EFFICIENT PHYSICS-PRESERVED NEURAL NETWORK (P²NN) METHODS FOR SCALAR HYPERBOLIC CONSERVATION LAWS

Zhiqiang Cai¹

Collaborators: Min Liu², Jingshuang Chen, Junpyo Choi¹, Brooke Hejnal

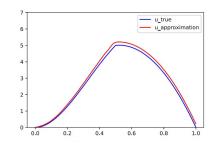
https://www.math.purdue.edu/~caiz/paper.html

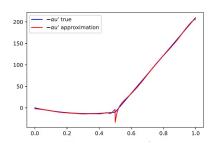
Deep Least-Squares Methods (C.-Chen-Liu-Liu, J. Comput. Phys., 420 (2020) 109707)

Deep least-squares methods: An unsupervised learning-based numerical method for solving elliptic PDEs

$$\begin{cases} -(au'(x))' = f(x), & x \in \Omega = (0, 1), \\ u = 0, & x \in \partial\Omega = \{0, 1\}, \end{cases}$$

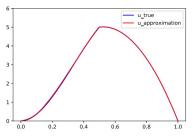
1D elliptic interface problem with the jump size 9 1-32-32-24-24-1 NN, 20000 Adam iterations

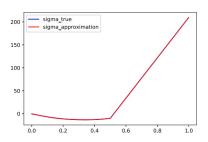




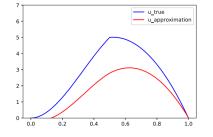
Deep Ritz

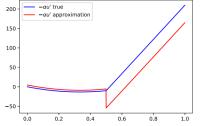
Importance of (i) PDE Formulation!





Deep FOSLS



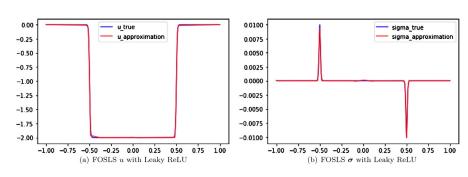


Simplified Bramble-Schatz LS (1970) ⇒ PINNs (1994)

Department of Mathematics

1D Interior Layers

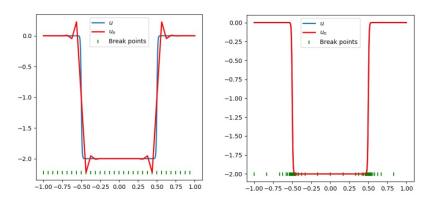
1D singularly perturbed diffusion-reaction problem

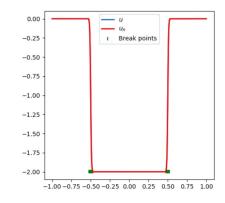


$$\begin{cases} -\varepsilon^2 u''(x) + u(x) = f(x), & x \in \Omega = (-1, 1), \\ u = 0, & x \in \partial \Omega = \{-1, 1\}. \end{cases}$$

1-32-32-24-24-2, 2962 parameters, about 20 hours

Importance of (ii) NN architecture and efficient (iii) Nonlinear Solver!



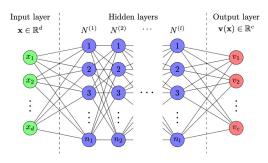


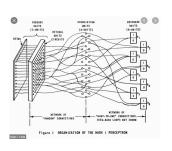
Efficient shallow Ritz method C.-Doktorova-Falgout-Herrera (2024) 1-32-1, 64 parameters, about 70 seconds

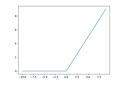
- Why Using ReLU Neural Network?
- Physics-Preserved Neural Network (P²NN) Methods for HCLs
 - (i) Least-squares neural network (LSNN) method (a space-time approach)
 - (ii) Evolving neural network (ENN) method (an approach emulating physics)
- Efficient Nonlinear Solver

ReLU Neural Networks (NNs)

