NEURAL NETWORK METHODS: SCALAR HYPERBOLIC CONSERVATION LAWS

Zhiqiang Cai¹

Collaborators: Min Liu², Jingshuang Chen³, Junpyo Choi¹, Brooke Hejnal¹

Department of Mathematics 1 School of Mechanical Engineering 2

Outline

- Neural Network (as a "new" class of approximating functions)
- Scalar Hyperbolic Conservation Laws
- Least-Squares Neural Network (LSNN) Method (a space-time approach)
- **Evolving Neural Network (ENN) Method (an approach emulating physics)**

Neural Network (NN): a "new" class of approximating functions

Fully-connected (Multi-Layer Perceptron) NN (Rosenblatt 1958)

NN function

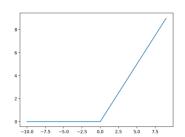
$$v(\mathbf{x}) = c_0 + \sum_{j=1}^{n_l} c_j x_j^{(l)}(\mathbf{x})$$

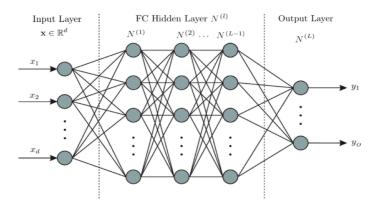
Let
$$\mathbf{x}^{(0)} = \mathbf{x}$$
 and $x_i^{(k)}(\mathbf{x}) = \sigma\left(\mathbf{w}_i^{(k)}\mathbf{x}^{(k-1)} + b_i^{(k)}\right)$ for $i=1,\ldots,n_k$ and $k=1,\ldots,l$

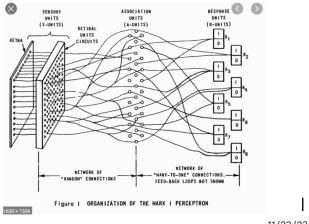
ReLU Activation function

$$\sigma(t) = \begin{cases} t, & t > 0, \\ 0, & t \le 0. \end{cases}$$

Department of Mathematics







C⁰ Linear Elements on fixed and moving meshes

C⁰ Linear Element on a fixed mesh in [a,b]

$$\mathcal{S}_1^0(\Delta) = \operatorname{span} \left\{\phi_i(x)\right\}_{i=0}^n = \left\{\sum_{i=0}^n c_i \phi_i(x) : c_i \in \mathcal{R}\right\} \quad \phi_i(x) = \left\{\begin{array}{l} \frac{x-x_{i-1}}{x_i-x_{i-1}}, \quad x \in (x_{i-1},x_i), \\ \frac{x_{i+1}-x}{x_{i+1}-x_i}, \quad x \in (x_i,x_{i+1}), \\ 0, \quad \text{otherwise} \end{array}\right.$$

C⁰ Linear Element on a moving mesh in [a,b]

$$S_1^0(n) = \left\{ \sum_{i=0}^n c_i \phi_i(x; x_{i-1}, x_i, x_{i+1}) : c_i \in \mathcal{R}, \ x_i \in [a, b] \right\} \qquad u(x) = x^{0.01}, \ x \in [0, 1]$$

$$= \left\{ c_0 + c_1(x - a) + \sum_{i=2}^n c_i \sigma(x - x_i) : c_i \in \mathcal{R}, \ x_i \in (a, b) \right\}$$

One hidden-layer NN in R d

One hidden-layer NN (C⁰ piecewise linear function)

$$\mathcal{M}_n(d) = \left\{ c_0 + \sum_{i=1}^n c_i \sigma(\boldsymbol{\omega}_i \, \mathbf{x} + b_i) : \, c_i, b_i \in \mathcal{R}, \, \, \boldsymbol{\omega}_i \in \mathcal{S}^{d-1}
ight\}$$

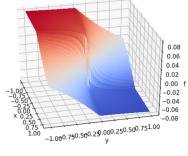
Breaking Hyper-Planes

$$\mathcal{P}_i: \boldsymbol{\omega}_i \mathbf{x} + b_i = 0$$
 for $i = 1, \dots, n$

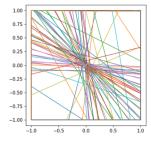
Linearly Independence

 $\{\sigma(\boldsymbol{\omega}_i \mathbf{x} + b_i)\}_{i=1}^n$ are linearly independent if $\{\mathcal{P}_i\}_{i=1}^n$ are distinct.

