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Motivated by some concrete examples that have been studied in other
contexts (Example 3), we generalize the concept of subnormality for op-
erators on Hilbert space to include the possibility that the space on which
the normal extension is defined is a Krein space instead of a Hilbert space.
In this paper, we develop some of the basic properties of this new class,
the Krein subnormal operators. In recently published work [?], Wu Jingbo
studies a different generalization of subnormality, called J-subnormality, and
proves the striking theorem that every bounded operator on Hilbert space
is J-subnormal. Our definition is much more restrictive; Krein subnormal
operators have many properties analogous to subnormal operators.

The most important of these properties, and indeed, the ones that pro-
vided the motivation for the definition, are moment conditions. In the
study of subnormal operators, moment conditions have provided models
from which many of the structural theorems have been proved as well as
providing the tools for proofs that specific operators are subnormal. One of
our goals is to find analogues to these moment conditions. For example, we
show (Theorem 5) that a cyclic Krein subnormal operator has a model that
is multiplication by z in a Hilbert space of functions in which the analytic
polynomials are dense. We conclude with some questions that indicate ar-
eas for further exploration of the analogues between subnormality and Krein
subnormality, including questions on possible moment conditions.

A complex vector space K is called a Krein space ([?]) if it has an
indefinite inner product <·, ·> given by

<x, y> = [Jx, y]
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where [·, ·] is a positive definite inner product that makes K a Hilbert space
and J is a bounded operator such that J = J−1 = J [∗]. The operator J will
be called a fundamental symmetry, P+ = 1

2 (I + J) and P− = 1
2(I − J) will

be called fundamental projectors, and the direct sum decomposition K =
K+ ⊕ K− where K± = P±K will be called the fundamental decomposition.
(Here and throughout, [∗] denotes the Hilbert space adjoint on K, whereas
∗ or <∗> denotes the adjoint with respect to the indefinite inner product.
Similarly, we write S is [normal] when S[∗]S = SS[∗] and normal or J-normal
or <normal> when S∗S = SS∗ and so forth.)

Definition We say the operator T2 on the Krein space (K2, <·, ·> 2) is an
extension of the operator T1 on the Krein space (K1, <·, ·> 1) if

(i) K1 ⊂ K2,
(ii) <x, y> 1 = <x, y> 2 for all x, y in K1, and
(iii) T1(x) = T2(x) for all x in K1.

Definition ([?]) If (H, <·, ·> ) is a Hilbert space and A is a bounded operator
on H, we say A is J-subnormal if there is an extension T of A on the Krein
space (K, <·, ·> 1) such that T is continuous and J-normal.

In particular, H is a positive definite subspace of K and H is T invariant.
The following easy lemma is preparation for the main definition in the

paper. It shows that commuting with the fundamental symmetry or the
fundamental projectors can be interpreted as a consistency condition on the
adjoints of N or as block diagonalizability.

Lemma 1 If T is an operator on K, then the following are equivalent:
(1) TJ = JT .
(1′) TP+ = P+T .
(1′′) TP− = P−T .
(2) T [∗] = T <∗> .
(3) K+ and K− are invariant subspaces of T .

Definition Operators on a Krein space K with fundamental symmetry J

that satisfy the equivalent conditions of Lemma 1 will be called fundamen-
tally reducible (with respect to J).
Proof.(1⇔ 1′ ⇔ 1′′) Clear.

(1⇔ 2) For all x and y in K,

<T∗x, y> = <x, Ty> = [Jx, Ty] = [T [∗]Jx, y] = [JT [∗]x, y] = <T [∗]x, y> .
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Since J is invertible, the indefinite inner product is non-degenerate and the
conclusion follows.

(1⇒3) We have TK+ = TP+K = P+TK ⊂ K+ and TK− = TP−K =
P−TK ⊂ K−.

(3⇒1) For every x, we have P+Tx+P−Tx = Tx = TP+x+TP−x. By the
invariance hypothesis, TP+x and TP− are in K+ and K− respectively. By
the uniqueness of the decomposition, we have P+Tx = TP+x and P−Tx =
TP−x.

