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ABSTRACT

In this paper, we introduce a method for estimating the
statistically distinct neural responses in an sequence of
functional magnetic resonance images (fMRI). The crux
of our method is a technique which we call clustered
component analysis (CCA). Clustered component anal-
ysis is a method for identifying the distinct component
vectors in a multivariate data set. CCA is distinct from
principal components analysis (PCA), and independent
components analysis (ICA), because it is not constrained
to produce orthogonal component vectors and it does
not assume that components are indepedent. CCA em-
ploys Bayesian estimation methods such as expectation-
maximization (EM) and Rissanen order identification to
determine the best set of component vectors.

1 INTRODUCTION

Functional magnetic resonance imaging (fMRI) attempts
to analyze the neural response to a stimulus by measur-
ing small temporal changes in a sequence of MRI images.
Typically, the subject stimulus is assumed to be periodic
in time. For example, two alternating visual stimuli might
be presented to a subject using a regular on/off pattern.
In this case, the input is effectively a squarewave, so any
steady state neural response must also be a periodic sig-
nal with the same period. Importantly, the output signal
will be periodic even if the neural response is a nonlinear
function of the input stimulus.

Generally, signal detection methodology in fMRI as-
sumes that the fMRI response to neuronal stimulation is
the same in all regions of the brain and for all stimuli.
Very little data exists on the validity of this assumption.

Recently, there has been considerable interest in not
only detecting activated neural regions, but also quan-
tifying the so-called hemodynamic response function for
each stimulus and region of the brain. This is a partic-
ularly difficult task when one considers that the blood
oxygen level detection (BOLD) signal-to-noise ratio for a
typical 1.5T MRI scanner is quite low.
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In order to increase signal-to-noise ratio, we use a
method similar to that used by Bullmore, et al [1]. This
method decomposes the temporal response at each pixel
into harmonic components corresponding to a sine and co-
sine series expansion at the appropriate period. We have
found that it is possible to further increase the signal-to-
noise ratio by estimating an M dimensional signal sub-
space [2]. This is done by estimating the signal covariance
as the positive definite part of the difference between the
total signal covariance and the noise covariance. Each
pixel’s response is then represented by an M dimensional
feature vector.

Our objective is to determine which statistically dis-
tinct responses exist in particular regions of interest. Two
waveforms that differ only in amplitude, but not shape,
are not considered distinct. Therefore, each distinct re-
sponse corresponds to a unique direction, independent
of amplitude, in the M dimensional feature space. Re-
searchers have used principal components analysis (PCA)
[1], and independent components analysis (ICA) [3] to
extract these distinct directions. However, both these
methods have potential disadvantages. PCA results in
principal components (eigenvectors) that are orthogonal.
In practice, it is unlikely that the distinct behaviors in
the data correspond to orthogonal signals. Alternatively,
ICA attempts to determine the transformation that re-
sults in independent rather than simply uncorrelated com-
ponents. However, it is not necessary that statistically
distinct components be independent. Finally, both meth-
ods are constrained to produce exactly M components.

In this paper, we present a new methods for analyz-
ing the multivariate fMRI feature vectors which we call
clustered component analysis (CCA). This method de-
pends on a explicit model of the feature vectors and is im-
plemented through Bayesian parameter estimation. The
estimation procedure is similar in in many respects to
traditional clustering algorithms; however, it differs from
existing methods because it produces component direc-
tions rather than traditional cluster means. The CCA
method incorporates the expectation-maximization (EM)
algorithm [4] together with a cluster merging technique
which is used to estimate the true number of clusters [5].



2 CLUSTERED COMPONENT
ANALYSIS

Let Yn be an M dimensional feature vector for pixel n.
Furthermore, let E = [e1, · · · , eK ] be K component di-
rections in the feature space, each with unit norm. The
basic assumption of our method is that

Yn = αneXn + Wn

where αn is the unknown amplitude for pixel n, 1 ≤
Xn ≤ K is the class of the pixel, and Wn is Gaus-
sian noise. The parameters αn are critical because they
model the unknown amplitude variations across pixels in
the BOLD response. Without loss of generality, we as-
sume that E[WnW t

n] = I. We also assume that class
labels are independent and identically distributed with
P{Xn = k} = πk.

Our objective is then to estimate the model order K,
the component vectors E, and the prior probabilities π
from observations of {Yn}N

n=1. We do this by maximizing
the minimum description length (MDL) criterion.

MDL = log p(y|E, π)−KM log(NM)

Here the log likelihood of Y may be computed by

MDL =

N∑
n=1

log

(
K∑

k=1

pyn|xn(yn|k, E)πk

)

−KM log(NM) .

If we define the projection operator Pk = I − eket
k, then

the log likelihood of the data given the class is
log pyn|xn(yn|k, E) =

−1

2

(
||Pkyn||2

)
− M − 1

2
log(2π) + const .

This expression results from the fact that the signal or-
thogonal to ek is Gaussian and white. In addition, any
observation along the direction ek is equally likely, and
therefore may be considered to have constant likelihood.
Without loss of generality, we will assume this constant
to be 0.

The optimization of the MDL criterion may be per-
formed using the EM algorithm where Xn is the incom-
plete data. To do this, we iteratively optimize the Q
function.

Q(E, π; E(i), π(i)) =

E
[
log py,x(y, X|E, π)|y, E(i), π(i)

]
−KM log(NM)

For our problem, Q(E, π; E(i), π(i)) =1

K∑
k=1

{
−1

2
tr(PkR̄k)− (M − 1)N̄k

2
log(2π) + N̄k log πk

}
−KM log(NM)

where

N̄k =

N∑
n=1

pxn|yn(k|yn, E(i), π(i))

R̄k =

N∑
n=1

ynyt
n pxn|yn(k|yn, E(i), π(i))

1This equation differs from its original form in the ICIP
proceedings due to the correction of a typographical error.

