, or hypercube in two,276

three, or four dimensions, respectively; moreover each face of K is parallel to one of the coordinate277

hyper-planes. For such integration mesh T in both two and three dimensions, explicit definitions278

of divT F(u(zK)) was introduced and analyzed in [4] in the case that u is discontinuous.279
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4.3. Least-Squares Neural Network (LSNN) Method. Denote the collections of the280

inflow boundary faces and the initial faces of the integration mesh T by281

E− = {E = ∂K ∩ Γ− : K ∈ T } and E0 = {E = ∂K ∩ (Ω× {0}) : K ∈ T },282

respectively. For each E in E− or E0, let QE(w) denote a quadrature rule for integrand w defined283

on E. Define the discrete least-squares functionals by284

(4.3) LT

(
v; f
)
=
∑
K∈T

QK

(
(Dβv + γv − f)2

)
+
∑

E∈E−

QE

(
|β ·n|(v − g)2

)
285

for problem (2.1) and by286

(4.4) LT

(
v; f
)
=
∑
K∈T

QK (divT F(v)) +
∑

E∈E−

QE

(
(v − g)2

)
+
∑
E∈E0

QE

(
(v − u0)

2
)

287

for problem (2.8). Then the least-squares least-squares (LSNN) method for problems (2.1) or (2.8)288

is to seek u
N,T ∈ M(l) such that289

(4.5) LT

(
u

N,T ; f
)
= min

v∈M(l)
LT

(
v; f
)
.290

The least-squares functionals in (4.3) and (4.4) enforce the inflow boundary and initial condi-291

tions through penalization: the summation terms over E in E− and E0. Below, we impose them292

weakly through the physics-preserved numerical differentiation in Subsection 4.2.293

For simplicity of presentation, let us assume that the QK(·) is the midpoint rule. Then the294

centroid of K, zK = xK or (xK , tK), is the only integration point in K. For each inflow boundary295

or initial face E ∈ E− or E0, there exists a subdomain K ∈ T such that E ∈ ∂K. For convenience,296

denote it by EK to indicate that E is part of the boundary ∂K of K.297

For each boundary face EK ∈ E−, to compute the directional derivative Dβv(xK) defined in298

(4.1), we choose the directional derivative “mesh” size ρ such that xK − ρβ(xK) lies on E−. Then299

the directional derivative is given by300

(4.6) Dβv(xK) =
v(xK)− g

(
xK − ρβ(xK)

)
ρ

,301

where g is the given inflow boundary condition in (2.1). In a similar fashion, for problem (2.8),302

the discrete divergence operator at zK is modified as303

(4.7) divT F(u(zK)) =


1∣∣K∣∣ (Q∂K\EK

(
F(u)·n

)
+QEK

(
F(g)·n

))
, EK ∈ E−,

1∣∣K∣∣ (Q∂K\EK

(
F(u)·n

)
+QEK

(
F(u0)·n

))
, EK ∈ E0.

304

where g and u0 are the given inflow boundary and initial conditions in (2.8), respectively.305

Denote the modified least-squares functionals by306

(4.8) GT

(
v; f
)
=
∑
K∈T

QK

(
(Dβv + γv − f)2

)
and GT

(
v; f
)
=
∑
K∈T

QK (divT F(v))307

for problems (2.1) and (2.8), respectively, where the discrete directional and divergence operators308

at subdomains K ∈ T , whose boundary intersects E− or E0, are modified in the respective (4.6)309

and (4.7). Then the modified least-squares least-squares (LSNN) method for problems (2.1) or310

(2.8) is to seek u
N,T ∈ M(l) such that311

(4.9) GT

(
u

N,T ; f
)
= min

v∈M(l)
GT

(
v; f
)
.312
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5. Efficient and Reliable Iterative Solvers. Both LT

