Invariant Subspaces and Complex Analysis

Carl C. Cowen

Math 727 cowen@purdue.edu

Bridge to Research Seminar, October 8, 2015

Invariant Subspaces and Complex Analysis

Carl C. Cowen

Much of this work is joint with

Eva Gallardo Gutiérrez

Departamento Análisis Matemático,

Univ. Complutense de Madrid

(who visited Purdue in Fall 2014)

Main messages today:

- Most progress comes from looking with a different perspective.
 - You should develop your intuition.
 - You should work in areas where you have intuition.
 - Advisors and collaborators should help you develop your intuition!

My research areas:

Operator Theory

Complex Analysis

Linear Algebra

Doing Operator Theory is:

Doing Linear Algebra

and Calculus (with complex numbers)

in an Infinite Dimensional Euclidean Space.

Classify $n \times n$ matrices up to similarity: Jordan Canonical Form

For a given matrix A,

which matrices B satisfy AB = BA,

and what subspaces M satisfy $AM \subset M$?

Classify $n \times n$ matrices up to similarity: Jordan Canonical Form

For a given matrix A,

which matrices B satisfy AB = BA,

and what subspaces M satisfy $AM \subset M$?

 \uparrow Invariant Subspaces!

Classify $n \times n$ matrices up to similarity: Jordan Canonical Form For a given matrix A,

which matrices B satisfy AB = BA, and what subspaces M satisfy $AM \subset M$?

An important example(!):

$$\left(\begin{array}{ccccccc} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right)$$

Classify $n \times n$ matrices up to similarity: Jordan Canonical Form For a given matrix A,

which matrices B satisfy AB = BA,

and what subspaces M satisfy $AM \subset M$?

The goal in answering these questions is to understand the *structure* of linear transformations.

The eigenspaces of linear transformations are invariant subspaces and play a key role in describing the structure!

to infinite dimensional spaces:

Hilbert spaces are infinite dimensional Euclidean spaces: \mathbb{C}^n expands to ℓ^2

$$v = (a_0, a_1, a_2, \cdots)$$
 with $||v||^2 = \sum_{n=0}^{\infty} |a_n|^2$ and $\langle v, w \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n}$

to infinite dimensional spaces:

Hilbert spaces are infinite dimensional Euclidean spaces: \mathbb{C}^n expands to ℓ^2 $v = (a_0, a_1, a_2, \cdots)$ with $||v||^2 = \sum_{n=0}^{\infty} |a_n|^2$ and $\langle v, w \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n}$

It is now convenient to insist that $||Ax|| \le K ||x||$

so that the function $x \mapsto Ax$ is continuous: the best value for $K \equiv ||A||$

to infinite dimensional spaces:

Hilbert spaces are infinite dimensional Euclidean spaces: \mathbb{C}^n expands to ℓ^2 $v = (a_0, a_1, a_2, \cdots)$ with $||v||^2 = \sum_{n=0}^{\infty} |a_n|^2$ and $\langle v, w \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n}$

It is now convenient to insist that $||Ax|| \leq K ||x||$ so that the function $x \mapsto Ax$,

a linear operator, is continuous: the best value for $K \equiv ||A||$.

to infinite dimensional spaces:

Hilbert spaces are infinite dimensional Euclidean spaces: \mathbb{C}^n expands to ℓ^2 $v = (a_0, a_1, a_2, \cdots)$ with $||v||^2 = \sum_{n=0}^{\infty} |a_n|^2$ and $\langle v, w \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n}$

It is now convenient to insist that $||Ax|| \leq K ||x||$ so that the function $x \mapsto Ax$,

a linear operator, is continuous: the best value for $K \equiv ||A||$.

Problems:

Classify operators up to similarity.

For a given operator A,

which operators B satisfy AB = BA,

and what subspaces M satisfy $AM \subset M$?

to infinite dimensional spaces:

Hilbert spaces are infinite dimensional Euclidean spaces: \mathbb{C}^n expands to ℓ^2 $v = (a_0, a_1, a_2, \cdots)$ with $||v||^2 = \sum_{n=0}^{\infty} |a_n|^2$ and $\langle v, w \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n}$

It is now convenient to insist that $||Ax|| \leq K ||x||$ so that the function $x \mapsto Ax$,

a linear operator, is continuous: the best value for $K \equiv ||A||$.

Problems:

Classify operators up to similarity. (unsolved!)

For a given operator A,

which operators B satisfy AB = BA, (unsolved!)

and what subspaces M satisfy $AM \subset M$? (unsolved!)

