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ABSTRACT

The norm of a matrix B as a Hadamard multiplier is the norm of the map
X 7→ X•B, where • is the Hadamard or entrywise product of matrices. Watson
proposed an algorithm for finding lower bounds for the Hadamard multiplier
norm of a matrix. It is shown how Watson’s algorithm can be used to give upper
bounds as well which, in many cases, yield the Hadamard multiplier norm to any
desired accuracy. A sharp form of Wittstock’s decomposition theorem is proved
for the special case of Hadamard multiplication.
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1. INTRODUCTION

By the Hadamard product, also called the Schur product, we mean the
entry–wise product of matrices: if A and B are m × n matrices, their
Hadamard product, A•B is the m× n matrix whose entries are ajkbjk. In
this paper, we study the operator on the set Mn of n × n real matrices
given by X 7→ X•B, for a fixed B. For a matrix X in Mn, ‖X‖sp will
denote its spectral norm (i.e., the largest singular value ofX) and the norm
KB of the Hadamard multiplier is its norm as an operator onMn with the
spectral norm, that is,

KB = max{‖X•B‖sp : ‖X‖sp ≤ 1}

Recently, Watson [15] proposed an algorithm for finding, among other
things, a lower bound for KB. Using a factorization result of [3] based on
the factorization theorem of Haagerup [6, 12], we show how to use Watson’s
algorithm to give an upper bound forKB as well. In many interesting cases,
for example the triangular truncation matrices studied in [3] or McEachin’s
matrices studied in [11, 5], the upper and lower bounds agree. (Sample re-
sults from the algorithm coded in Matlab [10] are included.) Hadamard
multiplication is an example of a completely bounded map [12]; we give a
sharp form of Wittstock’s decomposition theorem for completely bounded
maps in the special case of Hadamard multiplication by a Hermitian ma-
trix. This result could, in principle, also be used to find KB when B is
Hermitian, but the resulting optimization problem does not seem likely to
lead to a rapidly converging algorithm. However, if B is Hermitian with
rank 2, this formulation does lead to a relatively simple one variable op-
timization problem that can be solved explicitly. More information about
the Hadamard product and its properties can be found in [7].

The authors would like to thank the referees for several helpful sugges-
tions that led to improvements and simplifications of our presentation.

2. WATSON’S ALGORITHM

Throughout, 〈·, ·〉 will denote the standard Euclidean inner product on
Rn and by the norm of a vector, we will mean the Euclidean norm. If P
is inMn, we will denote its (Hilbert space) adjoint, that is, its transpose,
by P∗. Much of what is presented here can be immediately generalized to
the complex case, but the algorithm is designed for the real case.

First of all, we want to reinterpret Watson’s algorithm which he mo-
tivated by use of subgradients in the context of convex optimization. We
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think of Hadamard multiplication by B as a linear transformation on the
vector spaceMn. The dual ofMn as a vector space is isomorphic toMn

where, for G inMn, the linear functional ΛG is defined by

ΛG(X) = trace(G∗X)

Regarding Mn as normed space with the spectral norm, its dual space is
normed by the trace norm

‖ΛG‖ = ‖G‖tr = max{trace(V ∗G) : ‖V ‖sp = 1}

that is, the trace norm of G is the sum of the singular values of G.
For B, G, and X inMn, the identity

ΛG(B•X) = trace(G∗(B•X)) = trace((B•G)∗X) = ΛB•G(X)

shows that the dual of Hadamard multiplication by B is again Hadamard
multiplication by B. Since the norm of a transformation and its dual are
the same, we have

KB = max{‖G•B‖tr : ‖G‖tr ≤ 1}

Our interpretation of Watson’s algorithm is that it finds successively better
estimates for the norm and the dual norm of Hadamard multiplication by
B. Notice that since the unitaries are the extreme points of the unit ball
of Mn with the spectral norm and the rank one matrices of norm 1 are
the extreme points of the unit ball of Mn with the trace norm that the
Hadamard multiplier norm is achieved at such matrices. Moreover, using
singular value decomposition, given a matrix H inMn, it is easy to find a
unitary matrix U so that ‖H‖tr = trace(H∗U) and a rank one matrix G
with ‖G‖tr = 1 so that ‖H‖sp = trace(G∗H). Specifically, if H = V DW∗
is the singular value decomposition of H where V and W are unitary and
D is the diagonal matrix whose diagonal entries are the singular values of
H arranged in non–increasing order, then letting U = VW∗,

‖H‖tr = trace(D) = trace(W∗(WDV ∗)V )

= trace((WDV ∗)(VW∗)) = trace(H∗U) (1)

Similarly, letting G = xy∗ where x and y are the first columns of V and
W respectively,

‖H‖sp = trace(x∗V DW∗y) = trace(yx∗V DW∗) = trace(G∗H) (2)

With this in mind, we can easily describe Watson’s algorithm.
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Watson’s Algorithm

Choose a unitary matrix U0.