• Fully-connected (Multi-Layer Perceptron) NN (Rosenblatt 1958)







$$\sigma(t) = \begin{cases} t, & t > 0, \\ 0, & t \le 0. \end{cases}$$

A class of approximating functions (ReLU NN) ⇒ C⁰ piecewise linear functions

$$\mathcal{M}_N(d,l) = \left\{ c_0 + \sum_{j=1}^{n_l} c_j x_j^{(l)}(\mathbf{x}) : \mathbf{c} \in \mathcal{R}^{n_l+1}, \boldsymbol{\omega}^{(k)} \in \mathcal{R}^{n_{k-1} \times n_k}, \mathbf{b}^{(k)} \in \mathcal{R}^{n_k} \right\}$$
 where $\mathbf{x}^{(0)} = \mathbf{x}$ and $x_i^{(k)}(\mathbf{x}) = \sigma\left(\boldsymbol{\omega}_i^{(k)} \mathbf{x}^{(k-1)} + b_i^{(k)}\right)$

Why Using Neural Networks instead of Finite Elements?

Scalar Nonlinear Hyperbolic Conservation Laws

Scalar Nonlinear Hyperbolic Conservation Laws

$$\begin{cases} \frac{\partial}{\partial t} u(\mathbf{x}, t) + \sum_{i=1}^{d} \frac{\partial}{\partial x_i} f_i(u(\mathbf{x}, t)) &= 0, & \text{in } \mathcal{R}^d \times (0, T), \\ u(\mathbf{x}, 0) &= u_0(\mathbf{x}), & \text{in } \mathcal{R}^d \end{cases}$$

The Rankine-Hugoniot jump condition

$$\left(\mathbf{f}(u^+), u^+\right) \cdot \mathbf{n}^+\Big|_{\Gamma} + \left(\mathbf{f}(u^-), u^-\right) \cdot \mathbf{n}^-\Big|_{\Gamma} = 0$$

- **Numerical and Theoretical Difficulties**
 - discontinuous solution with unknown interfaces
 - formulation, theory, ...

1-Dimensional Unit Step Function with Unknown Interface

Unit step function and its CPWL approximation

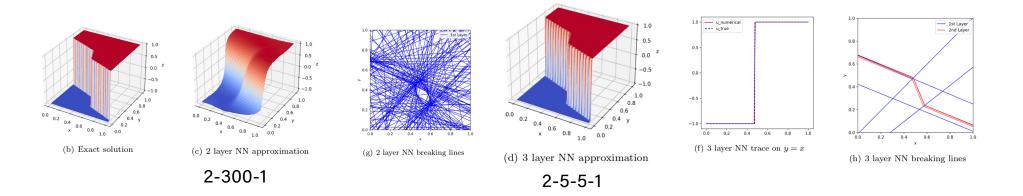
$$f_c(x) = \begin{cases} 0, & a < x < c, \\ 1, & c < x < b \end{cases} \qquad p_c(x) = \begin{cases} 0, & a < x \le c - \varepsilon, \\ \frac{x - (c - \varepsilon)}{2\varepsilon}, & c - \varepsilon \le x \le c + \varepsilon, \\ 1, & c + \varepsilon \le x < b \end{cases}$$

$$\|f_c - p_c\|_{L^{\infty}(I)} = \frac{1}{2} \quad \text{and} \quad \|f_c - p_c\|_{L^r(I)} = \frac{\varepsilon^{1/r}}{2^{1 - 1/r}(1 + r)^{1/r}}$$

- Finite element approximation on a quasi-uniform mesh
 - very fine mesh-size: $h = \varepsilon$
 - overshooting, oscillation, etc.
- **Neural Network approximation**

$$p_c(x) = \frac{1}{2\varepsilon} \left[\sigma(x - c + \varepsilon) - \sigma(x - c - \varepsilon) \right] \in \mathcal{M}_2(1, 1)$$

d-Dimensional Unit Step Function with Unknown Interface



Let $\chi(\mathbf{x})$ be the unit step function with unknown C^0 interface and let $l = \lceil \log_2(d+1) \rceil$). For any given $\varepsilon > 0$, we have

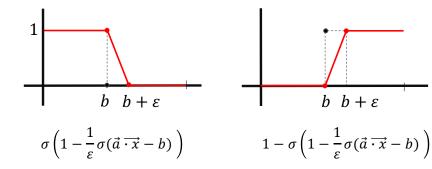
$$\min_{v \in \mathcal{M}_N(d,l)} \|\chi - v\|_{L^r(\Omega)} = \mathcal{O}(\varepsilon^{1/r}).$$