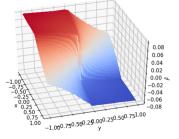
Physical Partition of NN approximation to Kellogg function



(a) Target function f(x,y)



(h) Optimum break lines (69 neurons, 1286 elements)



(i) Optimum NN model of 69 neurons, $\xi = 0.008476$

Scalar Hyperbolic Conservation Laws

Scalar Nonlinear Hyperbolic Conservation Laws

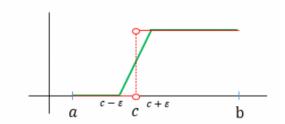
$$\begin{cases} u_t(\mathbf{x}, t) + \nabla_{\mathbf{x}} \cdot \mathbf{f}(u) &= 0, & \text{in } \Omega \times I, \\ u &= g, & \text{on } \Gamma_-, \\ u(\mathbf{x}, 0) &= u_0(\mathbf{x}), & \text{in } \Omega, \end{cases}$$

- **Numerical Difficulties**
 - PDE theory
 - Discontinuous solution with unknown interfaces

Approximation to Unit Step Function with Unknown Interface

Unit step function and its CPWL approximation

$$f_c(x) = \begin{cases} 0, & a < x < c, \\ 1, & c < x < b \end{cases} \qquad p_c(x) = \begin{cases} 0, & a < x \le c - \varepsilon, \\ \frac{x - (c - \varepsilon)}{2\varepsilon}, & c - \varepsilon \le x \le c + \varepsilon, \\ 1, & c + \varepsilon \le x < b \end{cases}$$



$$\|f_c - p_c\|_{L^\infty(I)} = rac{1}{2}$$
 and $\|f_c - p_c\|_{L^r(I)} = rac{arepsilon^{1/r}}{2^{1-1/r}(1+r)^{1/r}}$

- How to compute or approximate $p_c(x)$ when c is unknown?
 - (1) On fixed quasi-uniform mesh
 - very fine mesh-size: $h = \varepsilon$
 - overshooting, oscillation, etc.
- (2) On moving mesh (neural network)
 - two neurons
 - no overshooting or oscillation

$$p_c(x) = \frac{1}{b_2 - b_1} \left[\sigma(x - b_1) - \sigma(x - b_2) \right], \quad b_1 = c - \varepsilon, \ b_2 = c + \varepsilon$$

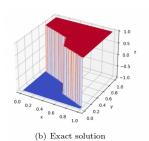
Approximation to Unit Step Function with Unknown Interface in R d

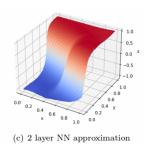
Piecewise Constant function with unknow interface

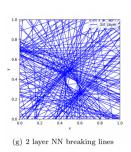
C., J. Choi, and M. Liu (2022) (d=2, 3, l=2; d=4,...,8, l=3)

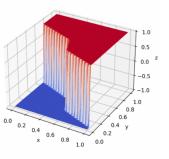
Let $\chi(x)$ be a piecewise constant function with C^0 piecewise smooth interface I, then there exists a CPWL function p(x) generated by a DNN with L= $\lceil \log_2(d+1) \rceil$ hidden layers such that for any given $\varepsilon > 0$, we have

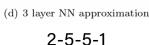
$$\|\chi - p\|_{\boldsymbol{\beta}} \le \sqrt{2|I|} |\alpha_1 - \alpha_2| \sqrt{\varepsilon},$$

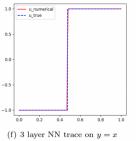


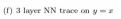


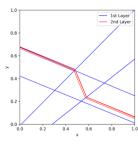












(h) 3 layer NN breaking lines

2-300-1

11/23/23 8

Approximation to Unit Step Function with Unknown Interface in R d

Piecewise Constant function with unknow interface

C., J. Choi, and M. Liu (2022) (d=2, 3, L=2; d=4,...,8, L=3)

Let $\chi(x)$ be a piecewise constant function with C^0 piecewise smooth interface I, then there exists a CPWL function p(x) generated by a DNN with L= $\lceil \log_2(d+1) \rceil$ hidden layers such that for any given $\varepsilon > 0$, we have

$$\|\chi - p\|_{\boldsymbol{\beta}} \le \sqrt{2|I|} |\alpha_1 - \alpha_2| \sqrt{\varepsilon},$$