For k = 1 to Kstop

sk = ‖B•Uk−1‖sp
Choose Gk rank one with ‖Gk‖tr = 1

and trace(G∗k (B•Uk−1)) = sk
tk = ‖B•Gk‖tr
Choose Uk unitary with trace((B•Gk)∗Uk) = tk

End

Since

sk = ‖B•Uk−1‖sp ≤ KB‖Uk−1‖sp = KB

and

tk = ‖B•Gk‖tr ≤ KB‖Gk‖tr = KB

the sequences of estimates sk and tk are bounded. Moreover, for each k,

sk+1 = ‖B•Uk‖sp
= max{trace(G∗(B•Uk)) : rank(G) = 1 and ‖G‖tr = 1}
≥ trace(G∗k (B•Uk)) = trace((B•Gk)

∗Uk) = tk

and

tk = ‖B•Gk‖tr = max{trace((B•Gk)
∗U) : U is unitary}

≥ trace((B•Gk)
∗Uk−1) = trace(G∗k (B•Uk−1)) = sk

so that

s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ KB

It follows that the estimates sk and tk converge to a lower bound for
KB and that, by possibly choosing subsequences, we can find a unitary
matrix U∞ and a rank one matrix G∞ with ‖G∞‖tr = 1 so that

lim sk = lim tk = ‖(B•G∞)‖tr = ‖(B•U∞)‖sp ≤ KB

Naturally, we hope that the limits are actually equal to KB and this
does happen for some interesting matrices B. However, it does not always
happen; indeed, taking U0 = I just gives the limit equal to the largest
absolute value diagonal entry, not always the same as KB. We need a good
upper estimate of KB in order to decide if a particular lower estimate is
giving acceptable results.



5

For P an n× n matrix with columns P1, P2, · · · , Pn, let

c(P ) = max{‖P1‖, ‖P2‖, · · · , ‖Pn‖}

Haagerup [6] (or see [12, pp. 110–116], [1], [13], or [9]) showed that if B is
an n× n matrix then the norm of B as a Hadamard multiplier is

KB = min{c(S)c(R) : S∗R = B}

We will need the following extension of Haagerup’s theorem from [3].

Theorem A. Let B be a non–zero n × n matrix. If S and R are n × n
matrices and S∗R = B is a factorization of B with c(S) = c(R) =

√
KB,

there is a unitary matrix U and unit vectors x and y so that if X and Y
are the diagonal matrices with diagonals x and y, then

KB = 〈B•Uy, x〉 = trace((xy∗)∗B•U) = ‖B•U‖sp

RY U∗ = SX, and the columns satisfy ‖Sj‖ = c(S) and ‖Rk‖ = c(R)
whenever the components xj and yk are non-zero. Conversely, if S and R
are n× n matrices satisfying B = S∗R and x and y are unit vectors such
that ‖Sj‖ = ‖Rk‖ = c(S) = c(R) whenever xj and yk are non-zero and U
is a unitary matrix so that RY U∗ = SX, then KB = c(R)c(S) = ‖B•U‖sp.

We want to use the convergents coming from Watson’s algorithm to find
a factorization of B. Since every factorization of B gives an upper bound
for KB and Watson’s algorithm gives a lower bound, we hope to obtain
accurate estimates for the Hadamard multiplier norm.

Suppose the G’s and U ’s are chosen successively as in the outline of
Watson’s algorithm above where Uk = VkW

∗
k and Gk = xky

∗
k using the

singular value decomposition B•(xky∗k ) = VkDkW
∗
k as in equations (1)

and (2) and sk = ‖B•Uk−1‖sp and tk = ‖B•Gk‖tr. If s, t, x, y, D, V , and
W are the limits (perhaps of subsequences) of sk, tk, xk, yk, Dk, Vk, Wk

respectively, then s = t, ‖x‖ = ‖y‖ = 1, V and W are unitary and satisfy

B•(xy∗) = V DW∗

and

s = ‖B•(xy∗)‖tr = trace
(
(VW∗)∗B•(xy∗)

)
= trace

(
(xy∗)∗B•(VW∗)

