LESSON 10

Chapter 7.2 Trigonometric Integrals

1. Basic trig integrals you should know.

$$\int \sin x \, dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \sec^2 x \, dx = \tan x + C$$

$$\int \sec x \, \tan x \, dx = \sec x + C$$

$$\int \csc^2 x \, dx = -\cot x + C$$

$$\int \csc x \, \cot x \, dx = -\csc x + C$$

 $\int \tan x \, dx = \ln |\sec x| + C = -\ln |\cos x| + C$ $\int \sec x \, dx = \ln |\sec x + \tan x| + C$ $\int \cot x \, dx = \ln |\sin x| + C$ $\int \csc x \, dx = \ln |\csc x - \cot x| + C$

2. Products and powers of trig functions.

Usually the idea is to change the integral to the form $\int u^n du$ (or the integral of linear combinations of u^n).

Integrands containing powers of sine and cosine functions. $\int \sin^m x \cos^n x \, dx$.

- Odd powers of $\sin x$ factor odd factor of $\sin x$ and use the identity $\sin^2 x = 1 \cos^2 x$ to convert remaining even powers of $\sin x$ to $\cos x$. Then let $u = \cos x$.
- Odd powers of $\cos x$ factor odd factor of $\cos x$ and use the identity $\cos^2 x = 1 \sin^2 x$ to convert remaining even powers of $\cos x$ to $\sin x$. Then let $u = \sin x$.
- No odd powers of $\sin x$ or $\cos x$ use $\cos^2 x = \frac{1}{2} + \frac{1}{2}\cos(2x)$ or $\sin^2 x = \frac{1}{2} \frac{1}{2}\cos(2x)$.

After integrating the trig identity $\sin 2x = \sin x \cos x$ may be useful.

Integrands containing tangent and secant functions. $\int \tan^m x \sec^n x \, dx$.

- factor $\sec^2 x$ and change remaining factors of $\sec^2 x$ to tangent using $\sec^2 x = \tan^2 x + 1$.
- factor $\tan x \sec x$ and change remaining factors of $\tan^2 x$ to secant using $\tan^2 x = \sec^2 x 1$.

LESSONS 11 and 12

Chapter 7.3 Trig Substitution

If integrand contains [*]	<u>Use this substitution</u>	And use this identity
$\sqrt{a^2 - (u(x))^2}$	$u(x) = a\sin\theta$	$1 - \sin^2 \theta = \cos^2 \theta$
$\sqrt{a^2 + (u(x))^2}$	$u(x) = a \tan \theta$	$1 + \sin^2 \theta = \sec^2 \theta$
$\sqrt{(u(x))^2 - a^2}$	$u(x) = a \sec \theta$	$\sec^2 \theta - 1 = \tan^2 \theta$

* Sometimes the integrand will contain powers of these roots.

Completing the square is sometimes necessary to get the forms $a^2 - (u(x))^2$, $a^2 + (u(x))^2$, or $(u(x))^2 - a^2$.

LESSONS 13 and 14

Chapter 7.3 Partial Fractions

- Let $\frac{P(x)}{Q(x)}$ be a rational function (P(x) and Q(x) are both polynomials) where P and Q have no common factors and the degree of P is less than the degree of Q. If P and Q have common factors, cancel them. If degree of P not less than degree of Q, then use long division to divide P by Q.
- Factor the denominator Q(x) into linear factors (ax+b) and irreducible quadratic factors $(ax^2+bx+c, where b^2 4ac < 0)$.
- *m* linear factors $(ax + b)^m$ give rise to *m* partial fractions of the form

$$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \frac{A_3}{(ax+b)^3} + \dots + \frac{A_{m-1}}{(ax+b)^{m-1}} + \frac{A_m}{(ax+b)^m}$$

 $A_1, A_2, A_3, \ldots, A_n$ are constants. When you set up your partial fractions use A, B, C, D, \ldots in the numerators instead. With the examples we use, you won't run out of letters!

• *n* irreducible quadratic factors $(ax^2 + bx + c)^n$ give rise to *n* partial fractions of the form

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \frac{A_3x + B_3}{(ax^2 + bx + c)^3} + \dots + \frac{A_{n-1}x + B_{n-1}}{(ax^2 + bx + c)^{n-1}} + \frac{A_nx + B_n}{(ax^2 + bx + c)^n}$$

 $A_1, A_2, A_3, \ldots, A_n$ and $B_1, B_2, B_3, \ldots, B_n$ are constants. When you set up your partial fractions use $Ax + B, Cx + D, Ex + F, \ldots$ in the numerators instead. With the examples we use, you won't run out of letters!