P. Petersen and F. Voigtlaender (2018) (For C¹ and d=2, L=36)

Theorem 3.5. For $r \in \mathbb{N}$, $d \in \mathbb{N}_{\geq 2}$, and $p, \beta, B > 0$, there are constants $c = c(d, r, p, \beta, B) > 0$ and $s = s(d, r, p, \beta, B) \in \mathbb{N}$, such that for any $K \in \mathcal{K}_{r,\beta,d,B}$ and any $\varepsilon \in (0, 1/2)$, there is a neural network Φ_{ε}^{K} with at most $(3 + \lceil \log_2 \beta \rceil) \cdot (11 + 2\beta/d)$ layers, and at most $c \cdot \varepsilon^{-p(d-1)/\beta}$ nonzero, (s, ε) -quantized weights such that

$$\|\mathbf{R}_{\varrho}(\Phi_{\varepsilon}^{K}) - \chi_{K}\|_{L^{p}([-1/2,1/2]^{d})} < \varepsilon \quad and \quad \|\mathbf{R}_{\varrho}(\Phi_{\varepsilon}^{K})\|_{\sup} \le 1.$$

Remark 3.6. Theorem 3.5 establishes approximation rates for piecewise constant functions. It should be noted that the number of required layers is fixed and only depends on the dimension d and the regularity parameter β ; in particular, it does not depend on the approximation accuracy ε .

Physics-Informed Neural Network (PINN), a statistical approach

Psichogios-Ungar (92), Lagaris-Likas-Ftiadis (98), Rasissi-Perdikaris-Karniadakis (19), ...

PDE:
$$\mathcal{L}(u) = 0 \text{ in } \Omega \in \mathcal{R}^d \quad \text{ and } \quad \mathcal{B}(u) = 0 \text{ on } \partial \Omega$$

training data:
$$\{x_i^u\}_{i=1}^{N_u}\subset\Omega$$
 and $\{x_i^b\}_{i=1}^{N_b}\subset\partial\Omega$

$$l^2 \text{ residual:} \qquad \qquad L(u) = \frac{1}{N_u} \sum_{i=1}^{N_u} \left(\mathcal{L}(u(x_i^u)) \right)^2 + \frac{1}{N_b} \sum_{i=1}^{N_b} \left(\mathcal{B}(u(x_i^b)) \right)^2$$

(mean squares error)

PINN:
$$u_{\mathcal{N}} = \underset{v \in \mathcal{N}}{\arg\min} \ L(v)$$

What are issues to use Neural Network in scientific computing?

Issues for NN-based Methods

- What is a proper equivalent formulation of a given PDE?
- How to choose NN architecture for a given problem?
- Numerical Issues (unlike finite elements)
 - Numerical Integration (important): adaptive numerical integration
 - Numerical Differentiation (critical): proper discrete differential operator
 - Algebraic solver (training NN) (critical): iterative solvers ???

Least-Squares Neural Network (LSNN) method

Linear advection-reaction problem

$$u_{\beta} + \gamma u = f \text{ in } \Omega, \quad u|_{\Gamma_{-}} = g$$

• Least-squares formulation Find $u \in V_{\pmb{\beta}}(\Omega) = \{v \in L^2(\Omega) : v_{\pmb{\beta}} \in L^2(\Omega)\}$ such that

$$\mathcal{L}(u; \mathbf{f}) = \min_{v \in V_{\beta}} \mathcal{L}(v; \mathbf{f})$$

where
$$\mathcal{L}(v;\mathbf{f}) = \|v_{\beta} + \gamma v - f\|_{0,\Omega}^2 + \|v - g\|_{-\beta}^2$$

- Coercivity and continuity there exists positive constants lpha and M such that

$$\alpha \| v \|_{\boldsymbol{\beta}}^2 \le \mathcal{L}(v; \mathbf{0}) \le M \| v \|_{\boldsymbol{\beta}}^2$$

De Sterck-Manteuffel-McCormick-Olson, 2004

Least-squares neural network (LSNN) method

find $u_N \in \mathcal{M}(d,n)$ such that LSNN method

$$\mathcal{L}(u_N, \mathbf{f}) = \min_{v \in \mathcal{M}(d, n)} \mathcal{L}(v, \mathbf{f})$$

where
$$\mathcal{M}(d, 1, \lceil \log_2(d+1) \rceil + 1, n) = \mathcal{M}(d, n)$$