)
= ‖B•(VW∗)‖sp

Now let X and Y be the diagonal matrices with diagonals x and y
so that B•(xy∗) = XBY . If X and Y are invertible, letting C be the
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non–negative diagonal matrix with C2 = D, then

XBY = B•(xy∗) = V DW∗ = V C2W∗

implies
B = (X−1V C)(CW∗Y −1)

Taking
S = CV ∗X−1 and R = CW∗Y −1 (3)

and U = VW∗, we have B = S∗R,

RY U∗ = (CW∗Y −1)Y (VW∗)∗ = CV ∗ = (CV ∗X−1)X = SX

and ‖B•U‖sp = s.
While these conditions are not quite enough for the converse statement

of Theorem A, this factorization is highly suggestive. Moreover, it indi-
cates the need for investigating the conditions under which X and Y are
not invertible. The last section of the paper gives some results of using
the authors’ Matlab code implementing Watson’s algorithm to give a lower
bound for KB and using the factorization suggested above to give an upper
bound. For the triangular truncation matrices and McEachin’s matrices,
the resulting X and Y are invertible and the computed values of the upper
and lower bounds differ by less than 2 × 10−14 for sizes up to 50 × 50;
in other words, for these matrices, the algorithm works to machine accu-
racy. (In addition, checking the extra hypotheses in the converse statement
from Theorem A shows that the computed matrices satisfy (up to machine
accuracy) these hypotheses, so the theory indicates they should give KB.)

It is easy to see that if B is a matrix for which x and y are the stan-
dard unit basis vectors ei and ej, then KB = ‖B•(xy∗)‖tr = |bij |, so the
Hadamard multiplier norm of B is given by one of its entries. More gen-
erally, if B̂ is the submatrix of B whose rows and columns are associated
with the non–zero components of x and y, then constructing the vectors x̂
and ŷ by omitting the zero components, we have

KB = ‖B•(xy∗)‖tr = ‖B̂•(x̂ŷ∗)‖tr ≤ KB̂
≤ KB

That is, the non–invertible X and Y are associated with submatrices of B
that have the same Hadamard multiplier norm.

We will say a matrix B is Hadamard irreducible if there are no proper
submatrices of B with the same Hadamard multiplier norm as B. In our ex-
perience, a large difference between the computed upper and lower bounds
for KB is due to the presence of a submatrix with a large multiplier norm
(as compared with KB), that is, with matrices that are reducible in this
sense. Indeed, in such cases, the sequences xk and yk converge to vectors
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whose non–zero components are associated with just such a submatrix.
Further analysis of this situation suggests a multistep procedure for find-
ing an optimal Haagerup factorization in this case as well. Our analysis,
below, of the case in which a proper submatrix has the same Hadamard
multiplier norm as B leads to Theorem 2.1 which is the formal justifica-
tion of the multistep procedure. The application of Theorem 2.1 in finding
norms is illustrated in section 4.

Suppose B is an n× n matrix with block form(
B11 B12

B21 B22

)
where B11 is invertible, Hadamard irreducible, and KB11 = KB. Let B =
S∗R be a factorization of B as in Theorem A. By multiplying S and R on
the left by an appropriate unitary, we may assume without loss of generality
that S is upper triangular. In block form, this is(

B11 B12

B21 B22

)
=

(
S∗11 0
S∗12 S∗22

)(
R11 R12

R21 R22

)
In particular, we have B11 = S∗11R11. Since

c(S11)c(R11) ≤ c(S)c(R) = KB = KB11 ≤ c(S11)c(R11)

we see that in fact c(S11) = c(R11) =
√
KB. But B11 is Hadamard ir-

reducible, so each column of S11 and R11 has the same norm and the
inequality

KB = KB11 = c(R11)
2 ≤ c(R11)

2 + c(R21)
2 = c(R)2 = KB

shows that R21 = 0.
The invertibility of B11 implies that S11 and R11 are invertible also and

it follows that S12 = (R∗11)
−1B∗21 and R12 = (S∗11)

−1B12. Since

B22 = S∗12R12 + S∗22R22 = B21R
−1
11 (S∗11)

−1B12 + S∗22R22

Substituting, we find

S∗22R22 = B22 −B21B
−1
11 B12

which we will denote by A. (In particular, KA ≤ KB but we will improve
this estimate.)

