LEAST-SQUARES NEURAL NETWORK (LSNN) METHOD FOR SCALAR HYPERBOLIC CONSERVATION LAWS (HCLS)

Zhiqiang Cai¹

Jingshuang Chen

Department of Mathematics ¹ School of Mechanical Engineering ²

Min Liu

Outline

- Scalar Hyperbolic Conservation Laws (HCLs)
- Neural Networks
- Least-Squares Neural Network (LSNN) Method

https://www.math.purdue.edu/~caiz/paper.html

Scalar Hyperbolic Conservation Laws

• Scalar Nonlinear Hyperbolic Conservation Laws

$$\begin{array}{rcl} u_t(\mathbf{x},t) + \nabla_{\mathbf{x}} \cdot \mathbf{f}(u) &=& 0, & \mbox{ in } \Omega \times I, \\ u &=& g, & \mbox{ on } \Gamma_-, \\ u(\mathbf{x},0) &=& u_0(\mathbf{x}), & \mbox{ in } \Omega, \end{array}$$

- Numerical Difficulties
 - Issues on mathematical theory of PDE
 - Solutions are discontinuous without a priori knowledge of locations

Approximation to Unit Step Function with Unknown Interface

• Unit step function with unknow interface c

$$f(x) = \begin{cases} 0, & x \in (a, c), \\ 1, & x \in [c, b). \end{cases}$$

Best continuous piece-wise linear approximation

$$p(x) = \begin{cases} 0, & x \in (a, c - \varepsilon), \\ \frac{x - (c - \epsilon)}{2\varepsilon}, & x \in [c - \varepsilon, c + \varepsilon], \\ 1, & x \in (c + \varepsilon, b). \end{cases}$$

Error estimate

$$\|f-p\|_{L^{\infty}(I)} = rac{1}{2}$$
 and $\|f-p\|_{L^{p}(I)} = rac{arepsilon^{1/p}}{2^{1-1/p}(1+p)^{1/p}}.$

Department of Mathematics

Approximation to Unit Step Function with Unknown Interface

Unit step function and its best CPL approximation

$$f(x) = \begin{cases} 0, & x \in (a, c), \\ 1, & x \in [c, b). \end{cases} \qquad p(x) = \begin{cases} 0, & x \in (a, c - \varepsilon), \\ \frac{x - (c - \epsilon)}{2\varepsilon}, & x \in [c - \varepsilon, c + \varepsilon], \\ 1, & x \in (c + \varepsilon, b). \end{cases}$$

• Error estimate

$$\|f-p\|_{L^{\infty}(I)} = rac{1}{2} \quad ext{and} \quad \|f-p\|_{L^{p}(I)} = rac{arepsilon^{1/p}}{2^{1-1/p}(1+p)^{1/p}}.$$

- CPL approximations on fixed quasi-uniform mesh
 - very fine mesh-size h= ε
 - overshooting and oscillation
- What is a **right** class of approximating functions?

Neural Network (NN)

Fully-connected (Multi-Layer Perceptron) NN (Rosenblatt 1958)

DNN function (models)

$$\mathbf{y} = N(\mathbf{x}) = N^{(L)} \circ \cdots \circ N^{(2)} \circ N^{(1)}(\mathbf{x}) : \mathcal{R}^{d} \longrightarrow \mathcal{R}^{o}$$
$$N^{(l)}(\mathbf{x}^{(l-1)}) = \sigma(\boldsymbol{\omega}^{(l)}\mathbf{x}^{(l-1)} - \mathbf{b}^{(l)}) : \mathcal{R}^{n_{l-1}} \longrightarrow \mathcal{R}^{n_{l}}$$

The number of parameters

$$N = \sum_{l=1}^{L} n_l \times (n_{l-1} + 1)$$

- Activate functions
 - ReLU^k

$$\sigma(t) = \begin{cases} t^k, & t > 0 \\ 0, & t < 0 \end{cases}$$

- Sigmoids
- Etc.

$$\sigma(t) = \frac{1}{1 + e^x}$$

Department of Mathematics

Approximation Property of NN

• Universal Approximation Theorem (Cybenko (1989), Hornik-Stinchcombe-White (1989))

 $\mathcal{M}(\sigma, d) = \{v(\mathbf{x}) \in \mathcal{M}_n(\sigma, d) : n \in \mathbb{Z}_+\}$ is dense in C(K) for any compact set $K \in \mathcal{R}^d$, provided that σ is not a polynomial.

