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LESSON 18

Chapter 8.3 Moments and Center of Mass

The center of mass of a discrete system of masses m1,m2,m3, . . . ,mn located at points
(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn), respectively, is the point (x, y) where

x =
My

m
=

n
∑

i=1

mixi

n
∑

i=1

mi

, y =
Mx

m
=

n
∑

i=1

miyi

n
∑

i=1

mi

Mx is the moment about the y–axis, My is the moment about the x–axis, and m is the mass of the
system.

The center of mass of a plate (lamina) bounded above by y = f(x), below by y = g(x), and by
x = a and x = b, with constant density ρ is the point (x, y), where

x =
My

mass
=

∫ b

a

(ρ)(x)(f(x) − g(x))dx

∫ b

a

(ρ)(f(x) − g(x))dx

=

∫ b

a

(x)(f(x) − g(x))dx

∫ b

a

(f(x) − g(x))dx

y =
Mx

mass
=

∫ b

a

(ρ)

(

f(x) + g(x)

2

)

(f(x) − g(x))dx

∫ b

a

(ρ)(f(x) − g(x))dx

=

∫ b

a

(

1

2

)

(f(x)2 − g(x)2)dx

∫ b

a

(f(x) − g(x))dx

x

y

a b

y = f(x)

y = g(x)

x

f(x) + g(x)

2

• Theorem of Pappus: Let R be a plane region that lies entirely on one side of a line l in a plane.
If R is rotated about l, then the volume of the resulting solid is the product of the area A of R and
the distance d traveled by the centroid of R.



LESSON 19

Chapter 11.1 Sequences

• Limit Laws for Sequences (page 693-695)

• Squeeze Theorem for Sequences

• Theorem if lim
n→∞

|an| = 0 then lim
n→∞

an = 0.

• Theorem if lim
n→∞

an = L and the function f is continuous at L, then lim
n→∞

f(an) = f(L).

• Monotonic sequences (increasing or decreasing sequences). Bounded sequences.

• Monotonic Sequence Theorem Every bounded, monotonic sequence is convergent.

LESSON 20

Chapter 11.2 Series

1. Let
∞
∑

n=1

an = a1 + a2 + a3 + · · · be a series.

• Let sN =
N

∑

n=1

an = a1 + a2 + a3 + · · · + aN be the N–th partial sum.

• If the sequence sN converges so that lim
N→∞

sN = s is a real number, then the series

∞
∑

n=1

an is

convergent and
∞
∑

n=1

an = s.

• If lim
N→∞

sN does not exist, then the series is divergent.

2. The geometric series

∞
∑

n=1

arn−1 =

{ a

1 − r
, if − 1 < r < 1

divergent, if r ≥ 1 or r ≤ −1

3. The harmonic series

∞
∑

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · · is divergent.

4. The Divergence Test: If lim
n→∞

an does not exist or lim
n→∞

an 6= 0, then the series
∞
∑

n=1

an is divergent.

5. The algebra of convergent series. If
∞
∑

n=1

an and
∞
∑

n=1

bn are convergent series and c is a constant,

then so are
∞
∑

n=1

can,
∞
∑

n=1

(an + bn) and
∞
∑

n=1

(an − bn), and

•
∞
∑

n=1

can = c

∞
∑

n=1

an



•
∞
∑

n=1

(an + bn) =
∞
∑

n=1

an +
∞
∑

n=1

bn

•
∞
∑

n=1

(an − bn) =
∞
∑

n=1

an −
∞
∑

n=1

bn

LESSON 21 Chapter 11.3 The Integral Test and p–series

1. The Integral Test: Suppose f is a continuous, positive, decreasing function on [1,∞) and

f(n) = an. Then the series
∞
∑

n=1

an is convergent if and only if the improper integral

∫

∞

1

f(x) dx is

convergent. In other words:

• if

∫

∞

1

f(x) dx is convergent, then
∞
∑

n=1

an is convergent.

• if

∫

∞

1

f(x) dx is divergent, then
∞
∑

n=1

an is divergent.

2. The p–series

∞
∑

n=1

1

np
is convergent if p > 1 and is divergent if p ≤ 1.

LESSON 22 Chapter 11.4 The Comparison Tests

1. The Comparison Test: Suppose that
∞
∑

n=1

an and
∞
∑

n=1

bn are series with positive terms.

• If
∞
∑

n=1

bn is convergent and an ≤ bn for all n, then
∞
∑

n=1

an is convergent.

• If
∞
∑

n=1

bn is divergent and an ≥ bn for all n, then
∞
∑

n=1

an is divergent.

2. The Limit Comparison Test: Suppose that
∞
∑

n=1

an and
∞
∑

n=1

bn are series with positive terms. If

lim
n→∞

an

bn

= c, where c is a finite number and c > 0, then either both series converge or both diverge

LESSON 23 Chapter 11.5 Alternating Series

• An alternating series is a series whose terms are alternately positive and negative.

• The Alternating Series Test: If the alternating series

∞
∑

n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + b5 − b6 + · · · bn > 0

satisfies
(i) bn+1 ≤ bn for all n

(ii) lim
n→∞

bn = 0

then the series is convergent.