We may take the point of view that B11 and its factorization are given.
In the circumstances we are considering, this also determines S12 and R12,
but it does not determine the factorization of A. Since KB is known,
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we see that if uj is the jth column of S12 and vj is the jth column of
S22, then ‖uj‖2 + ‖vj‖2 ≤ KB so that ‖vj‖2 ≤ KB − ‖uj‖2. We obtain
similar inequalities for the columns of R22. Thus, we want to factor A as
S∗22R22 where the columns of S22 and R22 satisfy these inequalities. For
each column of S22, let φj = (KB − ‖uj‖2)−1/2 and let ψj be defined
similarly for each column of R22. If Φ and Ψ are the diagonal matrices
whose diagonal entries are the φj and the ψj respectively, we see that A
has a factorization S∗22R22 satisfying the inequalities for the column norms
if and only if the matrix Z = ΦS∗22R22Ψ = ΦAΨ has a factorization Z =

Ŝ∗22R̂22 with c(Ŝ22) ≤ 1 and c(R̂22) ≤ 1, that is KZ ≤ 1. We summarize
this analysis in the following theorem.

Theorem 2.1. Suppose B is an n× n matrix with block form(
B11 B12

B21 B22

)
where B11 is invertible, Hadamard irreducible, and KB11 = KB. If B11 =
S∗11R11 is a factorization with c(S11)

2 = c(R11)
2 = KB, then B has a

factorization of the form B = S∗R where KB = c(S)2 = c(R)2 and

S =

(
S11 S12

0 S22

)
and R =

(
R11 R12

0 R22

)
if and only if KZ ≤ 1 where Z = Φ(B22−B21B

−1
11 B12)Ψ as in the preceding

discussion.

Corollary 2.2. Suppose B is a non–zero n×n matrix such that b11 ≥
|bij | for 1 ≤ i, j ≤ n and b11 > |b1j | and b11 > |bi1| for 1 < i, j ≤ n. Then
KB = b11 if and only if KZ ≤ 1 where

Zij =
(b11bij − bi1b1j)√
b211 − b2i1

√
b211 − b21j

for i, j = 2, · · · , n

Although we have been unable to prove that Watson’s algorithm con-
verges to KB for most starting unitaries and that the procedure above
finds a factorization that shows the lower bound from Watson’s algorithm
is exact, the algorithm seems to be very robust. Of course, it is easy to
produce starting unitaries that are stationary points for the algorithm: for
example, the identity is a stationary point for the algorithm that gives the
largest diagonal entry as the lower estimate. However, we have been unable
to find a matrix and non–stationary starting unitary for which Watson’s
algorithm converges to a local maximum less than KB.
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3. WITTSTOCK’S DECOMPOSITION THEOREM

Recall that a positive semidefinite matrix B has KB = max{bjj : j =
1, 2, · · · , n}. First, we show that a Hermitian matrix can be split in such a
way that its multiplier norm can be easily obtained from the pieces. This
result is a sharp form, for our special case, of Wittstock’s decomposition
theorem [12, page 107].

Theorem 3.1. Let B be a Hermitian matrix. If P1 and Q1 are positive
semidefinite matrices so that B = P1−Q1, then KB ≤ KP1+Q1 . Moreover,
there are positive semidefinite matrices P and Q so that B = P − Q and
KB = KP+Q with rank(P ) being the number of positive eigenvalues of B
and rank(Q) being the number of negative eigenvalues.

The theorem says we must be concerned with the ways in which the
matrix B can be split as B = P−Q where P andQ are positive semidefinite
and rank(P ) is the number of positive eigenvalues of B and rank(Q) is the
number of negative eigenvalues of B. One such splitting is given by the
spectral theorem: let P0 be the restriction of B to the subspace spanned
by the eigenvectors corresponding to the positive eigenvalues of B and let
Q0 be the restriction of −B to the subspace spanned by the eigenvectors
corresponding to the negative eigenvalues of B. We will call this splitting
the spectral splitting. That this is not the only, or always the optimal,
splitting of B is what gives this theorem interest.

Proof. (of Theorem 3.1.) Assume first that B is an invertible Hermi-
tian matrix. It follows from the Theorem and Corollary 3 of [2, pages 183
and 195] that

KB = min

{
KZ :

(
Z B
B Z

)
≥ 0

}
(See [5] and [9] for discussions of this characterization.)