2

Definition We say the bounded operator A on H, is Krein subnormal if
there is a continuous, J-normal, fundamentally reducible, operator N on a
Krein space K that extends A such that H is a closed subspace of K. We
call N a Krein normal extension of A.

Definition Let µ be a real regular Borel measure with compact support
in the complex plane. By K2(|µ|) we mean the Krein space of functions in
L2(|µ|) with the (indefinite) inner product

<f, g> =

∫
f(z)g(z) dµ(z).

If µ = µ+ − µ− is the Jordan decomposition of µ and support(µ) = E+ ∪
E− is the associated Hahn decomposition, then the canonical fundamental
symmetry J is the operator on K2(|µ|) of multiplication by χE+−χE− . The
operator Mµ of multiplication by z is a continuous, fundamentally reducible,
J-normal operator on K2(|µ|).
Example Let µ = µ+ − µ− where dµ+ = dθ/2π on the circle r = 1 and
dµ− = dθ/8π on the circle r = 1/2 where, as usual, z = reiθ. Let H be the
Hilbert space of H2(∂D) functions with the (positive definite) inner product

<f, g> =

∫
f(z)g(z) dµ(z).

As is easily seen, the set {en : n ∈ N} is an orthonormal basis where

en =
2n+1

√
4n+1 − 1

zn.

The operator A of multiplication by z on H is the weighted shift with the
(decreasing) weight sequence

wn =
1

2

√
4n+2 − 1

4n+1 − 1
.
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It is easy to check that A is a Krein subnormal operator whose Krein normal
extension is Mµ on K2(|µ|).

2

The following are motivating examples in that they are interesting oper-
ators in their own right, and one is led to ask about the structural differences
between the examples that are subnormal and the examples that are Krein
subnormal but not subnormal.
Example Cowen and Kreite [?] investigated the composition operators Cϕ
defined on H2 by Cϕf = f ◦ ϕ where

ϕ(z) =
(r + s)z + (1− s)c
r(1− s)cz + (1 + sr)

for some r, s with −1 < r ≤ 1 and 0 < s < 1. It is shown that C∗ϕ is unitarily
equivalent to multiplication by

s(
1+z
1−z−

1
2)

on the Hilbert space P 2(µr), the closure of the analytic polynomials in the
Krein space K2(µr), where µr is a real measure supported in the closed unit
disk. For 0 ≤ r ≤ 1, the measures µr are positive and the corresponding
operators C∗ϕ are subnormal in the usual sense. However for −1 < r < 0, the
measures µr are non-positive, so the extension is defined on a Krein space
that is not a Hilbert space, and the operators C∗ϕ are Krein subnormal, not
subnormal in the usual sense.

2

Krein subnormal operators are special cases of J-subnormal operators
that retain some of the special properties associated with subnormal opera-
tors on Hilbert space.

Definition If A is Krein subnormal on H and N is a Krein normal extension
on the Krein space K, we say N is a minimal Krein normal extension of A
if span{(N∗)nH} is dense in K.

It is not immediately clear that a Krein subnormal operator has a mini-
mal Krein normal extension. This will be investigated further below (The-
orem 4).

Let A be Krein subnormal on H with Krein normal extension N on
K = K+ ⊕ K−. Then by Lemma 1, N = N+ + N− where N+ and N− are
the restrictions of N to K+ and K−. Let H+ = P+H. By Lemma IV.7.1

4



of [?], P+ is an isomorphism of H onto H+; we will abuse the notation and
write P−1

+ for the inverse of P+ considered as a map of H onto H+. Now if
x = x+ + x− is in H, then Ax = Nx = N+x

+ +N−x−, so N+x
+ = P+(Ax)

which is in H+. Thus, H+ is invariant for the normal operator N+; denoting
the restriction of N+ to H+ by A+ this says that A+ is subnormal.

Analogously, letting H− = closure(P−H), we see that H− is invari-
ant for N− and that A−, the restriction of N− to H−, is subnormal. By
Theorem V.5.7 of [?] the angular operator α:H+ 7→ H− ⊂ N− given by
α(P+x) = P−x is a strict contraction. It is easily seen from these definitions
that αA+ = A−α.