C., J. Choi, and M. Liu, SISC (2024) (d=2, 3, l=2; d=4,...,8, l=3)

A New Result in R^d (C.-Choi-Liu, 2024)

Let $\chi(\mathbf{x})$ be the unit step function with unknown C^0 interface. For any given $\varepsilon > 0$, we have

$$\min_{v \in \mathcal{M}_N(d, 2)} \|\chi - v\|_{L^r(\Omega)} = \mathcal{O}(\varepsilon^{1/r}).$$



The **P²NN Method** (C.-Chen-Liu, J. Comput. Appl. Math., 433 (2023) 115298)

Scalar Nonlinear Hyperbolic Conservation Laws

$$\begin{cases} \frac{\partial}{\partial t} u(\mathbf{x}, t) + \sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} f_{i}(u(\mathbf{x}, t)) &= 0, \qquad (\mathbf{f}(u^{+}), u^{+}) \cdot \mathbf{n}^{+} \Big|_{\Gamma} + (\mathbf{f}(u^{-}), u^{-}) \cdot \mathbf{n}^{-} \Big|_{\Gamma} = 0, \\ u(\mathbf{x}, 0) &= u_{0}(\mathbf{x}), \quad \text{in } \mathcal{R}^{d} \end{cases}$$

The Rankine-Hugoniot jump condition

$$\left(\mathbf{f}(u^+), u^+\right) \cdot \mathbf{n}^+\Big|_{\Gamma} + \left(\mathbf{f}(u^-), u^-\right) \cdot \mathbf{n}^-\Big|_{\Gamma} = 0$$

• The total flux $\mathbf{F}(u) = (\mathbf{f}(u), u)$

$$\nabla \cdot \mathbf{F}(u) = 0$$
, in $(\mathcal{R}^d \times I) \setminus \mathbf{\Gamma}$ and $[\![\mathbf{F}(u) \cdot \mathbf{n}]\!]_{\mathbf{\Gamma}} = 0$

Equivalent Least-Squares Minimization Formulation

$$\nabla \cdot \mathbf{F}(u) = 0$$
, in $(\mathcal{R}^d \times I) \setminus \mathbf{\Gamma}$ and $[\![\mathbf{F}(u) \cdot \mathbf{n}]\!]_{\mathbf{\Gamma}} = 0$

Solution set

$$V_{\mathbf{f}}(u_0) = \{ v \in L^2(\mathcal{R}^d \times I) : \mathbf{F}(v) \in H(\operatorname{div}; \mathcal{R}^d \times I), v(\mathbf{x}, 0) = u_0(\mathbf{x}) \}$$

Least-squares functional

$$\mathcal{L}(v; \mathbf{f}) = \| \operatorname{div} \mathbf{F}(v) \|_{0, \mathcal{R}^d \times I}^2$$

Equivalent Least-squares formulation

Find
$$u \in V_{\mathbf{f}}(u_0)$$
 such that $u = \underset{v \in V_{\mathbf{f}}(u_0)}{\arg \min} \mathcal{L}(v; \mathbf{f})$

Divergence operator

$$\operatorname{\mathbf{div}} \mathbf{F}(u(\mathbf{x},t)) = \lim_{\epsilon \to 0} \frac{1}{|B_{\epsilon}(\mathbf{x},t)|} \int_{\partial B_{\epsilon}(\mathbf{x},t)} \mathbf{F}(u) \cdot \mathbf{n} \, dS,$$

Physics-Preserved Neural Network (P²NN) Discretization

Physics-Preserved discrete divergence operator (C.-Chen-Liu, J Comput Appl Math (2023))

Let \mathcal{T} be a partition of the domain $\Omega \subset \mathbb{R}^{d+1}$. For any $K \in \mathcal{T}$, let \mathbf{z}_K be the centroid of K.

$$\operatorname{\mathbf{div}}_{\!\scriptscriptstyle \mathcal{T}} \mathbf{F} \big(u(\mathbf{z}_{\scriptscriptstyle K}) \big) \approx \operatorname{avg}_{K} \operatorname{\mathbf{div}} \mathbf{f}(u) = \frac{1}{|K|} \int_{\partial K} \mathbf{F}(u) \cdot \mathbf{n} \, dS$$