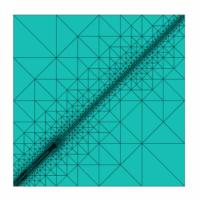
Quasi-optimal approximation

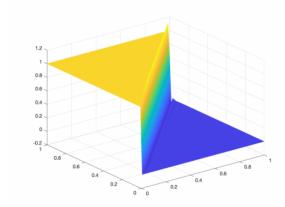
$$\|u-u_N\|_{\boldsymbol{\beta}} \le \left(\frac{M}{\alpha}\right)^{1/2} \inf_{v \in \mathcal{M}(d,n)} \|u-v\|_{\boldsymbol{\beta}},$$

A priori error estimate

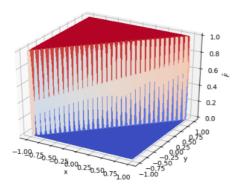
$$\|u - u_N\|_{\boldsymbol{\beta}} \le C \left(\left| \alpha_1 - \alpha_2 \right| \sqrt{\varepsilon} + \inf_{v \in \mathcal{M}(d,n)} \|\hat{u} + p - v\|_{\boldsymbol{\beta}} \right)$$

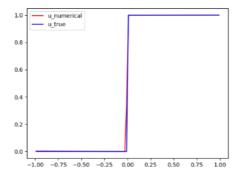
Famous Transport Equation $u_t + u_x = 0$

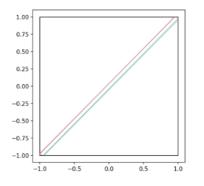




Liu-Zhang, CMAME, 2020

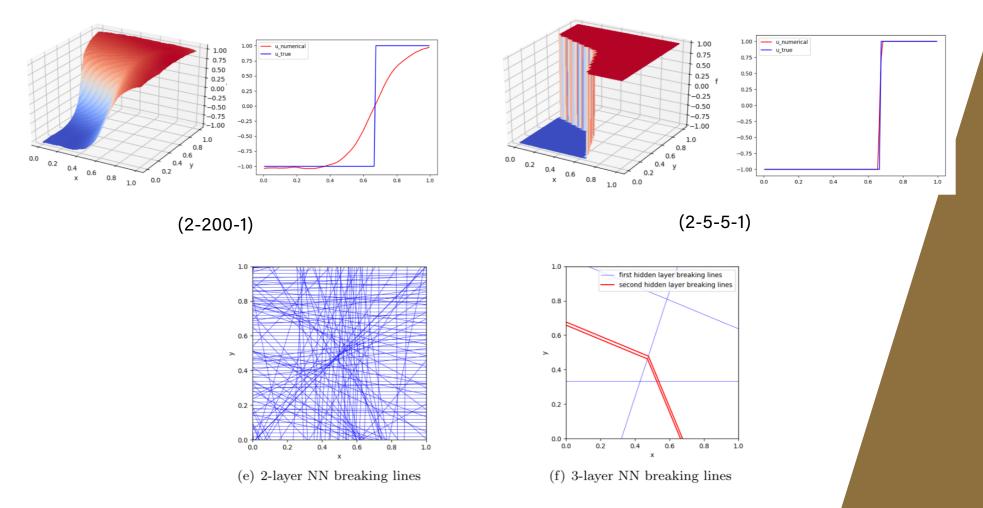






(2-6-1)

C.-Chen-Liu, JCP, 2021



C.-Chen-Liu, LSNN method for linear advection-reaction equation, JCP, 443(2021), 110514.

Least-Squares Neural Network (LSNN) method

Scalar nonlinear hyperbolic conservation laws

$$u_t(\mathbf{x},t) + \nabla_{\mathbf{x}} \cdot \mathbf{f}(u) = 0$$
, in $\Omega \times I$, $u|_{\Gamma_-} = g$, $u(\mathbf{x},0)|_{\Omega} = u_0(\mathbf{x})$

Least-squares formulation

Find
$$u \in V_{\mathbf{f}} = \left\{ v \in L^2(\Omega \times I) | (\mathbf{f}(v), v) \in H(\operatorname{div}; \Omega \times I) \right\}$$
 such that
$$\mathcal{L}\big(u; \, \mathbf{g}\big) = \min_{v \in V_{\mathbf{f}}} \mathcal{L}\big(v; \, \mathbf{g}\big)$$

where
$$\mathcal{L}(v; \mathbf{g}) = \|v_t + \nabla_{\mathbf{x}} \cdot \mathbf{f}(v)\|_{0,\Omega \times I}^2 + \|v - g\|_{0,\Gamma_-}^2 + \|v(\mathbf{x}, 0) - u_0(\mathbf{x})\|_{0,\Omega}^2$$