Suppose P1 and Q1 are positive semidefinite matrices so that B =
P1 −Q1. Then(

P1 +Q1 P1 −Q1

P1 −Q1 P1 +Q1

)
=

(
P1 +Q1 B

B P1 +Q1

)
is also positive semidefinite so, by the characterization above,

KB ≤ KP1+Q1

Let A be a matrix that attains the minimum above, that is, KA = KB

and (
A B
B A

)
≥ 0
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The matrix C = A−1/2BA−1/2 is an invertible Hermitian matrix with the
same inertia as B. If we let C = C+−C− be the spectral splitting of C as
a difference of positive semidefinite matrices, then P = A1/2C+A

1/2 and
Q = A1/2C−A1/2 are positive semidefinite matrices with P − Q = B and
rank(P ) and rank(Q) being the number of positive and negative eigenvalues
of B. Since(

I A−1/2BA−1/2

A−1/2BA−1/2 I

)

=

(
A−1/2 0

0 A−1/2

)(
A B
B A

)(
A−1/2 0

0 A−1/2

)
≥ 0

and C+C− = 0, it follows that C+ + C− ≤ I which implies P + Q ≤ A.
Thus, KB ≤ KP+Q ≤ KA = KB and P and Q satisfy the conclusion of the
theorem.

Now if B is not invertible, we can find a sequence of invertible Hermitian
matrices converging to B and apply the results above to each of the matrices
in the sequence. Since the Hadamard multiplier norm is continuous, we
can find convergent subsequences to obtain positive semidefinite matrices
P and Q so that B = P − Q, KB = KP+Q, and rank(P ) and rank(Q)
are, respectively, at least as large as the number of positive and negative
eigenvalues. Let N be the orthogonal projection onto the range of B. Now
B = NBN = NPN−NQN and NPN and NQN are positive semidefinte
matrices whose ranks are, respectively, the number of positive and negative
eigenvalues of B. Since NPN +NQN ≤ P +Q, the largest diagonal entry
of NPN +NQN is no more than the largest diagonal entry of P +Q and
we see that KB = KNPN+NQN . Thus, B = NPN −NQN is a splitting of
the sort needed for the conclusion.

As noted above, the spectral splitting of B is not the only splitting.
To find other splittings, we consider the quadratic form 〈Bv, v〉, and let
P = {v : 〈Bv, v〉 > 0} and N = {v : 〈Bv, v〉 < 0}. In the invertible case,
if B = P − Q is a splitting and Qx = 0, then 〈Bx, x〉 = 〈Px, x〉 ≥ 0.
Since rank(A) = n = rank(P ) + rank(Q) and A = P + Q, only the zero
vector is in the range of P and the range of Q. This means that only the
zero vector is in the kernel of P and the kernel of Q. That is, if both
Qx = 0 and Px = 0 then x = 0, so the non–zero x with Qx = 0 are in
P . In particular, the range of Q, which is spanned by the eigenvectors of
Q, is a subspace whose orthogonal complement lies in P . Similarly, the
range of P , which is spanned by the eigenvectors of P , is a subspace whose
orthogonal complement lies in N . The theorem below uses this observation
to characterize the splittings in a special case.

Theorem 3.2. Suppose B is an n × n Hermitian matrix with n − 1
positive, one negative eigenvalue and suppose u is an eigenvector of B for
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which B = P0−uu∗ is the spectral splitting of B. For w orthogonal to u, if
α =
√

1 + w∗P0w, then Q = (αu+P0w)(αu+P0w)∗ is a positive semidef-
inite matrix with rank one such that P = B +Q is a positive semidefinite
matrix with rank n − 1. Conversely, if B = P − Q where P is a posi-
tive semidefinite matrix with rank n − 1 and Q is a positive semidefinite
matrix with rank one, then there is a vector w orthogonal to u such that
Q = (αu+ P0w)(αu + P0w)∗ for α =

√
1 + w∗P0w.

Proof. Every positive semidefinite matrix Q with rank one has the
form

Q = (αu+ v)(αu+ v)∗

for some α ≥ 0 and some vector v orthogonal to u. If α were 0, then u
would be a vector orthogonal to the range of Q that is not in P , so the
remarks above show α > 0 for the desired splittings of B as P −Q. Since
P0 has n− 1 positive eigenvalues, for every vector v orthogonal to u, there
is a vector w orthogonal to u so that P0w = v. Now if the scalar β and the
vector x orthogonal to u are such that βu+x is orthogonal to the range of
Q, then, recalling that P0u = 0, we have

0 = (αu+ P0w)∗(βu+ x) = αβ‖u‖2 + w∗P0x

so β‖u‖2 = −w∗P0x/α. Thus the condition that βu+ x be in P is

0 < (βu+ x)∗(P0 − uu∗)(βu+ x) = x∗P0x− |β|2‖u‖4

or

x∗P0x−
1

α2
x∗P0ww

∗P0x > 0

For this to be true for every x orthogonal to umeans that P0−P0ww
∗P0/α

2

is positive definite as an operator on range(P0). This is equivalent to α2I−
(
√
P0w)(

√
P0w)∗ > 0 which is the same as ‖

√
P0w‖ < α.