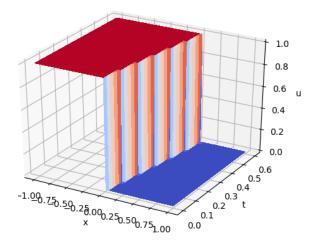
Least-squares neural network (LSNN) method

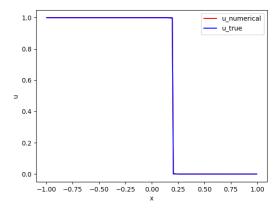
Find
$$u_n \in \mathcal{M}(l,n) \subset V_{\mathbf{f}}$$
 such that $u_n = \operatorname*{arg\,min}_{v \in \mathcal{M}(l,n)} \mathcal{L}_{\mathcal{T}}(v;\mathbf{f})$,

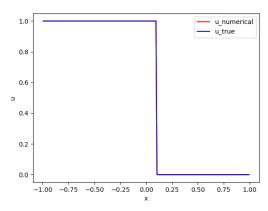
where $\mathcal{L}_{\mathcal{T}}(v; \mathbf{f})$ is a discrete LS functional based on $\mathcal{L}(v; \mathbf{f})$.

Inviscid Burger Equation $f(u) = \frac{1}{2}u^2$

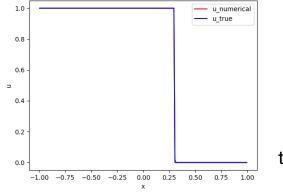
Riemann Problem Shock formation: exact solution







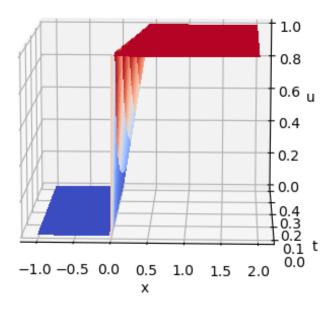
t = 0.2

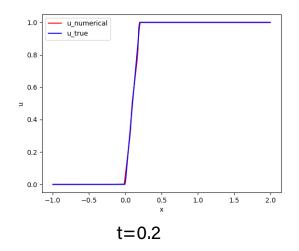


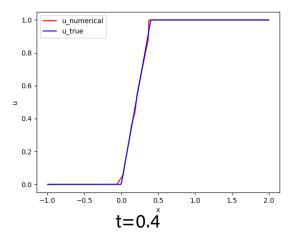
t = 0.6

(2-10-10-1)

Riemann Problem Rarefaction wave: exact solution







(2-10-10-1)

Buckley-Leverett Problem $f(u) = u(1-u)/[u^2 + a(1-u)^2]$

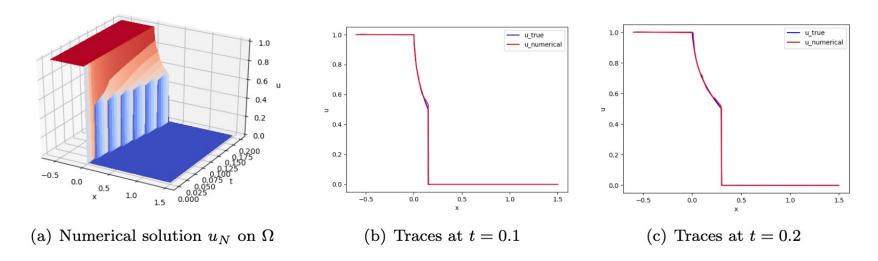
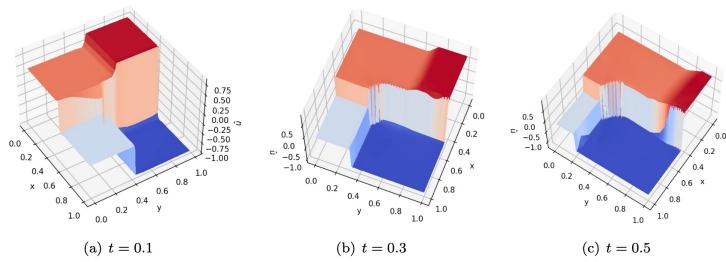