(
v; f
)
and GT

(
v; f
)
are convex as313

functionals of v but non-convex as functions of the NN parameters, the resulting discrete problem314

in (4.5) or (4.9) is then a non-convex optimization problem in the NN parameters. This high-315

dimensional, non-convex optimization is often computationally intensive and complex, presenting316

a significant bottleneck in using NNs for numerically solving PDEs. Nonetheless, considerable317

research efforts are underway, with some promising progress in developing efficient and reliable318

iterative solvers (training algorithms) and in designing effective initializations [9, 10, 11].319

As a nonlinear PDE, (2.8) has its own nonlinearity that deserves a special treatment. In this320

section, we only consider the linear problem in (2.1). To this end, we first describe algebraic321

structures of the resulting non-convex optimization problems in (4.5) and (4.9), that may be used322

for designing efficient and reliable iterative solvers.323

The least-squares problems in (4.5) and (4.9) are nonlinear due to the nonlinear parameters:324

the biases and weights of all hidden-layers325

(5.1) Θ =
{
r(k)

}l

k=1
=

{(
r
(k)
1 , . . . , r(k)nk

)T}l

k=1

326

with r
(k)
i =

(
b
(k)
i ,ω

(k)
i

)
the bias and weights of the ith neuron at the kth hidden-layer. The output327

bias and weights328

c = (c0, c1) = (c0, c1, . . . , cnl
) ∈ Rnl+1

329

are referred to as the linear parameters. A least-squares problem with both the linear and nonlinear330

parameters are usually called as the separable nonlinear least-squares (SNLS) problem (see, e.g.,331

[23]). There are two approaches for solving a SNLS problem: (1) block iterative methods between332

the linear and the nonlinear parameters as outer iteration and (2) the Variable Projection (VarPro)333

method of Golub-Pereyra [20] in 1973 that eliminates the linear parameters.334

Since the VarPro method changes the nonlinear structure of a SNLS problem and the number335

of the linear parameters is often much smaller than that of the nonlinear parameters, i.e.,336

nl + 1 ≪
l∑

k=1

nk × (nk−1 + 1),337

this section discusses only the first approach: block iterative methods. To this end, let338

(5.2) σ0(x) = 1 and σi(x) = σ
(
ω

(l)
i

(
N(l−1)◦· · ·◦N(1)(x)

)
+ b

(l)
i

)
.339

Let u
N,T ∈ M(l) be a solution of problem (4.5) or (4.9), then340

(5.3) u
N,T =

nl∑
i=0

ciσi(x) = cTΣ(x),341

where Σ(x) = (σ0(x), . . . , σnl
(x))

T
, and the linear parameter c = (c1, . . . , cn)

T
and the nonlinear342

parameter Θ satisfy the following optimality conditions343

(5.4) ∇cGT

(
u

N,T ; f
)
= 0 and ∇ΘGT

(
u

N,T ; f
)
= 0,344

where ∇c and ∇Θ denote the gradients with respect to c and Θ, respectively.345

Clearly, the functional GT

(
u

N,T ; f
)
is quadratic with respect to the linear parameters c. Hence,346

the first equation in (5.4) implies the following system of linear equations347

(5.5) A (Θ) c = F (Θ) ,348
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where A (Θ) and F (Θ) are the coefficient matrix of order (nl + 1)× (nl + 1) and the right-hand349

side vector (nl + 1)× 1 given by350

(5.6)


A (Θ) =

∑
K∈T

QK

(
[DβΣ+ γΣ] [DβΣ+ γΣ]

T
)

and F (Θ) =
∑

K∈T
QK (f [DβΣ+ γΣ]) ,

351

respectively. Here the actions of the numerical integration and differentiation operators QK and352

Dβ are applied component-wisely. Let aij (Θ) be the ij-element of the coefficient matrix A (Θ),353

then354

aij (Θ) =
∑
K∈T

QK ([Dβσi + γσi] [Dβσj + γσj ]) .355

Hence, A (Θ) is symmetric. Due to non-local supports of {σi}nl

i=0, A (Θ) is dense; moreover, it356

could be highly ill-conditioned. This fact, in turn, implies inefficiency of the optimization methods357

of gradient descent type.358

Similar systems of linear equations to (5.6) arise from the least-squares approximation using359

shallow ReLU NN [9] and the shallow Ritz method for one-dimensional diffusion and diffusion-360