An important example(!):

On
$$\ell^2 = \{ v = (a_0, a_1, a_2, \cdots) : \|v\|^2 = \|\sum |a_n|^2 < \infty \}$$

the unilateral shift operator is:

$$Sv = \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ & & \ddots \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \end{pmatrix} = \begin{pmatrix} 0 \\ a_0 \\ a_1 \\ a_2 \\ \vdots \end{pmatrix}$$

An easy example of an operator that is not self-adjoint, normal, or compact, types of operators with much better understood structure than generic ones. A theorem from linear algebra states that any two

n-dimensional

complex vector spaces

with an inner product

are isometrically isomorphic.

In other words, looking at them with your Euclidean space glasses on, they look exactly alike! A theorem from linear algebra states that any two

n-dimensional

complex vector spaces

with an inner product

are isometrically isomorphic.

In other words, looking at them with your Euclidean space glasses on, they look exactly alike!

For example, \mathbb{C}^n with the Euclidean inner product

is isometrically isomorphic to

the vector space of polynomials of degree n-1 or less, with complex coefficients, and the inner product

$$\langle p,q \rangle = \int_0^1 p(x) \overline{q(x)} \, dx$$

The same is true with infinite dimensional Hilbert spaces!

All Hilbert spaces of the same dimension are isometrically isomorphic, so ℓ^2 is the same as any other Hilbert space with dimension \aleph_0 ! The same is true with infinite dimensional Hilbert spaces!

All Hilbert spaces of the same dimension are isometrically isomorphic, so ℓ^2 is the same as any other Hilbert space with dimension \aleph_0 !

But Hilbert spaces of the same dimension, but different definitions for their description, are mathematically the same,

but elicit *different* mathematical ideas for studying them!

A breakthrough in understanding the *unilateral shift operator* arises from connecting the operator to complex analysis!!

Defining the Hardy space on the unit disk, \mathbb{D} , by

$$H^2(D) = \{ f \text{ analytic on } \mathbb{D} : f(z) = \sum_{n=0}^{\infty} a_n z^n \text{ with } \|f\|^2 = \sum |a_n|^2 < \infty \}$$

We see $\ell^2 \leftrightarrow H^2$ and $S \leftrightarrow T_z$ where $T_z(f) = zf$

The analytic Toeplitz operators T_{ψ} , for ψ a bounded analytic function on the unit disk are defined by

$$T_{\psi}f = \psi f$$

and these operators are continuous with

$$||T_{\psi}|| = ||\psi||_{\infty} = \sup\{|\psi(z)| : |z| < 1\}$$

For bounded analytic ψ , the matrix for T_{ψ} is lower triangular

and is constant along diagonals:

where $\psi(z) = \sum_{j=0}^{\infty} a_j z^j$.

Definition:

If A is a bounded operator on a space \mathcal{H} , the *commutant of* A is the set of operators that commute with A, that is,

$$\{A\}' = \{S \in \mathcal{B}(\mathcal{H}) : AS = SA\}$$

For example, for T_z on H^2 ,

$$\{T_z\}' = \{T_\psi : \psi \in H^\infty\}$$

The precise terminology:

If A is a bounded linear operator mapping a Banach space \mathcal{X} into itself, a closed subspace M of \mathcal{X} is an *invariant subspace for* Aif for each v in M, the vector Av is also in M.

The subspaces M = (0) and $M = \mathcal{X}$ are *trivial* invariant subspaces and we are not interested in these.

The Invariant Subspace Question is:

• Does every bounded operator on a Banach space have a non-trivial invariant subspace?

We will only consider vector spaces over the complex numbers.

If the dimension of the space \mathcal{X} is finite and at least 2, then any linear transformation has eigenvectors and each eigenvector generates a one dimensional (non-trivial) invariant subspace.

The Jordan Canonical Form Theorem provides the information to construct all of the invariant subspaces of an operator on a finite dimensional space.

- Spectral Theorem for self-adjoint operators on Hilbert spaces gives invariant subspaces
- Beurling (1949): completely characterized the invariant subspaces of operator of multiplication by z on the Hardy Hilbert space, H^2
- von Neumann ('30's, 40's?), Aronszajn & Smith ('54):

Every compact operator on a Banach space has invariant subspaces.

- Spectral Theorem for self-adjoint operators
- Beurling (1949): invariant subspaces of isometric shift
- von Neumann ('30's, 40's?), Aronszajn & Smith ('54): compact operators
- Lomonosov ('73):

If S is an operator that commutes with an operator $T \neq \lambda I$, and T commutes with a non-zero compact operator then S has a non-trivial invariant subspace.

- Spectral Theorem for self-adjoint operators
- Beurling (1949): invariant subspaces of isometric shift
- von Neumann ('30's, 40's?), Aronszajn & Smith ('54): compact operators
- Lomonosov ('73):

If S is an operator that commutes with an operator $T \neq \lambda I$, and T commutes with a non-zero compact operator then S has a non-trivial invariant subspace.