Now suppose w, α, and Q are as in the statement of the theorem. Since

α2 = 1 + w∗P0w > w∗P0w = ‖
√
P0w‖2

all vectors z that are orthogonal to the range of Q are in P so z∗Pz =
z∗(B+Q)z = z∗Bz > 0 which implies the rank of P is at least n− 1. But

P

(
− α

‖u‖2u+ w

)
=

(
P0 − uu∗ + (αu+ P0w)(αu + P0w)∗

)(
− α

‖u‖2u+ w

)
= P0w + αu+ (αu+ P0w)(−α2 + w∗P0w)

= (αu+ P0w)(1− α2 + w∗P0w) = 0
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so P has rank exactly n− 1.
To prove the converse, supposeB = P−Q is a splitting as in the theorem

and Q = (αu+ P0w)(αu + P0w)∗ for some α > 0 and w orthogonal to u.
Suppose βu+x is a non–zero vector in the kernel of P where x is orthogonal
to u. We have

P (βu+ x) =
(
P0 − uu∗ + (αu+ P0w)(αu+ P0w)∗

)
(βu+ x)

= P0x− β‖u‖2u+ (αu+ P0w)(αβ‖u‖2 + w∗P0x)

=
(
(α2 − 1)β‖u‖2 + αw∗P0x

)
u+ P0

(
x+ αβ‖u‖2w + (w∗P0x)w

)
For this to be 0, since u is orthogonal to the range of P0, we must have

(α2 − 1)β‖u‖2 + αw∗P0x = 0

so
w∗P0x = −(α2 − 1)β‖u‖2/α

Moreover, since P0 is invertible on the set of vectors orthogonal to u, we
must have

0 = x+ αβ‖u‖2w + (w∗P0x)w

= x+

(
αβ‖u‖2 − (α2 − 1)β‖u‖2 1

α

)
w = x+

β‖u‖2
α

w

Using this in the above equality, we see

−(α2 − 1)
β‖u‖2
α

= w∗P0x = −β‖u‖
2

α
w∗P0w

If β were 0, this would mean x = 0 and βu+ x = 0, so β is non–zero and

α2 − 1 = w∗P0w

as in the conclusion.
We can apply these ideas to get a straightforward minimization problem

for the rank two case. Suppose u and v are linearly independent vectors in
Rn and B = vv∗ − uu∗ is a Hermitian matrix. (Note that all Hermitian
matrices with rank 2 for which neither B nor −B is positive semidefinite
are of this form.) We need to write B = P −Q where P and Q are positive
semidefinite rank one matrices with P +Q having its largest diagonal entry
as small as possible. So

P = (αu+ βv)(αu + βv)∗ and Q = (γu+ δv)(γu+ δv)∗

for some scalars α, β, γ, δ. The independence of u and v implies uu∗, uv∗,
vu∗, and vv∗ are linearly independent matrices so equating vv∗ −uu∗ and
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P −Q gives α2 − γ2 = 1, αβ − γδ = 0, and β2 − δ2 = −1. Without loss of
generality, this means

P = (αu+ βv)(αu+ βv)∗ and Q = (βu+ αv)(βu + αv)∗

where α2 − β2 = 1 and α > 0. Now

P +Q = (α2 + β2)(vv∗ + uu∗) + 2αβ(vu∗ + uv∗)

Setting t = 2αβ, we see α2 + β2 =
√

1 + t2. Thus

KB = min
t

max
(
diag

(√
1 + t2(vv∗ + uu∗) + t(vu∗ + uv∗)

))
If uj and vj are the jth components of u and v respectively, letting fj(t) =√

1 + t2(v2
j + u2

j) + 2tvjuj gives

KB = min
t

max
j
fj(t)

Since each of the fj is a convex function,

KB = fj0(t0)

where either fj0 has a minimum at t0 and fj0(t0) ≥ fj(t0) for j = 1, · · · , n
or there are i0 6= j0 so that fi0(t0) = fj0(t0) ≥ fj(t0) for j = 1, · · · , n. That
is, to find KB, we need only check the minima of the fj and the points
where the graphs cross.