- A Priori Error Estimate (DeVore-Oskolkov-Petrushev (1997), DeVore-Hanin-Petrova, Yarosky, Shen-Yang-Zhang, E-Wojtowytsch, Siegle-Xu, ...)
 - Why using NN instead of polynomials, finite elements, ...?
 - How to design NN architecture?
 - Why using more than two layers?
 - •
- Two-layer NN

$$\mathcal{M}_n(\sigma, d) = \left\{ \mathbf{c}_0 + \sum_{i=1}^n \mathbf{c}_i \sigma(\boldsymbol{\omega}_i \cdot \mathbf{x} - b_i) : \mathbf{c}_i \in \mathcal{R}^o, \, b_i \in \mathcal{R}, \, \boldsymbol{\omega}_i \in \mathcal{S}^{d-1} \right\},\,$$

Department of Mathematics

Approximation to Unit Step Function with Unknown Interface

• Unit step function with unknow interface c

$$f(x) = \begin{cases} 0, & x \in (a, c), \\ 1, & x \in [c, b). \end{cases}$$

• Best 2-layer neural network approximation

$$p(x) = \frac{1}{b_2 - b_1} \left\{ \sigma(x - b_1) - \sigma(x - b_2) \right\}, \ b_1 = c - \varepsilon, \ b_2 = c + \varepsilon$$

!!! One-hidden layer with two neurons !!!

Error estimate

$$||f - p||_{L^{\infty}(I)} = \frac{1}{2}$$
 and $||f - p||_{L^{p}(I)} = \frac{\varepsilon^{1/p}}{2^{1-1/p}(1+p)^{1/p}}$

LS formulation for linear advection-reaction problem

Linear advection-reaction problem •

$$u_{\beta} + \gamma u = f \text{ in } \Omega, \quad u|_{\Gamma_{-}} = g$$

Least-squares formulation Find $u \in V_{\beta}(\Omega) = \{v \in L^2(\Omega) : v_{\beta} \in L^2(\Omega)\}$ such that •

$$\mathcal{L}(u; \mathbf{f}) = \min_{v \in V_{\boldsymbol{\beta}}} \mathcal{L}(v; \mathbf{f})$$

where $\mathcal{L}(v; \mathbf{f}) = \|v_{\beta} + \gamma v - f\|_{0,\Omega}^2 + \|v - g\|_{-\beta}^2$

Coercivity and continuity there exists positive constants α and M such that

$$\alpha \left\| v \right\|_{\boldsymbol{\beta}}^{2} \leq \mathcal{L}(v; \mathbf{0}) \leq M \left\| v \right\|_{\boldsymbol{\beta}}^{2}$$

De Sterck-Manteuffel-McCormick-Olson, 2004, Bochev-Gunzburger, 2016 **Department of Mathematics**

Least-squares neural network (LSNN) method

• LSNN method find $u_N \in \mathcal{M}(d, n)$ such that

$$\mathcal{L}(u_N, \mathbf{f}) = \min_{v \in \mathcal{M}(d, n)} \mathcal{L}(v, \mathbf{f})$$

where $\mathcal{M}(d, 1, \lceil \log_2(d+1) \rceil + 1, n) = \mathcal{M}(d, n)$

Quasi-optimal approximation

$$\|\|u-u_N\|\|_{\boldsymbol{\beta}} \le \left(\frac{M}{\alpha}\right)^{1/2} \inf_{v \in \mathcal{M}(d,n)} \|\|u-v\|\|_{\boldsymbol{\beta}},$$