• Lomonosov did *not* solve ISP: Hadwin, Nordgren, Radjavi, Rosenthal('80)

- Spectral Theorem for self-adjoint operators
- Beurling (1949): invariant subspaces of isometric shift
- von Neumann ('30's, 40's?), Aronszajn & Smith ('54): compact operators
- Lomonosov ('73): Yes, for S when $S \leftrightarrow T \leftrightarrow K$, if K compact
- Lomonosov did *not* solve ISP: Hadwin, Nordgren, Radjavi, Rosenthal('80)
- Enflo ('75/'87), Read ('85): Found operators on Banach spaces with only the trivial invariant subspaces!

- Spectral Theorem for self-adjoint operators
- Beurling (1949): invariant subspaces of isometric shift
- von Neumann ('30's, 40's?), Aronszajn & Smith ('54): compact operators
- Lomonosov ('73): Yes, for S when $S \leftrightarrow T \leftrightarrow K$, if K compact
- Lomonosov did *not* solve ISP: Hadwin, Nordgren, Radjavi, Rosenthal('80)
- Enflo ('75/'87), Read ('85): Found operators on Banach spaces with only the trivial invariant subspaces!

The (revised) Invariant Subspace Question is:

Hilbert

• Does every bounded operator on a Banach space have a non-trivial invariant subspace?

Rota's Universal Operators:

Defn: Let \mathcal{X} be a Banach space, let U be a bounded operator on \mathcal{X} . We say U is *universal for* \mathcal{X} if for each bounded operator A on \mathcal{X} , there is an invariant subspace M for U and a non-zero number λ such that λA is similar to $U|_M$.

In other words, a universal operator on \mathcal{X} has a miniature copy of *every* bounded operator on \mathcal{X} !!

Rota's Universal Operators:

Defn: Let \mathcal{X} be a Banach space, let U be a bounded operator on \mathcal{X} . We say U is *universal for* \mathcal{X} if for each bounded operator A on \mathcal{X} , there is an invariant subspace M for U and a non-zero number λ such that λA is similar to $U|_M$.

Rota proved in 1960 that if \mathcal{X} is a separable, infinite dimensional Hilbert space, there are universal operators on \mathcal{X} ! **Theorem** (Caradus (1969))

If \mathcal{H} is separable Hilbert space and U is bounded operator on \mathcal{H} such that:

- The null space of U is infinite dimensional.
- The range of U is \mathcal{H} .

then U is universal for \mathcal{H} .

Theorem (Caradus (1969))

If \mathcal{H} is separable Hilbert space and U is bounded operator on \mathcal{H} such that:

- The null space of U is infinite dimensional.
- The range of U is \mathcal{H} .

then U is universal for \mathcal{H} .

So far, every known example of a universal operator on a separable Hilbert space used Caradus' Theorem to prove it is universal and all have been equivalent to an analytic Toeplitz operator. For φ an analytic map of \mathbb{D} into itself, the *composition operator* C_{φ} is $(C_{\varphi}h)(z) = h(\varphi(z))$ for h in H^2

These are all bounded operators on H^2 , much is known about them, and they are a big part of my research. For φ an analytic map of \mathbb{D} into itself, the *composition operator* C_{φ} is $(C_{\varphi}h)(z) = h(\varphi(z))$ for h in H^2

These are all bounded operators on H^2 , much is known about them, and they are a big part of my research.

For f in H^{∞} and φ an analytic map of \mathbb{D} into itself, the weighted composition operator $W_{f,\varphi} = T_f C_{\varphi}$ is $(W_{f,\varphi}h)(z) = f(z)h(\varphi(z))$ for h in H^2 Theorem:(C., Gallardo, 2012)

There are analytic functions, ψ and f, on the disk

and an analytic map, φ , of the disk into itself

so that T_{ψ}^* is a universal operator and, for $W_{f,\varphi} = T_f C_{\varphi}$, the operator $W_{f,\varphi}^*$ is a compact operator commuting with T_{ψ}^* . Theorem:(C., Gallardo, 2012)

There are analytic functions, ψ and f, on the disk

and an analytic map, φ , of the disk into itself

so that T_{ψ}^* is a universal operator and, for $W_{f,\varphi} = T_f C_{\varphi}$, the operator $W_{f,\varphi}^*$ is a compact operator commuting with T_{ψ}^* .

More recently, using this result,

we have posed a question from complex analysis and proved that an affirmative answer to the question proves the invariant subpace theorem!!

Thank You!

Slides available: http://www.math.purdue.edu/~cowen