Least-squares neural network (LSNN) method

find
$$u_n \in \mathcal{M}(d,l) \subset V_{\mathbf{f}}$$
 such that $u_n(\mathbf{x},t) = \underset{v \in \mathcal{M}(d,l)}{\arg \min} \mathcal{L}(v;\mathbf{g})$

Discrete Divergence Operator

Divergence operator

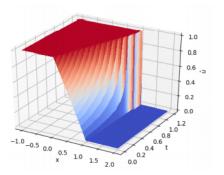
$$0 = u_t + \nabla \cdot \mathbf{f}(u) = \operatorname{div}(\mathbf{f}(u), u) = \operatorname{div}\mathbf{F}(u)$$

- Discrete divergence operator
 - + based on conservative numerical schemes (C.-Chen-Liu, ANM(2022))
 - + new discrete divergence operator (C.-Chen-Liu, J Comput Appl Math (2023))

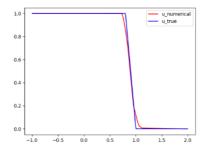
Let \mathcal{T} be a partition of the domain $\Omega \subset \mathbb{R}^{d+1}$.

For any $K \in \mathcal{T}$, let \mathbf{z}_K be the centroid of K.

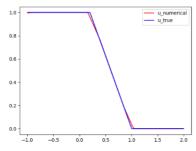
$$\mathbf{div}_{\tau} \mathbf{F} \big(u(\mathbf{z}_{K}) \big) \approx \operatorname{avg}_{K} \mathbf{div} \, \mathbf{f}(u) = \frac{1}{|K|} \int_{\partial K} \mathbf{F}(u) \cdot \mathbf{n} \, dS$$



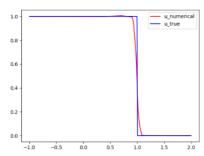
(a) Exact solution u on $\Omega \times I$



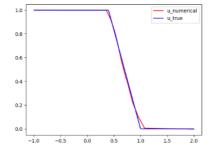
(d) Traces of exact solution and approximation $u_{4,T}$ on the plane t = 0.8



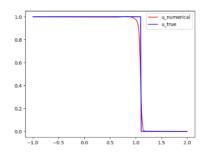
(a) Traces of exact solution and approximation $u_{1,\mathcal{T}}$ on the plane t=0.2



(e) Traces of exact solution and approximation $u_{5,\mathcal{T}}$ on the plane t=1.0



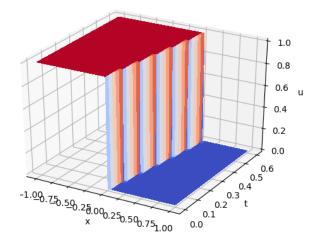
(c) Traces of exact and numerical solutions $u_{2,T}$ on the plane t=0.4

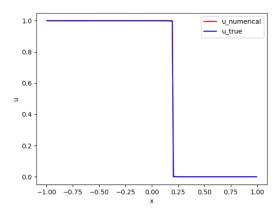


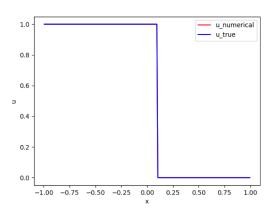
(f) Traces of exact solution and approximation $u_{6,\mathcal{T}}$ on the plane t=1.2

Inviscid Burger Equation $f(u) = \frac{1}{2}u^2$

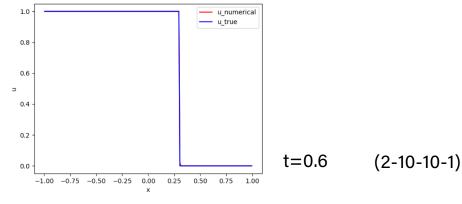
Riemann Problem Shock formation: exact solution







t = 0.2



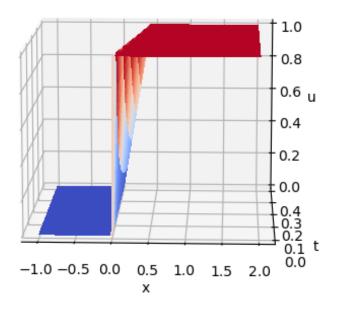
PURDUE UNIVERSITY.