We will distinguish the linear transformation N on K regarded as a Krein
space from the same linear transformation on K regarded as a Hilbert space
by using Ň and Ǩ for the latter. The subspace Ȟ, that is, H ⊂ Ǩ, is closed
and we denote by β the identification of H with Ȟ. Now Ȟ is invariant for
Ň and, by Lemma 1, Ň is [normal] so Ǎ (A on Ȟ) is subnormal.

Definition If A is Krein subnormal on H and N is a Krein normal extension
on the Krein space K, we say N is a basic Krein normal extension of A if
span{(N∗+)nH+} is dense in K+, and span{(N∗−)nH−} is dense in K−.

Clearly a minimal Krein normal extension is a basic Krein normal exten-
sion. From the general theory of subnormal operators, basic Krein normal
extensions always exist, but basic Krein normal extensions are not as nice
as one might expect.
Example Basic Krein normal extensions of a Krein subnormal operator are
not necessarily unique.

Let S on `2(N) be the usual unilateral shift. Then U on `2(Z), the usual
bilateral shift, is a minimal normal extension, so S is in a trivial way a Krein
subnormal operator with basic Krein normal extension U . Let s and t be
positive numbers such that 1 + t2 = s2, and let K be the Krein space with
orthogonal basis {· · · , e−2, e−1, e

′
0, e0, e1, e2, · · ·}, where [en, en] = 1 for all n,

and [e′0, e
′
0] = −1.

Let W be the weighted unilateral shift on span{en : n ≥ 0} ⊂ K+ defined
by We0 = s−1e1 and Wen = en+1 for n > 0. The operator W is subnormal;
let W̃ be its minimal normal extension on K+ and let N be the J-normal
operator N = W̃ ⊕ 0 on K. Define τ by

τ(x) = sx0e0 + tx0e
′
0 +

∞∑
k=1

xkek
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for x = (x0, x1, · · ·) in `2(N). Letting H be the range of τ , we see that H
is a closed Hilbert subspace of K, that τ is a unitary operator from `2(N)
onto H, that H is invariant for N , and that

τS = Nτ.

From the definition of W and K, we see that H+ = span{e0, e1, e2, · · ·} and
N+ is W̃ , and that H− = span{e′0} and N− is 0. Thus, N and U are basic
Krein normal extensions of S and since U is defined on a Hilbert space, and
N is not, they are clearly not unitarily equivalent.

2

The following theorem records some interesting elementary observations.

Theorem 1 Let A be a Krein subnormal operator on H with basic Krein
normal extension N on K and let the notation be as above. The following
hold:

(1) A is similar to the subnormal operator A+.
(2) A is similar to the subnormal operator Ǎ.
(3) For λ complex, A−λI is Krein subnormal and (A−λI)± = A±−λI.
(4) σ(A) = σ(A+) = σ(Ǎ) ⊃ σ(A−).
(5) ‖A‖ ≥ ‖A+‖ = ‖Ǎ‖ ≥ ‖A−‖.

Proof.(1): A = P−1
+ A+P+.

(2): For x in H, we have

‖x‖2H = 〈x, x〉 = [Jx, x] = [P+x, P+x]− [P−x, P−x]

≤ [P+x, P+x] + [P−x, P−x] = ‖x‖2Ȟ.

Thus, the map β−1 is a contraction. Since both Ȟ and H are complete, the
open mapping theorem implies that β is bounded. The equality A = β−1Ǎβ

implies A is similar to Ǎ.
(3): Clear.
(4): By (1) and (2), A, A+, and Ǎ are similar so their spectra are

equal. Moreover A− is subnormal, the range of P− is dense in H−, and
P−A = A−P−, so [?, Theorem 1] implies that A− is invertible whenever A
is, which by (3), proves the final containment.

(5): The spectral radius is no more than the norm for any operator and
equality holds for (Hilbert space) subnormal operators, so (4) implies (5).

2
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The weighted shift of Example 2 show that the inequalities in (4) and
(5) are the best possible in general.

Corollary 2 If A is a Krein subnormal operator whose spectrum has area
zero, then A is normal. In particular, if A is compact and Krein subnormal,
then A is normal.