A priori error estimate

$$\|\|u - u_N\|\|_{\boldsymbol{\beta}} \le C \left(\left\| \alpha_1 - \alpha_2 \right\| \sqrt{\varepsilon} + \inf_{v \in \mathcal{M}(d,n)} \|\|\hat{u} + p - v\|\|_{\boldsymbol{\beta}} \right)$$

Department of Mathematics

C.-Chen-Liu, JCP, 443 (2021), 110514; C.-Choi-Liu (2022) 10/4/22 | 10

LSNN Method

Numerical Issues

Integration

random sampling vs numerical integration

Differentiation

automatic, exact, numerical, etc

Algebraic solver (training NN)

methods of gradient descent, ..., ???

Linear scalar HCL: f(u)=au, i.e., $u_t+au_x=0$

Liu-Zhang, CMAME, 2020

Famous Transport Equation $u_t + u_x = 0$

Adaptive 3-Layer NN for Linear Advection-Reaction Problem

0.8 0.6 > 0.4 0.2 0.0 + 0.0 0.2 0.4 0.6

1.0

(a) Exact solution u

(b) PP by 2-6-1 NN, the marked element (red dot), and new breaking line (red line)

(c) Approximation by 2-7-1 NN

(d) PP by 2-7-3-1 NN and the marked

first hidden layer breaking lines second hidden laver breaking lines 0.8 0.6 > 0.4 0.2 0.0 + 0.0 0.2 0.4 0.6 0.8

(e) PP by adaptive 2-7-4-1 NN

1.0

(f) Approximation using adaptive 2-7-4-1 NN

Liu-C.-Chen, CAMWA, 2022 Liu-C., CAMWA, 2022, C.-Chen-Liu, JCP, 2022.

element

Department of Mathematics

LSNN method for scalar nonlinear HCLs

• Scalar nonlinear hyperbolic conservation laws

$$u_t(\mathbf{x},t) + \nabla_{\mathbf{x}} \cdot \mathbf{f}(u) = 0$$
, in $\Omega \times I$, $u|_{\Gamma_-} = g$, $u(\mathbf{x},0)|_{\Omega} = u_0(\mathbf{x})$

Least-squares formulation

Find $u \in V_{\mathbf{f}} = \left\{ v \in L^2(\Omega \times I) | (\mathbf{f}(v), v) \in H(\operatorname{div}; \Omega \times I) \right\}$ such that

$$\mathcal{L}(u; \mathbf{g}) = \min_{v \in V_{\mathbf{f}}} \mathcal{L}(v; \mathbf{g})$$

where $\mathcal{L}(v; \mathbf{g}) = \|v_t + \nabla_{\mathbf{x}} \cdot \mathbf{f}(v)\|_{0,\Omega \times I}^2 + \|v - g\|_{0,\Gamma_-}^2 + \|v(\mathbf{x}, 0) - u_0(\mathbf{x})\|_{0,\Omega}^2$

Well-posedness???

LSNN method for scalar nonlinear HCLs

Least-squares formulation

Find $u \in V_{\mathbf{f}} = \left\{ v \in L^2(\Omega \times I) | (\mathbf{f}(v), v) \in H(\operatorname{div}; \Omega \times I) \right\}$ such that

$$\mathcal{L}(u; \mathbf{g}) = \min_{v \in V_{\mathbf{f}}} \mathcal{L}(v; \mathbf{g})$$

where $\mathcal{L}(v; \mathbf{g}) = \|v_t + \nabla_{\mathbf{x}} \cdot \mathbf{f}(v)\|_{0,\Omega \times I}^2 + \|v - g\|_{0,\Gamma_-}^2 + \|v(\mathbf{x}, 0) - u_0(\mathbf{x})\|_{0,\Omega}^2$

• LSNN method finding $u^N(\mathbf{z}; \boldsymbol{\theta}^*) \in \mathcal{M}_N$ such that

$$\mathcal{L}\big(u^{N}(\cdot;\boldsymbol{\theta}^{*});g\big) = \min_{v \in \mathcal{M}_{N}} \mathcal{L}\big(v(\cdot;\boldsymbol{\theta});g\big) = \min_{\boldsymbol{\theta} \in \mathbb{R}^{N}} \mathcal{L}\big(v(\cdot;\boldsymbol{\theta});g\big)$$

• Numerical Issues: integration, differentiation, ...