Fig. 6. Numerical results of Buckley-Leverett Riemann problem

2D Inviscid Burger Equation $f(u) = \frac{1}{2}(u^2, u^2)$

Network structure	Block	$rac{\ u^k-u^k_{\mathcal{T}}\ _0}{\ u^k\ _0}$
	$\Omega_{0,1}$	0.093679
3-48-48-48-1	$\Omega_{1,2}$	0.121375
	$\Omega_{2,3}$	0.163755
	$\Omega_{3,4}$	0.190460
	$\Omega_{4,5}$	0.213013



PURDUE UNIVERSITY

Department of Mathematics

Evolving Neural Network (ENN) Method (C. and B. Hejnal)

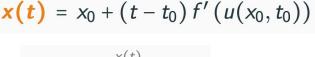
One-Dimensional Scalar Nonlinear Hyperbolic Conservation Laws

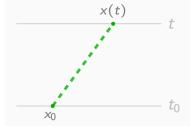
$$\begin{cases} \frac{\partial}{\partial t} u(x,t) + \frac{\partial}{\partial x} f \big(u(x,t) \big) &= 0, & \text{in } \Omega \times (0,T), \\ \\ u(x,t) &= g(t), & \text{on } \Gamma_-, \\ \\ u(x,0) &= u_0(x), & \text{in } \Omega \end{cases}$$

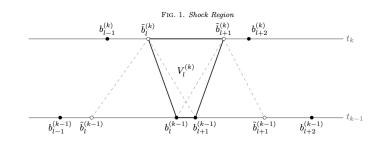
Two features of HCLs (characteristic line and shock formation)

$$\begin{cases} \frac{d}{dt}x(t) = f'(u(x(t),t)) \\ x(t_0) = x_0 \end{cases} \times (t) = x_0 + (t-t_0)f'(u(x_0,t_0))$$

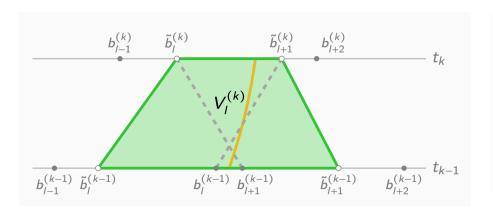
$$\frac{d}{dt}u(x(t),t) = 0$$

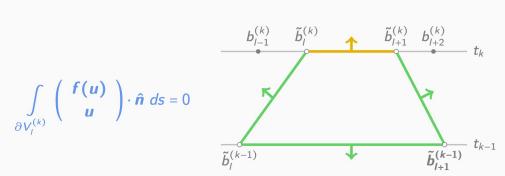


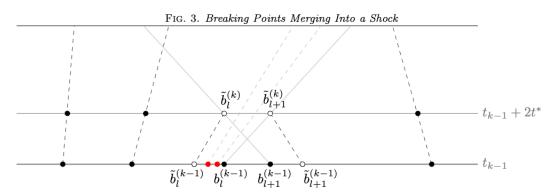




Finite Volume Characteristic Scheme

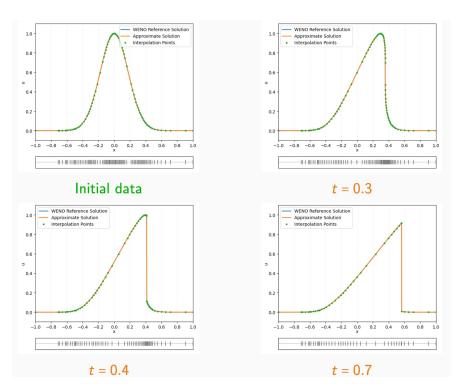






Shock Formation (exponential initial profile)

Inviscid Burgers' Equation



Time	$\frac{\left\ \tilde{u}(\cdot,t_k)-u_N^{(k)}\right\ _{L^2(\Omega)}}{\left\ \tilde{u}(\cdot,t_k)\right\ _{L^2(\Omega)}}$	n_k
0.0	6.6207×10^{-4}	83
0.2	7.2902×10^{-4}	83
0.4	1.2718×10^{-2}	61
0.6	2.1803×10^{-2}	47
0.8	2.0423×10^{-2}	40
1.0	1.4822×10^{-2}	37