Proof.By part (4) of Theorem 1, Ǎ is a subnormal operator with spectrum
having measure zero. By Putnam’s Theorem [?], Ǎ is normal and H is a
reducing subspace of Ň . But by Lemma 1, N <∗> = N [∗], so H is also a
reducing subspace of N and A is normal.

2

Corollary 3 If A is a Krein subnormal operator and λ is an eigenvalue of
A, then ker(A− λI) is a reducing subspace of A on which A is normal.

Proof.Let ker(A − λI) = H0. The restriction of A to H0 is a Krein sub-
normal operator with spectrum {λ}, so by Corollary 2, A on H0 is normal.
This implies that each vector in H0 is also an eigenvector of A∗, so H0 is
invariant for A also, and H0 is reducing.

2

Of course, many results about subnormal operators concern properties
that are invariant under similarity; these remain true of Krein subnormal
operators. Among these, the most interesting are the theorems concerning
existence of hyperinvariant subspaces.

Since many non-normal operators on a finite dimensional space are simi-
lar to normal operators, Krein subnormal operators are not just those similar
to subnormal operators.

Theorem 4 An operator A on H is Krein subnormal if and only if there is
an equivalent inner product [·, ·]′ on H such that for any vectors v0, · · · , vn
in H, ∣∣∣∣∣∣

n∑
j,k=0

<Akvj, A
jvk>

∣∣∣∣∣∣ ≤
n∑

j,k=0

[Akvj, A
jvk]

′.

Moreover, every Krein subnormal operator has a minimal Krein normal ex-
tension.

7



Proof.We will show that for Krein subnormal operators, the Hilbert norm
on the Krein space satisfies the inequality, and we will show that if the
inequality holds then the operator A has a minimal Krein normal extension.
(⇒) Let A be a Krein subnormal operator, N its Krein normal extension
on the Krein space K, and let J be the fundamental symmetry for K. We
see that since J is a self-adjoint contraction that commutes with N∣∣∣∣∣∣

n∑
j,k=0

<Akvj, A
jvk>

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

j,k=0

[JAkvj, A
jvk]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

j,k=0

[JNkvj,N
jvk]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

j,k=0

[NkJvj ,N
jvk]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

j,k=0

[(N∗)jJvj , (N∗)kvk]

∣∣∣∣∣∣
=

∣∣∣∣∣∣[J
n∑
j=0

(N∗)jvj,
n∑
k=0

(N∗)kvk]

∣∣∣∣∣∣ ≤ [
n∑
j=0

(N∗)jvj,
n∑
k=0

(N∗)kvk]

=
n∑

j,k=0

[Akvj, A
jvk].

The proof of part (2) of Theorem 1 shows that the inner products are
equivalent on H.
(⇐) The operator A is subnormal on H with respect to the inner product
[·, ·]′ by the Bram-Halmos condition [?, page 117], so there is a Hilbert
space K′ with inner product [·, ·]′ and a normal operator N on K′ such that
A = N |H and K0 = span{(N∗)kH : k ≥ 0} is dense in K′.

Letting x̃ =
∑n
j=0(N∗)jxj in K0, we see that f defined by

f(x̃, ỹ) = f(
n∑
j=0

(N∗)jxj,
n∑
k=0

(N∗)kyk) =
n∑

j,k=0

<Akxj, A
jyk>

is a bilinear Hermitian form and

|f(x̃, x̃)| ≤ [x̃, x̃]′.

This inequality implies that there is a self-adjoint operator J ′ on K′ such
that ‖J ′‖ ≤ 1 and

f(x̃, ỹ) = [J ′x̃, ỹ]′.

Define a new non-negative inner product by

[x̃, ỹ] = [|J ′|x̃, ỹ]′.
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Complete K0 in the inner product [·, ·] to get K and extend

<x̃, ỹ> = f(x̃, ỹ) = [J ′x̃, ỹ]′

to get an indefinite inner product making K into a Krein space.
Now H is naturally identified as a closed subspace of K. Indeed, since

|J ′| is a positive contraction and <·, ·> and [·, ·]′ are equivalent, there is a
constant c so that for x in H,

[x, x] = [|J ′|x, x]′ ≤ [x, x]′ ≤ c<x, x> .