reaction problems [10, 11]. Efficient and reliable iterative solvers in those special cases were361

discussed in those papers, but how to design fast iterative solvers for the linear parameters in362

many NN applications is important and remains an open question. When the number of the linear363

parameters is not very large, methods like the truncated SVD would overcome the difficulty of364

large condition number [9].365

For the nonlinear parameters satisfying the second equation in (5.4), one may employ the366

commonly used first-order gradient-based methods (see, e.g., survey papers [3, 17, 34]), second-367

order methods (see, e.g., survey papers [3, 17, 34]), or the Gauss-Newton (GN) method [15, 29]368

for nonlinear least-squares optimization. Nevertheless, it is non-trivial to derive a second-order or369

Gauss-Newton method due to the fact that the ReLU activation function σ(t) has only first-order370

weak derivative. A damped block Newton/Gauss-Newton for the second equation in (5.4) will be371

studied in a forthcoming paper. Basic idea follows those of recent works on fast iterative solvers372

introduced in [9] for the least-squares function approximation in Rd and in [10, 11] for the shallow373

Ritz method solving one dimensional diffusion and diffusion-reaction problems.374

Remark 5.1. The resulting discrete problems in (4.5) and (4.9) are non-convex optimization,375

and hence initialization is critical for the success of any optimization/iterative/training scheme.376

The initialization issue may be addressed through (1) the physical meaning of the linear and non-377

linear parameters and (2) method of various continuations.378

For the shallow ReLU neural network, since the breaking hyper-planes of neurons form a par-379

tition of the computational domain, initialization of the nonlinear parameters r is given by lying380

those hyper-planes that uniformly partition the domain. Initialization of the linear parameters c is381

then the solution of (5.5) with fixed r that is a linear problem (see [5, 4, 9, 10, 11]).382

The adaptive neuron enhancement (ANE) method introduced in [27, 12] provides a natural383

method of continuation. The method of model continuation for linear advection-reaction problems384

with variable advection field was studied in [5]. Finally, the method of subdomain continuation for385

the block space-time LSNN method was introduced in [4] for the nonlinear hyperbolic conservation386

laws.387

6. Numerical Experiment. In this section, we present three numerical examples to demon-388

strate the performance of the LSNN method for linear and nonlinear hyperbolic problems. In each389

experiment, the discrete LS functionals were minimized using the Adam first-order optimization390

algorithm [24]. 1 The structure of the ReLU NN used is denoted as d-n1-n2 · · ·nl−1-do for a l-layer391

1The second-order Gauss-Newton method as discussed in Section 5 is not implemented in this chapter.
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network, where n1, n2 and nl−1 represent the number of neurons in the first, second, and (l− 1)th392

layers, respectively. Here, d and do indicate the input and output dimensions of the problem.393

6.1. A 2D linear problem with a variable advection velocity field. Consider a variable394

advective velocity field β(x, y) = (1, 2x), (x, y) ∈ Ω = (0, 1)×(0, 1), and the boundary of the input395

of the problem is Γ− = {(0, y) : y ∈ (0, 1)} ∪ {(x, 0) : x ∈ (0, 1)}. The inflow boundary condition396

is given by397

g(x, y) =

{
y + 2, (x, y) ∈ Γ1

− ≡ {(0, y) : y ∈ [ 15 , 1)},

(y − x2)e−x, (x, y) ∈ Γ2
− = Γ− \ Γ1

−.
398

The exact solution of this linear advection-reaction problem is399

(6.1) u(x, y) =

{
(y − x2)e−x, (x, y) ∈ Ω1 ≡ {(x, y) ∈ Ω : y < x2 + 1

5},

(y − x2 + 2)e−x, (x, y) ∈ Ω2 = Ω \ Ω1.
400

The LSNN method was implemented using a 2–60–60–1 ReLU NN model and a uniform401

integration grid of size hx = hy = 0.01. The directional derivative vβ was approximated by the402

backward finite difference quotient (4.1) with ρ = hx/2. The numerical results after 200,000 Adam403

iterations is reported in Figure 2 and Table 1. As shown in Figures 2(b) to 2(d), the LSNN method404

is capable of approximating the discontinuous solution with a curved interface and non-constant405

jump accurately without any oscillation or overshooting. In Figure 2(e), the graph of the physical406

mesh created by the trained ReLU NN function shows that the optimization process tends to407

distribute the breaking polylines in the second layer along the interface (see Figure 2(a)) presented408

in the problem, allowing the discontinuous solution to be accurately approximated using a piecewise409

linear function. Table 1 lists the relative numerical errors measured in different norms. With410