The EM update equations are then

(E(i+1), π(i+1)) = arg min
E,π

Q(E, π; E(i), π(i)) , (1)

and the solution is given by

e
(i+1)
k = principal eigenvector{R̄k}

π
(i+1)
k = N̄k/N .

The question remains of how to maximize the MDL
criterion with respect to K. Our approach will be to
start with K large, and then sequentially decrement it.
For each value of K, we will apply the EM algorithm
updates until they converge to a local maximum of the
MDL functional. After we have done this for each value of
K, we may simply select the value of K and corresponding
parameters that resulted in the largest value of the MDL
criterion.

One method to effectively reduce K is to constrain the
parameters of two classes to be equal. Let classes l and
m be constrained so that el = em. Furthermore, let E∗

and E∗
l,m be the unconstrained and constrained solutions

to (1). Then we may define a distance function

d(l, m)

= Q(E∗, π∗; E(i), π(i))−Q(E∗
l,m, π∗; E(i), π(i))

= σmax(Rl) + σmax(Rm)− σmax(Rl + Rm) ≥ 0

where σmax(R) denotes the principal eigenvalue of R.
At each step, we compute the two components

(l∗, m∗) = arg min
(l,m)

d(l, m)

that minimized the class distance. We then merge these
two classes to decrement the value of K.

3 EXPERIMENTAL RESULTS

3.1 Synthetic Data
To test the validity of the method, synthetic fMRI im-
ages were generated using the averaged functional images
gathered from the real data set used below as baseline
images. The BOLD response signals were modeled using
the methods given in [6], and were injected into 3 loca-
tions of 8x8 pixels. The mixture weights, as well as time
constant and time delay parameters, were varied between
the 3 locations in order to simulate responses from differ-
ent functional cortices. The amplitudes of these signals
were modulated by the baseline pixel intensities and then
multiplied by a normalized Gaussian window to simulate
the variation in amplitudes across the functional regions.
Additive white Gaussian noise was then added to all the
pixels at a standard deviation of 2% of the baseline pixel
intensity.

PCA, CCA, and the fuzzy c-means clustering (FCM)
package in Matlab were then applied to the synthetic
data. All data were first preprocessed using PCA, and
signal subspace estimation [2] resulted in 14 dimensions.
Then, PCA, CCA, and FCM were each applied and con-
strained to yield 3 components. The mean squared error
between the resulting components and their best match-
ing true components was then computed. The results
of this analysis methods are shown in Table 1 and Fig. 2.
The CCA methods had 1/4 the MSE of the FCM method,
and 1/20th the MSE of the PCA method.



3.2 Real Data
Whole-brain images of healthy subjects were obtained us-
ing a 1.5 T GE Echospeed MRI Scanner (GE Medical
Systems, Waukeshau, WI). T1-weighted anatomic images
were acquired for reference with the following parame-
ters: axial spin echo 2D, TE/TR = minimum full/500
ms, matrix = 256x128, 15 locations with thickness of
7.0 mm and gap of 2.0 mm covering the whole brain,
field-of-view = 24 × 24 cm. The paradigm was designed
to activate the auditory, visual, and motor cortex. The
visual cortex was activated using a flashing 8Hz checker-
board pattern (6× 8 squares) viewed through fiber-optic
goggles (Avotec, Jensen Beach, FL). The auditory cortex
was activated using backwards speech through pneumatic
headphones (Avotec). The motor cortex was activated
through finger tapping. The paradigm was arranged so
all activation occurred in sync at a cycle length of 64 sec-
onds: 32 seconds on, 32 seconds off. The paradigm con-
tained 4 cycles. BOLD-weighted functional images were
acquired with the following parameters: gradient echo
EPI, TE/TR = 50ms/2000ms, flip angle = 90o, matrix
= 64x64, 160 repetitions, the same locations and field-of-
view as the anatomic images.

The functional image data were analyzed pixel-by-pixel
for evidence of activation using a least squares analysis
[7]. ROI’s were drawn on the resulting statistical maps
in the cortical regions corresponding to primary activated
regions for each of the three stimuli (i.e. precentral gyrus
for the motor stimuli, superior temporal gyrus for the
auditory stimuli, and the calcarine fissure for the visual
stimuli).

The functional data in the ROI’s were then analyzed
using the harmonic component decomposition with 31
components [2]. The signal subspace was found to have
M = 7 dimensions. The resulting 7-dimensional feature
vectors were then analyzed using the CCA method de-
scribed above.

The analysis returned K = 5 classes and the compo-
nents E from the feature space. The timesequence real-
ization of components of E are given in Fig. 1. Each pixel
was then assigned to the class with the highest a posteriori
probability. The ROI’s are shown in Fig. 3 the accompa-
nying anatomic data, using red for the first class, green
for the second, blue for the third, yellow for the fourth,
and magenta for the fifth.

It can be seen from the experimental results that a
distinct functional behavior does not correlate directly
with each of the functional ROIs, at least for the motor
and auditory cortices. Rather, the classes are distributed
along patterns of vascularization and sulcal-gyral bound-
aries. This can be seen in the motor and auditory cor-
tices. However, the visual cortex does display a behavior
distinct from the other two cortices.
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Figure 1: Timesequence realizations of the feature
space for the real data set
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Figure 2: Estimation methods plotted against injected synthetic signal: (a) CCA, (b) PCA, (C) FCM
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Figure 3: CCA applied to the real data set: (a), (b), and (c) - upper motor, auditory and visual cortex slices;
(d), (e), and (f) - lower motor, auditory and visual cortex slices;