The values of the functions where the graphs cross do not seem to have
convenient expressions, but it turns out that the minimum value of fj is
|bjj | and the value of fk at this point is (2b2jk − bkkbjj)/|bjj |. Since KB is
at least as large as |bjj | for each j, we have another proof of Theorem 9
of [4] for this case.

Corollary 3.3. Let B = (bij) be a real Hermitian n× n matrix with
rank 2. If bjj > 0 and bjj is the largest diagonal entry of B, then the
following are equivalent:

(i) KB = bjj .

(ii) Every 2× 2 principal submatrix containing bjj has Hadamard multi-
plier norm bjj.

(iii) For 1 ≤ k ≤ n,
b2jj + bjjbkk − 2b2jk ≥ 0
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4. NUMERICAL RESULTS

A Matlab program FindKB that carries out Watson’s iterative algo-
rithm, finds a factorization of the type discussed in Section 2 along with
the unitaries V and W and vectors x and y, and computes upper and lower
bounds for KB can be obtained (cowen@math.purdue.edu) from the first
author. The inputs are the matrix B whose Hadamard multiplier norm
is to be found, a number of iterations to be done, and a starting unitary
matrix. The lower bound for KB is computed as in the description of the
Watson algorithm. The upper bound c(R)c(S) for KB given by Haagerup’s
Theorem is computed using Equation (3) to find an S and R = (S∗)−1B
to find the corresponding factor R. The algorithm fails if the matrix X
used in the computation of S is not invertible.

All the computations reported here were done with Matlab [10] version
4.1 on a Macintosh Quadra 950 and the starting unitary was generated
by the program (by QR–factorization of a random matrix) rather than
being user specified. This algorithm produces the following results for the
triangular truncation matrices, that is, for the n× n matrices T for which
Tij = 1 when i+ j ≤ n+ 1 and Tij = 0 when i+ j > n+ 1. In each case,
the lower bound from Watson’s algorithm and the upper bound from the
resulting factorization differ by less than 2 × 10−14. The lower bound is
given in the table below for KT for n = 2, · · · , 50.

One of the convenient features of the triangular truncation matrices is
that the convergents computed in Watson’s algorithm give a factorization
of T for which the Haagerup upper bound is essentially equal to the lower
bound. We believe this happens because there are no submatrices of T
with the same Hadamard multiplier norm. The same is true of McEachin’s
matrices [11] the norms of some of which were computed in [5].

It might be noted that the stopping criterion written into the algorithm
used by the authors is a number, Kstop, of iterations. It would be easy
to modify the stopping criterion to be, for example, that the difference
between two successive iterates of the lower bound be smaller than a given
epsilon. Some caution needs to be exercised, however, as the various output
variables converge at quite different rates. For example, in computing the
Hadamard multiplier norm for the 50 × 50 triangular truncation matrix,
the lower bound estimate is correct to 14 decimal places after Kstop = 60

iterations, whereas, at that point, the upper bound estimate is only correct
to 7 decimal places. To get the upper bound estimate to be correct to 14
decimal places requires about Kstop = 130 iterations.

Table 1

n K_T n K_T
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26 1.84464503202383

2 1.15470053837925 27 1.85566122168631

3 1.25319726474218 28 1.86629172019688

4 1.32612266648237 29 1.87656283483510

5 1.38423194069267 30 1.88649825965243

6 1.43262139077559 31 1.89611941132500

7 1.47412419160510 32 1.90544571264071

8 1.51048356114476 33 1.91449483313437

9 1.54285069801945 34 1.92328289442527

10 1.57202669921690 35 1.93182464630082

11 1.59859201851078 36 1.94013361841505

12 1.62298098962732 37 1.94822225154975

13 1.64552725432741 38 1.95610201165968

14 1.66649276502696 39 1.96378348934513

15 1.68608702122257 40 1.97127648693326

16 1.70448024411923 41 1.97859009497756

17 1.72181264978498 42 1.98573275968352

18 1.73820113209454 43 1.99271234252354

19 1.75374417916747 44 1.99953617310344

20 1.76852555639746 45 2.00621109617797

21 1.78261711023281 46 2.01274351357634

22 1.79608093350023 47 2.01913942168573

23 1.80897105939639 48 2.02540444504639

24 1.82133480230775 49 2.03154386653308

25 1.83321383040637 50 2.03756265453114

If the matrix X needed in the computation of S is not invertible, a
multistep procedure based on Theorem 2.1 is needed. As an example of
the techniques needed to handle a more complicated case, consider the
following 5 × 5 matrix. The steps indicated below outline the Matlab
program Multistep which can also be obtained from the first author.

