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Main messages today:

Most progress comes from looking with a different perspective.

You should develop your intuition.

You should work in areas where you have intuition.

Advisors and collaborators should help you develop your intuition!



My research areas:

Operator Theory

Complex Analysis

Linear Algebra



Doing Operator Theory is:

Doing Linear Algebra

and Calculus (with complex numbers)

in an Infinite Dimensional Euclidean Space.



Linear algebra: Euclidean spaces: Rn, Cn

Problems:

Classify n× n matrices up to similarity: Jordan Canonical Form

For a given matrix A,

which matrices B satisfy AB = BA,

and what subspaces M satisfy AM ⊂M?
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An important example(!): 
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Linear algebra: Euclidean spaces: Rn, Cn

Problems:

Classify n× n matrices up to similarity: Jordan Canonical Form

For a given matrix A,

which matrices B satisfy AB = BA,

and what subspaces M satisfy AM ⊂M?

The goal in answering these questions is to understand the structure of linear

transformations.

The eigenspaces of linear transformations are invariant subspaces and play a key

role in describing the structure!



The analysis of differential equations necessitated extension

to infinite dimensional spaces:

Hilbert spaces are infinite dimensional Euclidean spaces: Cn expands to `2

v = (a0, a1, a2, · · ·) with ‖v‖2 =

∞∑
n=0

|an|2 and 〈v, w〉 =

∞∑
n=0

anbn
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The analysis of differential equations necessitated extension

to infinite dimensional spaces:

Hilbert spaces are infinite dimensional Euclidean spaces: Cn expands to `2

v = (a0, a1, a2, · · ·) with ‖v‖2 =

∞∑
n=0

|an|2 and 〈v, w〉 =

∞∑
n=0

anbn

It is now convenient to insist that ‖Ax‖ ≤ K‖x‖ so that the function x 7→ Ax,

a linear operator , is continuous: the best value for K ≡ ‖A‖.

Problems:

Classify operators up to similarity. (unsolved!)

For a given operator A,

which operators B satisfy AB = BA, (unsolved!)

and what subspaces M satisfy AM ⊂M? (unsolved!)



An important example(!):

On `2 = {v = (a0, a1, a2, · · ·) : ‖v‖2 = ‖
∑
|an|2 <∞}

the unilateral shift operator is:

Sv =



0 0 0 0 · · ·

1 0 0 0 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·
. . .





a0

a1

a2

a3

...


=



0

a0

a1

a2

...



An easy example of an operator that is not self-adjoint, normal, or compact,

types of operators with much better understood structure than generic ones.



A theorem from linear algebra states that any two

n-dimensional

complex vector spaces

with an inner product

are isometrically isomorphic.

In other words, looking at them with your Euclidean space glasses on,

they look exactly alike!



A theorem from linear algebra states that any two

n-dimensional

complex vector spaces

with an inner product

are isometrically isomorphic.

In other words, looking at them with your Euclidean space glasses on,

they look exactly alike!

For example, Cn with the Euclidean inner product

is isometrically isomorphic to

the vector space of polynomials of degree n− 1 or less, with complex coefficients,

and the inner product

〈p, q〉 =

∫ 1

0

p(x)q(x) dx



The same is true with infinite dimensional Hilbert spaces!

All Hilbert spaces of the same dimension are isometrically isomorphic,

so `2 is the same as any other Hilbert space with dimension ℵ0 !



The same is true with infinite dimensional Hilbert spaces!

All Hilbert spaces of the same dimension are isometrically isomorphic,

so `2 is the same as any other Hilbert space with dimension ℵ0 !

But Hilbert spaces of the same dimension, but different definitions for their

description, are mathematically the same,

but elicit different mathematical ideas for studying them!



A breakthrough in understanding the unilateral shift operator arises from

connecting the operator to complex analysis!!

Defining the Hardy space on the unit disk, D, by

H2(D) = {f analytic on D : f (z) =

∞∑
n=0

anz
n with ‖f‖2 =

∑
|an|2 <∞}

We see `2 ↔ H2 and S ↔ Tz where Tz(f ) = zf

The analytic Toeplitz operators Tψ, for ψ a bounded analytic function on the

unit disk are defined by

Tψf = ψf

and these operators are continuous with

‖Tψ‖ = ‖ψ‖∞ = sup{|ψ(z)| : |z| < 1}



For bounded analytic ψ, the matrix for Tψ is lower triangular

and is constant along diagonals:

a0 0 0 0 · · ·

a1 a0 0 0 · · ·

a2 a1 a0 0 · · ·

a3 a2 a1 a0
... ... ... . . .


where ψ(z) =

∑∞
j=0 ajz

j.