3841 parameters (DoFs), the ReLU NN can accurately approximate the solution with reasonable411

accuracy.412

Table 1
Relative errors of the linear advection-reaction problem.

Network structure
∥u−uN

T
∥0

∥u∥0

|||u−uN
T |||

β

|||u|||β

L1/2(uN
T
,f)

L1/2(uN
T ,0)

Parameters

2–60–60–1 0.07184 0.1145 0.02609 3841

Table 2
Relative L2 errors of LSNN for the Riemann problem with f(u) = 1

4
u4

Time block
Number of sub-intervals

m̂ = n̂ = 2 m̂ = n̂ = 4 m̂ = n̂ = 6

Ω0,1
Trapezoidal rule 0.067712 0.010446 0.004543
Mid-point rule 0.096238 0.007917 0.003381

Ω1,2
Trapezoidal rule 0.108611 0.008275 0.009613
Mid-point rule 0.159651 0.007169 0.005028

6.2. A 1D Riemann problem with a spatial flux f(u) = 1
4u

4. The second numerical413

example is a Riemann problem with a convex flux f(u) = (f(u), u) = ( 14u
4, u) and an initial414

condition u
L

= 1 > 0 = u
R
. The computational domain is chosen as Ω = (−1, 1) × (0, 0.4)415

and is subdivided into two blocks, Ω0,1 = (−1, 1) × (0, 0.2) and Ω1,2 = (−1, 1) × (0.2, 0.4) during416

LSNN training, to allow for an efficient computation. The numerical integration is performed417

This manuscript is for review purposes only.



LEAST-SQUARES NEURAL NETWORK METHOD 13

using a uniform grid of size hx = ht = 0.01. For the discrete divergence operator divT (4.7), two418

quadrature methods were tested for calculating the line integral Q∂K(·): the composite trapezoidal419

rule and the midpoint rule. Furthermore, the impact of the number of sub-intervals used, along420

each boundary edge of ∂K, on the precision of the LSNN method was investigated.421

A 2–10–10–1 ReLU NN model was used as an approximate function, and the Adam optimizer422

trained its associated parameters in 50, 000 iterations, the resulting relative L2 errors are reported423

in Tables 2.And the traces of the exact and numerical solutions in t = 0.2 and t = 0.4 are plotted424

in Fig. 3.425

From Tables 2, it is expected that the accuracy of the LSNN method depends on the number426

of sub-intervals (m̂ and n̂ are the corresponding number of sub-intervals along the spatial and427

temporal directions, respectively); that is, the larger the m̂ and n̂, the more accurate the LSNN428

method is. Moreover, the accuracy using the composite trapezoidal and mid-point rules in the429

LSNN method is comparable, both are capable of simulating this Riemann problem with accurate430

shock propagating speed.431

6.3. A 2D inviscid Burgers equation. The last numerical test considers a two-dimensional432

inviscid Burgers equation, where the spatial flux vector field is f̃(u) = 1
2 (u

2, u2). Given a piece-wise433

constant initial data434

u0(x, y) =


−0.2, if x < 0.5 and y > 0.5,
−1.0, if x > 0.5 and y > 0.5,
0.5, if x < 0.5 and y < 0.5,
0.8, if x > 0.5 and y < 0.5,

435

we refer the readers to an exact solution to this problem in [21].436

Setting the computational domain Ω = (0, 1)2 × (0, 0.5), and the inflow boundary conditions437

prescribed using the exact solution, a 4-layer ReLU NN (3–48–48–48–1) was used as the model438

function. Again, the numerical integration was performed on uniform grids of size hx = hy =439

ht = 0.01, and the computation domain is decomposed into five time blocks of equal sizes, namely440