• Alternating Series Estimation Theorem: If s =
∞
∑

n=1

(−1)n−1bn is the sum of an alternating

series that satisfies

(i) 0 ≤ bn+1 ≤ bn, and (ii) lim
n→∞

bn = 0

then

|s − sn| ≤ bn+1

LESSONS 24 and 25 Chapter 11.6 Absolute Convergence and the Ratio and Root Tests

• A series
∞
∑

an is called absolutely convergent if the series of absolute valued terms
∞
∑

|an| is
convergent.

• A series
∞
∑

an is called conditionally convergent if it is convergent but the series
∞
∑

|an| is

divergent.

• If a series
∞
∑

an is absolutely convergent, then it is convergent.

• The Ratio Test

(i) If lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= L < 1, then the series
∞
∑

n=1

an is absolutely convergent (and therefore conver-

gent).

(ii) If lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= L > 1, then the series
∞
∑

n=1

an is divergent.

(iii) If lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= 1, then the Ratio Test is inconclusive, that is, no conclusion can be drawn

about the convergence or divergence of the series
∞
∑

n=1

an.

• The Root Test

(i) If lim
n→∞

n

√

|an| = L < 1, then the series
∞
∑

n=1

an is absolutely convergent (and therefore conver-

gent).

(ii) If lim
n→∞

n

√

|an| = L > 1, then the series
∞
∑

n=1

an is divergent.

(iii) If lim
n→∞

n

√

|an| = 1, then the Root Test is inconclusive, that is, no conclusion can be drawn

about the convergence or divergence of the series
∞
∑

n=1

an.

• A useful limit to know for the Root Test is lim
n→∞

(n)
1

n = 1.

• Strategy for Testing Series. See page 739 in the text.



LESSONS 26 Chapter 11.8 Power Series

• A power series has the form

∞
∑

n=0

cnxn = c0 + c1x + c2x
2 + c3x

3 + · · ·

where x is a variable and the cn’s are constants called the coefficients of the series.

• The sum of the series is a function

f(x) = c0 + c1x + c2x
2 + c3x

3 + · · · + cnxn + · · ·

whose domain is the set of all numbers x for which the series converges.

• A power series in (x− a) or a power series centered at a or a power series about a has the
form

∞
∑

n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + c3)x − a)3 + · · ·

.

• You usually determine the interval of convergence by using either the Ratio or Root tests. Con-
vergence at the endpoints of the interval is determined separately by substituting each endpoint
value of x into the power series.

• for a given power series
∞
∑

n=0

cn(x − a)n, there are only three possibilities:

(i) The series converges only when x = a.

(ii) The series converges for all x.

(iii) There is a positive number R such that the series converges if |x − a| < R and diverges if
|x − a| > R.

• The number R in case (iii) is called the radius of convergence.

• The interval of convergence is the interval consisting of all values of x for which the series
converges.

• In case (iii) there are 4 possible kinds of intervals:

(a − R, a + R) (a − R, a + R] [a − R, a + R) [a − R, a + R]

series converges for
a − R < x < a + R

aa − R a + Rseries diverges for
x < a − R

series diverges for
x > a + R

LESSONS 27 Chapter 11.9 Representation of Functions as Power Series

• You can substitute other powers of x for x in a power series. Of course you can also multiply a
power series by a constant (or by powers of x) and you can add different convergent power series to
create power series for different functions. Power Series can be integrated and differentiated (term



by term). In this section, we exploit the geomtric series
1

1 − x
=

∞
∑

n=0

xn, |x| < 1 by substitution,

multiplication by constants (and by powers of x), differentiation and integration.

LESSONS 28 and 29 Chapter 11.10 Taylor and Maclaurin Series

• If f has a power series representation at x = a, that is, if

f(x) =
∞
∑

n=0

cn(x − a)n |x − a| < R

then its coefficients are given by the formula

cn =
f (n)(a)

n!

that is, if f as a power series representation at x = a, then that power series must be

f(x) =

∞
∑

n=0

(

f (n)(a)

n!

)

(x − a)n = f(a) +
f ′(a)

1!
(x − a) +

f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)3 + · · ·

This power series is called the Taylor Series of f at x = a.

• The Maclaurin Series for f is the Taylor series at x = 0.
If f has a Maclaurin series, it is the series of the form

f(x) =
∞
∑

n=0

(

f (n)(0)

n!

)

xn = f(0) +
f ′(0)

1!
x +

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·

• Useful Maclaurin series and their radii of convergence:

1

1 − x
=

∞
∑

n=0

xn = 1 + x + x2 + x3 + · · · R = 1

ex =
∞
∑

n=0

xn

n!
= 1 +

x

1!
+

x2

2!
+

x3

3!
+ · · · R = ∞

sin(x) =
∞
∑

n=0

(−1)n x2n+1

(2n + 1)!
= x −

x3

3!
+

x5

5!
−

x7

7!
+ · · · R = ∞

cos(x) =
∞
∑

n=0

(−1)n x2n

(2n)!
= 1 −

x2

2!
+

x4

4!
−

x6

6!
+ · · · R = ∞