ENN

- ▶ 83 breaking points
- ▶ 418 time steps

WENO

- ▶ 2000 mesh points
- ▶ **5000** time steps

Shock Formation (sinusoidal initial profile)

Inviscid Burgers' Equation

Time	$\frac{\left\ \tilde{u}(\cdot,t_k)-u_N^{(k)}\right\ _{L^2(\Omega)}}{\left\ \tilde{u}(\cdot,t_k)\right\ _{L^2(\Omega)}}$	n_k
0.0	6.6923×10^{-4}	78
0.1	7.8352×10^{-4}	78
0.2	4.0166×10^{-2}	56
0.3	5.1491×10^{-2}	38
0.4	5.3515×10^{-2}	30
0.5	5.4162×10^{-2}	25

ENN

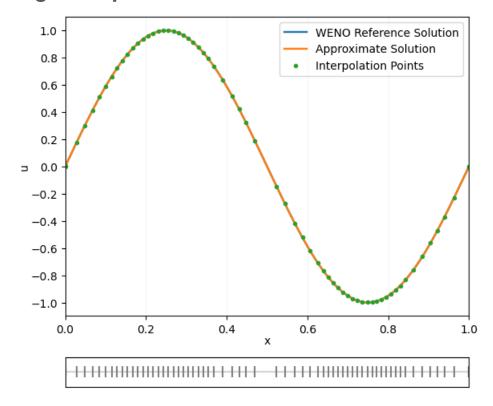
▶ **78** breaking points

▶ **587** time steps

WENO

▶ 1000 mesh points

▶ 2500 time steps

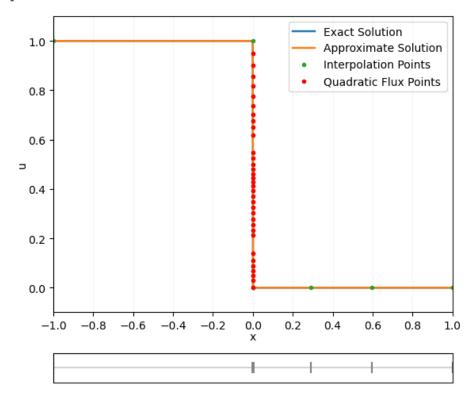


Compound Wave

Buckley-Leverett Equation

$$f(u) = \frac{u^2}{u^2 + \frac{1}{2}(1-u)^2}$$

Time	$\frac{\ u(\cdot,t_k)-u_N^{(k)}\ _{L^2(\Omega)}}{\ u(\cdot,t_k)\ _{L^2(\Omega)}}$	n_k
0.00	1.3732×10^{-2}	40
0.25	6.9084×10^{-3}	16
0.50	5.8335×10^{-3}	15



Efficient Nonlinear Solver

1D Diffusion problem

$$\begin{cases} -(a(x)u'(x))' = f(x), & x \in I = (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

Shallow Ritz method

find
$$u_n \in \mathcal{M}_n(\Omega) = \left\{ \alpha + \sum_{i=1}^n c_i \sigma(x - b_i) : c_i \in \mathbb{R}, 0 = b_0 \le b_1 < \dots < b_n < b_{n+1} = 1 \right\}$$
 s.t.

$$J(u_n) = \min_{v \in \mathcal{M}_n(\Omega)} J(v)$$

$$J(v) = \frac{1}{2} \int_0^1 a(x) (v'(x))^2 dx - \int_0^1 f(x) v(x) dx + \frac{\gamma}{2} (v(1) - \beta)^2.$$

Error estimate for non-smooth solution in H^{1+a}

$$||u - u_n||_a \le C \left(n^{-1} + \gamma^{-1/2}\right)$$

Algebraic Structure

Optimality conditions for critical points

$$\mathbf{0} = \nabla_{\mathbf{c}} J(u_n) = \mathcal{A}(\mathbf{b}) \mathbf{c} - \mathcal{F}(\mathbf{b})$$
 and $\mathbf{0} = \nabla_{\mathbf{b}} J(u_n) = \mathbf{D}(\mathbf{c}) \{ \mathbf{g} - \gamma(u_n(1) - \beta) \mathbf{1} \}$