Definition:

If A is a bounded operator on a space H, the commutant of A is the set of

operators that commute with A, that is,

{A}′ = {S ∈ B(H) : AS = SA}

For example, for Tz on H2,

{Tz}′ = {Tψ : ψ ∈ H∞}



The precise terminology:

If A is a bounded linear operator mapping a Banach space X into itself,

a closed subspace M of X is an invariant subspace for A

if for each v in M , the vector Av is also in M .

The subspaces M = (0) and M = X are trivial invariant subspaces and we are

not interested in these.

The Invariant Subspace Question is:

• Does every bounded operator on a Banach space have a non-trivial

invariant subspace?



We will only consider vector spaces over the complex numbers.

If the dimension of the space X is finite and at least 2, then any linear

transformation has eigenvectors and each eigenvector generates a one dimensional

(non-trivial) invariant subspace.

The Jordan Canonical Form Theorem provides the information to construct all of

the invariant subspaces of an operator on a finite dimensional space.



Some history:

• Spectral Theorem for self-adjoint operators on Hilbert spaces gives

invariant subspaces

• Beurling (1949): completely characterized the invariant subspaces of

operator of multiplication by z on the Hardy Hilbert space, H2

• von Neumann (’30’s, 40’s?), Aronszajn & Smith (’54):

Every compact operator on a Banach space has invariant subspaces.
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Some history:

• Spectral Theorem for self-adjoint operators

• Beurling (1949): invariant subspaces of isometric shift

• von Neumann (’30’s, 40’s?), Aronszajn & Smith (’54): compact operators

• Lomonosov (’73): Yes, for S when S ↔ T ↔ K, if K compact

• Lomonosov did not solve ISP: Hadwin, Nordgren, Radjavi, Rosenthal(’80)

• Enflo (’75/’87), Read (’85): Found operators on Banach spaces with only

the trivial invariant subspaces!

The (revised) Invariant Subspace Question is:

Hilbert
• Does every bounded operator on a Banach×××× space have a non-trivial

invariant subspace?



Rota’s Universal Operators:

Defn: Let X be a Banach space, let U be a bounded operator on X .

We say U is universal for X if for each bounded operator A on X ,

there is an invariant subspace M for U and a non-zero number λ

such that λA is similar to U |M .

In other words, a universal operator on X has a miniature copy of every

bounded operator on X !!



Rota’s Universal Operators:

Defn: Let X be a Banach space, let U be a bounded operator on X .

We say U is universal for X if for each bounded operator A on X ,

there is an invariant subspace M for U and a non-zero number λ

such that λA is similar to U |M .

Rota proved in 1960 that if X is a separable, infinite dimensional Hilbert space,

there are universal operators on X !



Theorem (Caradus (1969))
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• The null space of U is infinite dimensional.

• The range of U is H.

then U is universal for H.



Theorem (Caradus (1969))

If H is separable Hilbert space and U is bounded operator on H such that:

• The null space of U is infinite dimensional.

• The range of U is H.

then U is universal for H.

So far, every known example of a universal operator on a separable Hilbert space

used Caradus’ Theorem to prove it is universal and all have been equivalent to an

analytic Toeplitz operator.



For ϕ an analytic map of D into itself, the composition operator Cϕ is

(Cϕh) (z) = h(ϕ(z)) for h in H2

These are all bounded operators on H2, much is known about them,

and they are a big part of my research.



For ϕ an analytic map of D into itself, the composition operator Cϕ is

(Cϕh) (z) = h(ϕ(z)) for h in H2

These are all bounded operators on H2, much is known about them,

and they are a big part of my research.

For f in H∞ and ϕ an analytic map of D into itself,

the weighted composition operator Wf,ϕ = TfCϕ is

(Wf,ϕh) (z) = f (z)h(ϕ(z)) for h in H2



Theorem:(C., Gallardo, 2012)

There are analytic functions, ψ and f , on the disk

and an analytic map, ϕ, of the disk into itself

so that T∗ψ is a universal operator and, for Wf,ϕ = TfCϕ,

the operator W∗f,ϕ is a compact operator commuting with T∗ψ .



Theorem:(C., Gallardo, 2012)

There are analytic functions, ψ and f , on the disk

and an analytic map, ϕ, of the disk into itself

so that T∗ψ is a universal operator and, for Wf,ϕ = TfCϕ,

the operator W∗f,ϕ is a compact operator commuting with T∗ψ .

More recently, using this result,

we have posed a question from complex analysis

and proved that an affirmative answer to the question

proves the invariant subpace theorem!!



Thank You!

Slides available: http://www.math.purdue.edu/˜cowen


