THIS IS A GROUP HOMEWORK ASSIGNMENT!

1. Consider the system

$$
\left\{\begin{array}{l}
x^{\prime}=-x^{3}+x-y \\
y^{\prime}=\varepsilon(y-2 x+a)
\end{array}\right.
$$

where a is parameter and ε is a small number. Identify the fixed points of the system, investigate the stability of each, and explain in broad outline the dynamics of the system for $a=0, a=2$, and $a=-2$ for ε positive and negative (for example, you may use $\varepsilon= \pm .01$ if you want a specific numbers).
2. Consider the system

$$
\left\{\begin{array}{l}
x^{\prime}=-x^{3}+x-y \\
y^{\prime}=\varepsilon\left(y-2 x^{2}+x+a\right)
\end{array}\right.
$$

where a is parameter and ε is a small number. Identify the fixed points of the system, investigate the stability of each, and explain in broad outline the dynamics of the system for $a=-1, a=0, a=1$, and $a=3$ for ε positive and negative (for example, you may use $\varepsilon= \pm .01$ if you want a specific numbers).