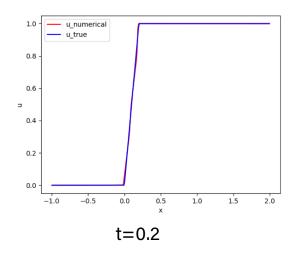
Department of Mathematics

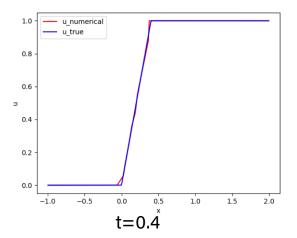
C.-Chen-Liu, arXiv: 2110.10895 [math.NA]

11/23/23

Riemann Problem Rarefaction wave: exact solution



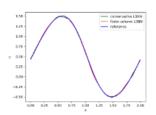




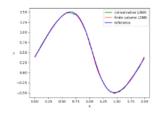
(2-10-10-1)

Inviscid Burgers equation with smooth initial

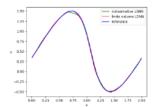
$$u_0(x) = 0.5 + \sin(\pi x).$$



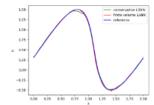
(a) Traces of reference and numerical solutions $u_{1,T}$ on the plane t=0.05



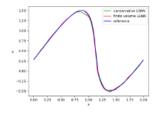
(b) Traces of reference and numerical solutions $u_{2,\mathcal{T}}$ on the plane t=0.1



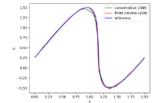
(c) Traces of reference and numerical solutions $u_{3,T}$ on the plane t=0.15



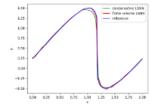
(d) Traces of reference and numerical solutions $u_{4,\mathcal{T}}$ on the plane t=0.2



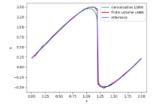
(e) Traces of reference and numerical solutions $u_{5,T}$ on the plane t=0.25



(f) Traces of reference and numerical solutions $u_{6,T}$ on the plane t=0.3



(g) Traces of reference and numerical solutions $u_{7,\mathcal{T}}$ on the plane t=0.35

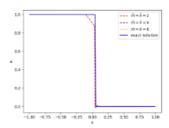


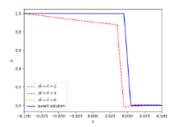
(h) Traces of reference and numerical solutions $u_{8,\mathcal{T}}$ on the plane t=0.4

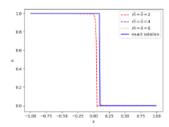
(2-30-30-1)

Fig. 3. Approximation results of Burgers' equation with a sinusoidal initial condition

Riemann Problem with Higher order flux $f(u) = \frac{1}{4}u^4$

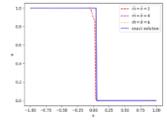


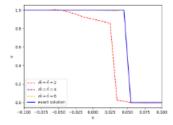


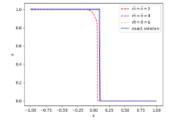


- (a) Traces of exact and numerical solutions $u_{1,\mathcal{T}}$ using the trapezoidal rule on the plane t=0.2
- (b) Zoom-in plot near the discontinuous interface of sub-figure (a)

(c) Traces of exact and numerical solutions $u_{2,\mathcal{T}}$ using the trapezoidal rule on the plane t=0.4







- (d) Traces of exact and numerical solutions $u_{1,T}$ using the mid-point rule on the plane t=0.2
- (e) Zoom-in plot near the discontinuous interface of sub-figure (d)
- (f) Traces of exact and numerical solutions $u_{2,T}$ using the mid-point rule on the plane t=0.4

Fig. 5. Numerical results of the problem with $f(u) = \frac{1}{4}u^4$ using the composite trapezoidal and mid-point rules

(2-10-10-1)

Buckley-Leverett Problem $f(u) = u(1-u)/[u^2 + a(1-u)^2]$

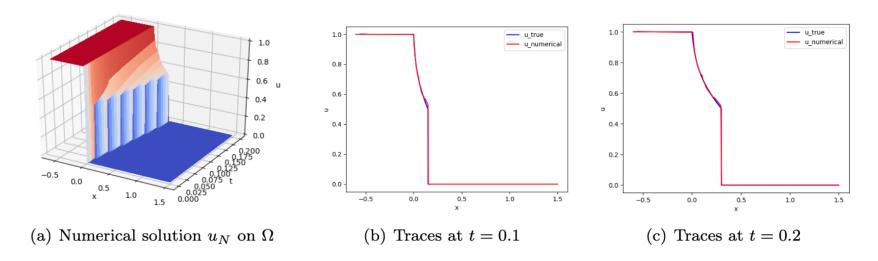


Fig. 6. Numerical results of Buckley-Leverett Riemann problem

Evolving Neural Network (ENN) Method (C. and B. Hejnal)