Ω0,1,Ω1,2, · · · ,Ω4,5. The three-dimensional discrete divergence operator divT is computed using441

the mid-point quadrature rule with m̂ = n̂ = k̂ = 2, where m̂, n̂ and k̂ are the number of sub-442

intervals along the spatial x, spatial y and the temporal direction. Table 3 reported the relative443

L2errors of LSNN in each time block. Specifically, 30, 000 iterations of Adam optimization were444

performed for the first time block, and the rest blocks were trained with 20, 000 iterations. Fig.4445

presents the numerical results at time t = 0.1, 0.3, and 0.5. This experiment shows that the LSNN446

method can be extended to two-dimensional problems and is capable of simulating the shock and447

rarefaction waves simultaneously.448

As anticipated, numerical error accumulated when using a blocked space-time method. By449

t = 0.5, the relative error L2 reached 21.3% (see Table 3) . This result raises an important ques-450

tion for future research: how to enhance the accuracy of the LSNN method for high-dimensional451

hyperbolic problems. Theoretical studies suggest that a three-layer ReLU NN is sufficient for452

such problems from a function approximation standpoint [8]. However, developing an efficient453

and reliable iterative solver suitable for these high-dimensional, non-convex optimization problems454

remains a challenge. The discussion in Sec. 5 offers insights into leveraging the unique structure455

of NNs to guide the iterative process, though the problem remains unresolved.456
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[26] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge,509

2002.510
[27] M. Liu, Z. Cai, and J. Chen. Adaptive two-layer ReLU neural network: I. best least-squares approximation.511

This manuscript is for review purposes only.



LEAST-SQUARES NEURAL NETWORK METHOD 15

Comput. Math. Appl., 113:34–44, 2022.512
[28] M. Liu, Z. Cai, and K. Ramani. Deep Ritz method with adaptive quadrature for linear elasticity. Comput.513

Methods Appl. Mech. Engrg., 415 (2023) 116229.514
[29] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables. SIAM,515

Philadelphia, 2000.516
[30] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework517

for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput.518
Phys., 378:686–707, 2019.519

[31] C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conser-520
vation laws. In Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, pages 325–432.521
Springer, 1998.522

[32] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential equations.523
J. Comput. Phys., 375:1139–1364, 2018.524

[33] A. H. Stroud. Approximate Calculation of Multiple Integrals. Englewood Cliffs, N.J.: Prentice-Hall, 1971.525
[34] S. Sun, Z. Cao, H. Zhu, and J. Zhao. A survey of optimization methods from a machine learning perspective.526

IEEE Trans. on Cybernetics, 50(8):3668 – 3681, 2020.527
[35] J. W. Thomas. Numerical Partial Differential Equations: Finite Difference Methods, volume 22. Springer528

Science & Business Media, 2013.529

This manuscript is for review purposes only.



16 Z. CAI AND M. LIU

(a) The interface (b) The trace of Figure 2(d) on y = 1− x

(c) The exact solution (d) A 2–60–60–1 ReLU NN function approxi-
mation

(e) The breaking hyper-planes of the approxi-
mation in Figure 2(d)

Fig. 2. Approximation results for the linear advection-reaction problem in Sec. 6.1.
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(a) Traces at t = 0.2 (trapezoidal) (b) Zoom-in plot near the discontin-
uous interface of sub-figure (a)

(c) Traces at t = 0.4 (trapezoidal)

(d) Traces at t = 0.2 (mid-point) (e) Zoom-in plot near the discontin-
uous interface of sub-figure (d)

(f) Traces at t = 0.4 (mid-point)

Fig. 3. Numerical results of the problem with f(u) = 1
4
u4 using the composite trapezoidal and mid-point rules

(a) t = 0.1 (b) t = 0.3 (c) t = 0.5

Fig. 4. Numerical results of 2D Burgers’ equation.
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