On the other hand,

<x, x> = [J ′x, x]′ ≤ [|J ′|x, x]′ = [x, x].

Thus, <·, ·> and [·, ·] are equivalent, which implies H is closed in K.
Since K0 is dense in K′ and

[J ′Nx̃, ỹ]′ = f(Nx̃, ỹ) = f(
n∑
j=0

(N∗)jNxj ,
n∑
k=0

(N∗)kyk)

=
n∑

j,k=0

<AkAxj, A
jyk> = f(

n∑
j=0

(N∗)jxj,
n∑
k=0

(N∗)k+1yk)

= f(x̃,N∗ỹ) = [J ′x̃,N∗ỹ]′ = [NJ ′x̃, ỹ]′,

we see that N and J ′ commute on K′. Since J ′ is self-adjoint, N also
commutes with |J ′| and |J ′|1/2. It follows that N is continuous on K since
for u in K′

[Nu,Nu] = [|J ′|Nu,Nu]′ = [N |J ′|1/2u,N |J ′|1/2u]′

≤ ‖N‖2[|J ′|u, u]′ = ‖N‖2[u, u].

Since N commutes with the spectral projections for J ′, we see that N is
fundamentally reducible on K. In addition, it follows from the construction
of K that K0 is dense in K so that N is a minimal Krein normal extension
of A.

2

The following theorem says that for cyclic Krein subnormal operators,
the weighted shift in Example 2 is typical; namely, all such operators are
unitarily equivalent to multiplication by z on a positive subspace of K2(|µ|)
for a real measure µ.
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Theorem 5 Let A be a Krein subnormal operator on H with cyclic vector y.
Then there is a unique real regular Borel measure µ with support contained
in σ(A) such that

(1) the operator U defined for analytic polynomials p by

U(p(A)y) = p(z)

has a unique extension to a unitary operator mapping H onto a closed sub-
space of K2(|µ|),

(2) the J-normal operator of multiplication by z on K2(|µ|) is a min-
imal Krein normal extension of UAU−1 that commutes with the canonical
fundamental symmetry of K2(|µ|), and

(3) any other minimal, fundamentally reducible, J-normal extension of
A is unitarily equivalent to Mµ.

The closed subspace of K2(|µ|) mentioned in (1) above is clearly the
closure of the subspace of analytic polynomials; we will call this subspace
P 2(µ).
Proof.Let A have basic Krein normal extension N on K. Since y is a cyclic
vector, {p(A)y : p an analytic polynomial} is dense in H, and since

P±p(A)y = p(A±)y±,

{p(A+)y+} is dense in H+ and {p(A−)y−} is dense in H−. That is, A+ and
A− are cyclic subnormal operators. By Theorem III.5.3 of [?], there are mea-
sures ν± on σ(A±) such that N± are unitarily equivalent to multiplication
by z on L2(ν±). In particular,

‖p(A)y‖2 = ‖p(A+)y+‖2 − ‖p(A−)y−‖2

=

∫
|p(z)|2 dν+ −

∫
|p(z)|2 dν−

for all analytic polynomials p. For µ = ν+ − ν−, let µ = µ+ − µ− be the
Jordan decomposition of µ and let support(µ) = E+ ∪E− be the associated
Hahn decomposition. Then µ is a real regular Borel measure with support
contained in σ(A). Define the operator U from H into K2(|µ|) by

U(p(A)y) = p(z)

for analytic polynomials p. Since

‖p(A)y‖2 =

∫
|p(z)|2 dν+ −

∫
|p(z)|2 dν− =

∫
|p(z)|2 dµ,
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U has a unique extension to a unitary operator mapping H onto a subspace
of K2(|µ|).

Now by Theorem 1 and standard results on the Jordan decomposition,
there is a constant c such that for each polynomial p,

c

∫
|p(z)|2 dµ+ ≤ c

∫
|p(z)|2 dν+ ≤ ‖p(A)y‖2 ≤

∫
|p(z)|2 dµ+.