Discrete Divergence Operator

• Divergence operator

$$0 = u_t + \nabla_{\mathbf{x}} \cdot \mathbf{f}(u) = \mathbf{div} \left(u, \mathbf{f}(u) \right) = \mathbf{div} \mathbf{F}(u)$$

- Discrete divergence operator
 - + based on conservative numerical schemes (C.-Chen-Liu (2022), ANM)
 - + new discrete divergence operator (C.-Chen-Liu, arXiv:2011.10895v2[math.NA])

Let \mathcal{T} be a partition of the domain $\Omega \subset \mathbb{R}^{d+1}$.

For any $K \in \mathcal{T}$, let \mathbf{z}_K be the centroid of K.

$$\mathbf{div}_{\tau} \mathbf{F} \big(u(\mathbf{z}_{_K}) \big) \approx \operatorname{avg}_K \mathbf{div} \, \mathbf{f}(u) = \frac{1}{|K|} \int_{\partial K} \mathbf{F}(u) \cdot \mathbf{n} \, dS$$

Inviscid Burger Equation $f(u) = \frac{1}{2}u^2$

Inviscid Burgers equation with smooth initial

 $u_0(x) = 0.5 + \sin(\pi x).$

1.25

1.00

0.75

. ...

0.2

0.00

-9.25

-0.2

t = 0.2

0.00 0.25 0.50 0.75 1.00

(d) Traces of reference and numer-

ical solutions $u_{4,\tau}$ on the plane

conservative LSN
finite volume LSN

125 150 175 2.00

(b) Traces of reference and numerical solutions $u_{2,\tau}$ on the plane t = 0.1

(e) Traces of reference and numerical solutions $u_{5,T}$ on the plane t = 0.25

(c) Traces of reference and numerical solutions $u_{3,\tau}$ on the plane t=0.15

(f) Traces of reference and numerical solutions $u_{6,\tau}$ on the plane t = 0.3

FIG. 3. Approximation results of Burgers' equation with a sinusoidal initial condition

Riemann Problem with Higher order flux $f(u) = \frac{1}{4}u^4$

(d) Traces of exact and numerical solutions $u_{1,\tau}$ using the mid-point rule on the plane t = 0.2

(e) Zoom-in plot near the discontinuous interface of sub-figure (d)

(f) Traces of exact and numerical solutions $u_{2,\tau}$ using the mid-point rule on the plane t = 0.4

(2-10-10-1)

FIG. 5. Numerical results of the problem with $f(u) = \frac{1}{4}u^4$ using the composite trapezoidal and mid-point rules

Riemann Problem with Non-convex flux $f(u) = \frac{1}{3}u^3$

Department of Mathematics

2D Inviscid Burger Equation $f(u) = \frac{1}{2}(u^2, u^2)$

Network structure	Block	$igg = rac{\ u^k \!-\! u^k_{\mathcal{T}}\ _0}{\ u^k\ _0}$
	$\Omega_{0,1}$	0.093679
3-48-48-48-1	$\Omega_{1,2}$	0.121375
	$\Omega_{2,3}$	0.163755
	$\Omega_{3,4}$	0.190460
	$\Omega_{4,5}$	0.213013

Department of Mathematics

Summary

• NN provides a new class of approximating functions

moving mesh vs uniform mesh and adaptive mesh

Scalar hyperbolic conservation laws

NN is possibly the best class of approximating functions for scalar HCLs.

Non-convex optimization

Bottleneck, the method of continuation, ...

- Adaptive Neural Network
 - Automatically design a relatively small NN within the prescribed tolerance
 - A natural continuation process for obtaining a good initial

THANK YOU

Department of Mathematics