Coefficient and Hessian matrices

$$\mathcal{A}(\mathbf{b}) = A(\mathbf{b}) + \gamma \mathbf{dd}^T$$
 and $\nabla_{\mathbf{b}}^2 J(u_n) \equiv \mathcal{H}(\mathbf{c}, \mathbf{b}) = \mathbf{D}(\mathbf{c}) \left(\mathbf{B}(\mathbf{b}) + \gamma \mathbf{c} \mathbf{1}^T \right)$

where A(b) is symmetric positive definite and B(b) is diagonal

Condition number

$$\kappa(A) = \mathcal{O}\left(n \, h_{\min}^{-1}\right)$$
 and $\kappa(M) = \mathcal{O}\left(n \, h_{\min}^{-3}\right)$

where A(b) and M(b) are ill-conditioned, but their inverses are tri-diagonal

damped Block Newton (dBN) Method

Algorithm 5.1 A damped block Newton (dBN) method for (3.4)

Input: Initial network parameters $\mathbf{b}^{(0)}$, coefficient function a(x), the right-hand side function f(x), boundary data α and β .

Output: Network parameters c, b

for
$$k = 0, 1 ... do$$

 \triangleright Linear parameters

$$\mathbf{c}^{(k+1)} \leftarrow \mathcal{A}\left(\mathbf{b}^{(k)}\right)^{-1} \mathcal{F}\left(\mathbf{b}^{(k)}\right)$$

▷ Non-linear parameters

Compute the search direction $\mathbf{p}^{(k)}$ as in (5.7)

$$\eta_k \leftarrow \operatorname*{argmin}_{\eta \in \mathbb{R}^+} J(u_n(x; \mathbf{c}^{(k+1)}, \mathbf{b}^{(k)} + \eta \mathbf{p}^{(k)}))$$

$$\mathbf{b}^{(k+1)} \leftarrow \mathbf{b}^{(k)} + \eta_k \mathbf{p}^{(k)}$$

 \triangleright Redistribute non-contributing neurons and sort $\mathbf{b}^{(k+1)}$

end for

C.-Dokotorova-Falgout-Herrera, Efficient shallow Ritz method for 1D diffusion problems, arXiv:2404.17750[math.NA]

1D Non-Smooth Solution

• 1D diffusion problem with non-smooth solution $u(x)=x^{2/3}$ in $H^{1+1/6}$

Method (n breakpoints)	e_n	ξ_n	r
dBN (10)	1.41×10^{-1}	0.173	0.849
dBN (14)	1.08×10^{-1}	0.129	0.844
dBN (19)	8.16×10^{-2}	0.095	0.851
dBN (24)	6.71×10^{-2}	0.077	0.850
AdBN (14)	9.22×10^{-2}	0.106	0.903
AdBN (19)	7.05×10^{-2}	0.079	0.901
AdBN (24)	5.75×10^{-2}	0.063	0.899
aFEM (10)	3.39×10^{-1}	0.103	0.451
aFEM (27)	1.54×10^{-1}	0.049	0.570
aFEM (82)	6.88×10^{-2}	0.022	0.607
aFEM (122)	5.45×10^{-2}	0.017	0.606

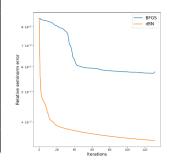


Table 3: Comparison of dBN, AdBN and aFEM for relative errors e_n , estimator errors ξ_n and powers r. The initial number of breakpoints for AdBN and aFEM is 10.

Summary

ReLU NN as a new class of approximating functions

Remarkable approximation property for non-smooth functions

NN discretization for interface problems

LSNN (a P²NN approach) for HCLs No numerical artifacts such as overshooting, oscillation, or smearing Complicated and expensive iterative solvers

ENN (an approach from physics to computation) Super accurate and efficient for 1D scalar HCLs comparing with existing methods Extension to multi-dimension?

Nonlinear iterative solvers for NN approximations

Structure-guided Gauss-Newton and Newton for shallow ReLU NN

THANK YOU

Collaborators: Min Liu Jingshuang Chen, Junpyo Choi, and Brooke Hejnal

Tong Ding, Min Liu, Xinyu Liu, and Jianlin Xia

Ana Doktorova, Rob Falgout, and Cesar Herrera

https://www.math.purdue.edu/~caiz/paper.html