Set the rational function $\frac{P(x)}{Q(x)}$ equal to its sum of partial fractions. Next multiply both sides of this equation by the common denominator Q(x). Then solve for the constants by either choosing values of x that will eliminate all but one constant, and/or equating the coefficients of like powers of x to get a system of linear equations where the unknowns are the constants. Solve that system using your "favorite" method.

• When integrating the partial fractions, you will usually be dealing with the following kinds of integrals:

$$\int \frac{1}{x-a} \, dx = \ln|x-a| + C$$

$$\int \frac{1}{(x-a)^n} \, dx = \frac{(x-a)^{n+1}}{n+1} + C, \qquad n \neq -1$$

$$\int \frac{1}{x^2+a} \, dx = \frac{1}{\sqrt{a}} \tan^{-1} \frac{x}{\sqrt{a}} + C$$

LESSON 15

Chapter 7.6 Integation using tables

When using a table of integrals to evaluate $\int f(x) dx$, remember that x is not always equal to u. Sometimes you first must use a substitution u = u(x). If you don't, your answer will be incorrect by a constant factor.

Chapter 7.7 Approximate Integration

To approximate $\int f(x) dx$, subdivide the interval [a, b] into n equal subintervals. Let $x_i = a + i\left(\frac{b-a}{n}\right)$. Note that $x_0 = a$ and $x_n = b$.

• Midpoint Rule:

$$\int_{a}^{b} f(x)dx \approx M_{n} = \left(\frac{b-a}{n}\right) \left(f\left(\frac{x_{0}+x_{1}}{2}\right) + f\left(\frac{x_{1}+x_{2}}{2}\right) + f\left(\frac{x_{2}+x_{3}}{2}\right) + \dots + f\left(\frac{x_{n-1}+x_{n}}{2}\right) \right)$$

• Trapeziodal Rule:

$$\int_{a}^{b} f(x)dx \approx T_{n} = \left(\frac{b-a}{2n}\right) (f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-1}) + f(x_{n})).$$

• Simpson's Rule: Note: n must be even c^b

$$\int_{a}^{a} f(x)dx \approx S_{n} = \left(\frac{b-a}{3n}\right) (f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + 2f(x_{4}) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n})).$$

LESSON 16

Chapter 7.8 Improper Integrals

The integral $\int_{a}^{b} f(x)dx$ is "improper" if at least one of the following is true:

- $a = \infty$
- $b = -\infty$
- f has an infinite discontinuity at some point c in the interval [a, b] (the graph of f has a vertical asymptote x = c).

We determine whether an "improper" integral has a value by evaluating the limit of "proper" integrals as follows: (remember to evaluate the proper integral on the right-hand side <u>before</u> evaluating the limit)

Improper integral of Type I

•
$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx.$$

•
$$\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx.$$

Improper integral of Type II

If f has a discontinuity at a, then ∫_a^b f(x)dx = lim_{t→a⁺} ∫_t^b f(x)dx.
If f has a discontinuity at b, then ∫_a^b f(x)dx = lim_{t→b⁻} ∫_a^t f(x)dx.

If the limit exists, then the limit value is the value of the improper integral. If the limit does not exist, then the improper integral is divergent.

If f has an infinite discontinuity at c where a < c < b, then

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

provided BOTH improper integrals on the right hand side exist. If either diverges, then $\int_a^b f(x)dx$ diverges.

An important integral: $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ is convergent if p > 1 and divergent if $p \le 1$.

Comparison Test for Improper Integrals When you can't determine an anti-derivative for an improper integral, a comparison with a known convergent or divergent integral is useful.

• Suppose that f and g are continuous functions with $0 \le g(x) \le f(x)$ for $x \ge a$.

If
$$\int_{a}^{\infty} f(x)dx$$
 is convergent, then $\int_{a}^{\infty} g(x)dx$ is convergent.
If $\int_{a}^{\infty} g(x)dx$ is divergent, then $\int_{a}^{\infty} f(x)dx$ is divergent.

LESSON 17

Chapter 8.1 Arc length

• If y = f(x) and $a \le x \le b$, then $L = \int_a^b \sqrt{1 + (f'(x))^2} dx$ • If x = g(y) and $c \le y \le d$, then $L = \int_c^d \sqrt{1 + (g'(y))^2} dy$

Chapter 8.2 Area of a surface of revolution