One-Dimensional Scalar Nonlinear Hyperbolic Conservation Laws

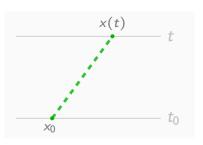
$$\left\{ \begin{array}{rcl} \displaystyle \frac{\partial}{\partial t} u(x,t) + \frac{\partial}{\partial x} f \big(u(x,t) \big) & = & 0, & \text{in } \Omega \times (0,T), \\ \\ \displaystyle u(x,t) & = & g(t), & \text{on } \Gamma_-, \\ \\ \displaystyle u(x,0) & = & u_0(x), & \text{in } \Omega \end{array} \right.$$

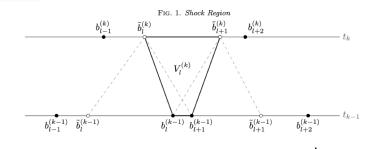
Characteristic Line

$$\begin{cases} \frac{d}{dt}x(t) &= f'(u(x(t),t)) \\ x(t_0) &= x_0 \end{cases} \times (t) = x_0 + (t-t_0)f'(u(x_0,t_0))$$

$$\frac{x(t)}{x(t_0)} = x_0$$

$$x(t) = x_0 + (t - t_0) f'(u(x_0, t_0))$$





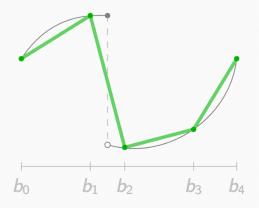
Representation of Initial Data

Set of Neural Network Functions:

$$M_n = \left\{ N(x) = c_{-1} + \sum_{i=0}^n c_i \sigma(\omega_i x - b_i) : b_i, c_i, \omega_i \in \mathbb{R} \right\}$$

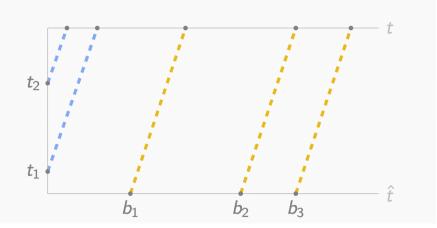
Least-Squares Approximation: Find $u_N^{(0)} \in M_n$ such that

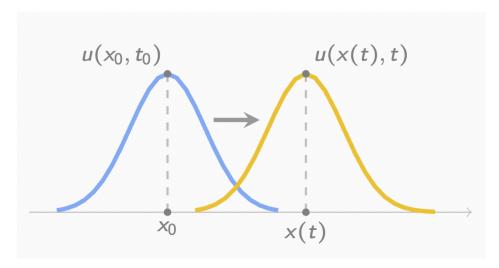
$$\|u_N^{(0)} - u_0\|_{L^2(\Omega)} = \min_{\mathbf{v} \in M_n} \|\mathbf{v} - \mathbf{u}_0\|_{L^2(\Omega)}$$



Characteristic Scheme

▶ Propagate breaking points of the initial and boundary data

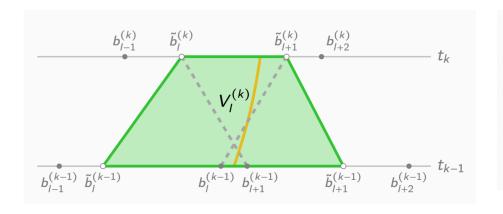


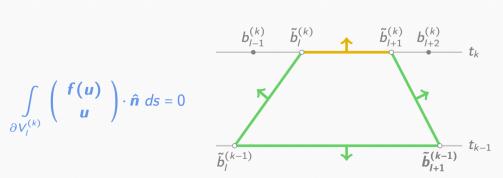


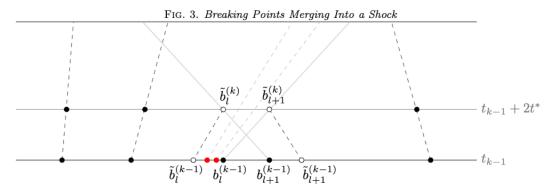
▶ Error Estimate

$$\|u(\cdot,t_k)-u_N^{(k)}\|_{L^p(\Omega)} \leq \left(\|u_0-u_N^{(0)}\|_{L^p(\Omega)}^p + \|g-g_N\|_{L^p(I)}^p\right)^{1/p}$$

