Chapter 12.1 3-dimensional coordinate system

- 1. Distance between points (x_1, y_1, z_1) and (x_2, y_2, z_2) is $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$.
- 2. Sphere with center (h, k, l) and radius r is $(x h)^2 + (y k)^2 + (z l)^2 = r^2$.

Chapter 12.2 Vectors

- 1. Vector from points $A(a_1, a_2, a_3)$ to $B(b_1, b_2, b_3)$ is $\overrightarrow{AB} = \langle b_1 a_1, b_2 a_2, b_3 a_3 \rangle$.
- 2. Sketch linear combinations of vectors. For example, given vectors \vec{a} and \vec{b} and scalars c and d, sketch $c\vec{a}$, sketch $\vec{b} \vec{a}$, sketch $c\vec{b} + d\vec{a}$.
- 3. Magnitude of $\vec{a} = \langle a_1, a_2, a_3 \rangle$ is $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$.

LESSON 2

Chapter 12.2 Vectors

- 1. Unit vectors $\vec{i} = <1, 0, 0>, \vec{j} = <0, 1, 0>$, and $\vec{k} = <0, 0, 1>$. $< a, b, c> = a\vec{i} + b\vec{j} + c\vec{k}$.
- 2. Let $\vec{a} = a_1 \vec{i} + a_2 \vec{j}$ be a two dimensional vector represented with initial point at the origin. If θ is the angle from the positive *x*-axis to \vec{a} , then $\vec{a} = a_1 \vec{i} + a_2 \vec{j} = (|\vec{a}| \cos \theta) \vec{i} + (|\vec{a}| \sin \theta) \vec{j}$.

LESSON 3

Chapter 12.3 Dot product

1. The dot product of $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$ is $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_1 b_3$.

2. If θ is the angle between \vec{a} and \vec{b} then $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$. \vec{a} and \vec{b} are perpendicular if and only if $\vec{a} \cdot \vec{b} = 0$.

- 3. Properties of the dot product. (see page 779 in the text)
- 4. Direction cosines. If $\vec{a} = \langle a_1, a_2, a_3 \rangle$, then $\langle \cos \alpha, \cos \beta, \cos \gamma \rangle = \left\langle \frac{a_1}{|\vec{a}|}, \frac{a_2}{|\vec{a}|}, \frac{a_3}{|\vec{a}|} \right\rangle$.

- 5. The vector projection of \vec{b} onto \vec{a} is a multiple of $\frac{\vec{a}}{|\vec{a}|}$, the unit vector in the direction of \vec{a} . Vector projection of \vec{b} onto \vec{a} is $proj_{\vec{a}}\vec{b} = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}\right)\frac{\vec{a}}{|\vec{a}|}$. Scalar projection of \vec{b} onto \vec{a} is $comp_{\vec{a}}\vec{b} = \frac{\overleftarrow{a}\cdot\vec{b}}{|\vec{a}|}$. $comp_{\vec{a}}\vec{b}$ is the "signed" length of $proj_{\vec{a}}\vec{b}$.

6. The work done by a constant force \overrightarrow{F} is the dot product $\overrightarrow{F} \cdot \overrightarrow{D}$ where \overrightarrow{D} is the displacement vector.

Chapter 12.4 Cross product

1. If
$$\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$$
 and $\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$
then $\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle.$

 \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$ form a right-hand system. $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b} .

- 2. If θ is the angle between \vec{a} and \vec{b} , then $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta$.
- 3. Properties of the cross product. (see page 790 of the text)
- 4. $|\vec{a} \times \vec{b}|$ is the area of the parallelogram determined by \vec{a} and \vec{b} .

 $\frac{|\vec{a} \times \vec{b}|}{2}$ is the area of the triangle determined by \vec{a} and \vec{b} .

5. $\left| \vec{a} \cdot (\vec{b} \times \vec{c}) \right|$ is the volume of the parallelopiped with edges \vec{a} , \vec{b} and \vec{c} .

Chapter 6.1 Area

Example on Left: Let a plane region R be bounded by y = f(x), y = g(x), x = a and x = b. (see figure below).

Example on **Right**: Let a plane region R be bounded by x = s(y), x = t(y), y = c and y = d. (see figure below).

Chapter 6.2 Volumes by cross section

Volumes by disks:

Always slice plane region PERPENDICULAR to the rotating axis

Volume =
$$\int_{a}^{b} \pi (\text{radius})^{2} (\text{thickness of slice}) = \int_{0}^{2} \pi \left(\left(2 - \frac{2}{3}y \right) - (0) \right)^{2} dx$$

Volumes by washers:

Always slice plane region PERPENDICULAR to the rotating axis

Volume =
$$\int_{a}^{b} \pi (R^2 - r^2)$$
 (thickness of slice) = $\int_{0}^{3} \pi \left((4 - 0)^2 - (4 - \left(2 - \frac{2}{3}y\right)^2) \right) dy$

Chapter 6.3 Volumes by cylindrical shells

Always slice plane region PARALLEL to the rotating axis

Volume =
$$\int_{a}^{b} 2\pi (\text{radius})(\text{Length of slice}) (\text{thickness of slice}) = \int_{0}^{2} 2\pi (4-x) \left(\left(3-\frac{3}{2}x\right) - (0) \right) dx$$

 $(0,3)$
 $y = 3-\frac{3}{2}x$
 $(0,0)y = 0(2,0)$
 $x = 4$

Chapter 6.4 Work

If a constant force F is exerted in moving a object a distance D along a line, then the work W done is W = FD. The units in the Metric and English systems are given below.

Quantity	EnglishSystem	MetricSystem
Mass m	$slug (=lb-sec^2/ft)$	kilogram kg
Force F	pounds (lbs)	Newtons $N \ (=kg-m/sec^2)$
Distance d	feet	meters m
Work W	ft-lbs	Joules J (=kg-m ² /sec ²)
g	$32 \ {\rm ft/sec^2}$	$9.8 \mathrm{~m/sec^2}$

Hooke's Law: The force f required to maintain a spring stretched x units beyond its natural length is proportional to x: f(x) = kx.

The Work W required to stretch a spring n units beyond its natural length is $W = \int_0^n kx \, dx$.

Lifting water (or a liquid) to the top of a tank.

Chapter 6.5 Average value of a function

The average value of a function f on the interval [a, b], f_{ave} , is given by $f_{ave} = \frac{1}{b-a} \int_a^b f(x) dx$.

LESSON 9

Chapter 7.1 Integration by parts

Let u = f(x) and v = g(x).

$$\int f(x)g'(x) \, dx = f(x)g(x) - \int g(x)f'(x) \, dx$$

which is the same as

$$\int u \, dv = uv - \int v \, du$$

LIATE: Choose u to be the left-most function in the list: L^{og} I^{nversetrig} A^{lgebraic} T^{rig} E^{xponential}

$$\int_{a}^{b} u \, dv = uv \Big|_{a}^{b} - \int_{a}^{b} v \, du$$