B =

-1.6688 -0.2358 0.9445 1.1862 0.9198

1.5766 1.9792 -1.0445 0.6810 0.1804

-0.9223 0.7425 -2.1884 0.8284 0.3286

0.2944 0.0148 0.9386 0.2742 -0.0324

-0.4420 0.0872 0.2947 0.2091 -0.2410

After convergence, the lower bound for KB is 2.2835 but the vectors
x and y in the algorithm have zeros in their last two components, so no
upper bound is computed. However, following the ideas of Theorem 2.1, we
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suspect the upper left 3× 3 submatrix of B has the same Hadamard mul-
tiplier norm. Factoring this submatrix and continuing as in Theorem 2.1,
we compute

S11 = S12 =

0.5259 -0.7162 -1.4586 0.5972 0.1564

1.0427 -1.2669 0.3949 -0.1623 0.2531

-0.9590 -0.4069 0.0091 -0.3096 -0.3919

R11 = R12 =

0.2369 -0.7355 1.5046 -0.5261 -0.1716

-1.4669 -0.8122 0.0187 0.1852 0.2171

0.2752 -1.0406 -0.1395 -1.3241 -0.8172

PHI = PSI =

0.7444 0 2.1357 0

0 0.6999 0 0.8061

and

Z =

0.3315 -0.0886

-0.4101 -0.3325

Using FindKB on this matrix, we find KZ = 0.4375, which is good since
Theorem 2.1 requires that KZ ≤ 1 to proceed. The corresponding optimal
factorization (for the upper bound from the Haagerup theorem) is

Sz = Rz =

0.4164 -0.6511 0.6509 0.4190

-0.5140 -0.1165 -0.1177 0.5118

We now compute S22 and R22 from Sz, Rz, PHI and PSI to use in the
factorization of B. In this case, we get

S =

0.5259 -0.7162 -1.4586 0.5972 0.1564

1.0427 -1.2669 0.3949 -0.1623 0.2531

-0.9590 -0.4069 0.0091 -0.3096 -0.3919

0 0 0 0.5593 -0.9303

0 0 0 -0.6905 -0.1665

R =

0.2369 -0.7355 1.5046 -0.5261 -0.1716

-1.4668 -0.8122 0.0187 0.1852 0.2171
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0.2752 -1.0406 -0.1395 -1.3241 -0.8172

0 0 0 0.3048 0.5199

0 0 0 -0.0551 0.6349

It can be checked that B = S∗R and that the norms of the columns of
S and R are

cS =

1.5111 1.5111 1.5111 1.1262 1.0655

cR =

1.5111 1.5111 1.5111 1.4698 1.1907

so KB ≤ c(S)c(R) = 2.2835 which agrees with lower bound found
earlier.

Although, as we noted above, we have been unable to prove that the
algorithm always works, it is self checking; that is, if the upper and lower
bound estimate of KB are acceptably close, we know the algorithm has
worked in this case. In a typical problem, one would apply FindKB to
a matrix. If the upper and lower estimates of the Hadamard multiplier
norm are significantly different, then the non–zero components of x and y
indicate the rows and columns, respectively, of the matrix that comprise
the important submatrix B̂. Then, Multistep can be used to find the
resulting factorization and upper bound estimate of B̂. If the lower right
corner produced by the algorithm is also Hadamard reducible, the process
must be iterated to find the eventual factorization.

Our experience is that Watson’s algorithm is quite robust. In addition
to the structured triangular truncation and McEachin matrices, we gener-
ated 165 random 10×10 matrices using Matlab’s randn(10,10) command;
that is, the entries of the matrices were chosen from a normal distribution
with mean 0 and standard deviation 1. In each case, the Watson algorithm
converged to what was shown by the subsequent upper bound estimates
to be the Hadamard multiplier norm of the matrix. Random starting uni-
taries were used and 500 iterations of the algorithm were sufficient to give
agreement of the upper and lower estimates for KB of 7 to 14 decimal
places in the Hadamard irreducible cases. (Watson’s algorithm converges
much faster than that to the lower bound estimate, but a large number of
iterations are required to get a factorization that gives an acceptably small
upper bound.) Of the 165 cases, 90 matrices were Hadamard irreducible,
37 had a 9×9 submatrix with the same Hadamard multiplier norm, 12 had
an 8× 8 submatrix, 1 each had 7× 7, 6× 6, and 5× 5 submatrices, 5 had
2× 2 submatrices, and in 18 cases the Hadamard multiplier norm was the
absolute value of the largest entry, i.e. a 1× 1 submatrix.
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