Finite Volume Characteristic Scheme

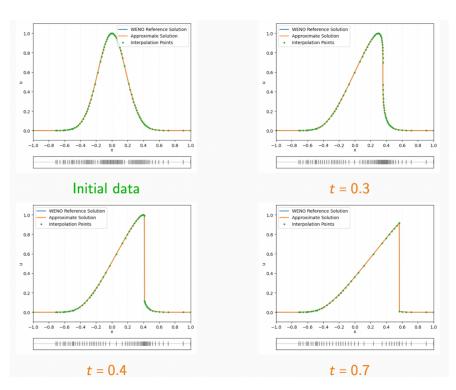






Shock Formation (exponential initial profile)

Inviscid Burgers' Equation



$\frac{\left\ \tilde{u}(\cdot,t_k) - u_N^{(k)}\right\ _{L^2(\Omega)}}{\left\ \tilde{u}(\cdot,t_k)\right\ _{L^2(\Omega)}}$	n_k
6.6207×10^{-4}	83
7.2902×10^{-4}	83
1.2718×10^{-2}	61
2.1803×10^{-2}	47
2.0423×10^{-2}	40
1.4822×10^{-2}	37
	6.6207×10^{-4} 7.2902×10^{-4} 1.2718×10^{-2} 2.1803×10^{-2} 2.0423×10^{-2}

ENN

- ▶ 83 breaking points
- ▶ 418 time steps

WENO

- ▶ 2000 mesh points
- ▶ **5000** time steps

Shock Formation (sinusoidal initial profile)

Inviscid Burgers' Equation

Time	$\frac{\left\ \tilde{u}(\cdot,t_k)-u_N^{(k)}\right\ _{L^2(\Omega)}}{\left\ \tilde{u}(\cdot,t_k)\right\ _{L^2(\Omega)}}$	n_k
0.0	6.6923×10^{-4}	78
0.1	7.8352×10^{-4}	78
0.2	4.0166×10^{-2}	56
0.3	5.1491×10^{-2}	38
0.4	5.3515×10^{-2}	30
0.5	5.4162×10^{-2}	25

ENN

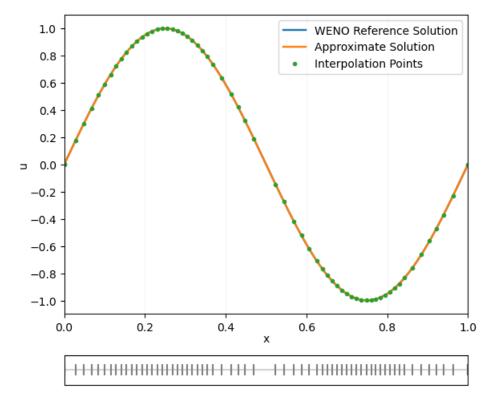
▶ 78 breaking points

▶ 587 time steps

WENO

▶ 1000 mesh points

▶ 2500 time steps

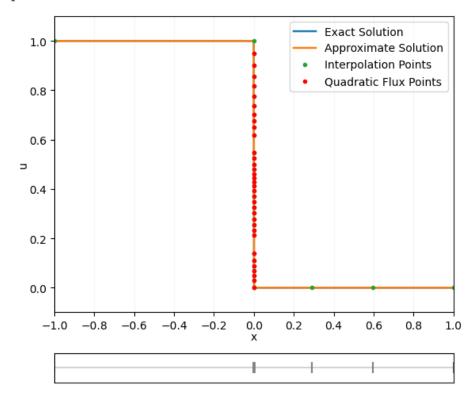


Compound Wave

Buckley-Leverett Equation

$$f(u) = \frac{u^2}{u^2 + \frac{1}{2}(1-u)^2}$$

Time	$\frac{\ u(\cdot,t_{k})-u_{N}^{(k)}\ _{L^{2}(\Omega)}}{\ u(\cdot,t_{k})\ _{L^{2}(\Omega)}}$	n_k
0.00	1.3732×10^{-2}	40
0.25	6.9084×10^{-3}	16
0.50	5.8335×10^{-3}	15



Summary

NN provides a new class of approximating functions

"Moving" mesh vs uniform mesh and adaptive mesh

Scalar hyperbolic conservation laws

LSNN (a space-time approach)

No numerical artifacts such as overshooting, oscillation, or smearing Complicated and expensive iterative solvers

ENN (a time-marching approach)

Super accurate and efficient for 1D scalar HCLs comparing with existing methods Extension to multi-dimension?

THANK YOU