Letting Q+ and Q− denote the canonical projectors on K2(|µ|), this inequal-
ity implies that Q+ maps U(H) isomorphically onto a subspace of K2(|µ|)+

.
It follows, because Q+U is an isomorphism defined on the Hilbert space H,
that Q+U(H) is complete and closed, which, in turn, means that U(H) is
closed.

Let M denote multiplication by z on L2(|µ|), and Q± denote the fun-
damental projectors on K2(|µ|). Since E+ and E− are disjoint and the
measure µ is regular, for each x in H and ε > 0, there is a polynomial q
in two variables such that ‖Q+(Ux) − q(M,M∗)(Ux)‖ < ε in L2(|µ|) and
similarly for Q−. Therefore,

{(M∗)n(Ux) : x ∈ H and n ≥ 0}

is dense in K2(|µ|) and M is a minimal Krein normal extension of UAU−1.
If µ̃ is another such measure, then for every polynomial q(r, s) =

∑
ai,jr

isj

in two variables,∫
q(z, z) dµ = <q(M,M∗), 1> =

∑
ai,j <M

i1,M j1>

=
∑

ai,j <A
iy,Ajy> =

∫
q(z, z) dµ̃.

By the Riesz representation theorem, µ and µ̃ are equal.
2

Corollary 6 The minimal Krein normal extension of a cyclic Krein sub-
normal operator is unique up to unitary equivalence.

Proof.The spectral theorem for cyclic normal operators on Hilbert space
implies that a fundamentally reducible J-normal operator is unitarily equiv-
alent to Mµ for some real measure µ. The theorem above shows that the
measure is unique.

2
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The following corollary is the generalization to Krein subnormality of
the moment condition for shifts due to Berger and independently to Gellar
and Wallen [?, pages 159,160].

Corollary 7 Let W be the weighted shift Aen = wnen+1 where wn > 0 for
all n and {e0, e1, · · ·} is an orthonormal basis for H and let ρ denote the
spectral radius of A. Then W is Krein subnormal if and only if there is a
real regular Borel measure ν on 0 ≤ r ≤ ρ and a positive number c such that

|w0w1 · · ·wn−1|2 =

∫
r2n dν(r) ≥ c

∫
r2n d|ν|(r).

Proof.(⇒) Since e0 is a cyclic vector for W , Theorem 5 implies there is a
measure µ supported on the spectrum of W and an isometry U of H onto
P 2(µ) such that Ue0 = 1 and UWU−1 = Mz the operator of multiplication
by z. For each real number θ, the operator V en = einθen is a unitary
operator that implements a unitary equivalence between W and eiθW . By
Theorem 5, the measure µ and its rotation µ ◦ (e−iθ), which is the measure
associated with eiθMz, must be the same. Defining ν on 0 ≤ r ≤ ρ by

ν(∆) = µ({z: |z| ∈ ∆})

this means dµ = dν dθ/2π. Computing, we find

|w0w1 · · ·wn−1|2 = ‖W ne0‖2 =

∫
|z|2n dµ(z) =

∫
r2n dν(r).

Since W is Krein subnormal, W and W̌ are similar and the norms induced
by µ and |µ| are equivalent. In particular, there is a positive number c so
that ∫

|z|2n dµ ≥ c
∫
|z|2n d|µ|

which implies ∫
|r|2n dν ≥ c

∫
|r|2n d|ν|.

(⇐) Define µ on σ(W ) by dµ = dν dθ/2π. Let fn = (w0w1 · · ·wn−1)−1zn.
Then fn is an orthonormal system and Uen = fn is a unitary operator
intertwining W and Mz. To finish the proof we need only show that UH is
closed in K2(|µ|), that is, we need to show that the norms defined by µ and
|µ| are equivalent. If p is the analytic polynomial p(z) = a0+a1z+· · ·+anzn,∫

|p(z)|2 d|µ| ≥
∫
|p(z)|2 dµ =

∑
|aj|2

∫
r2j dν
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≥ c
∑
|aj |2

∫
r2j d|ν| = c

∫
|p(z)|2 d|µ|

so the conclusion follows.
2

Converses of Theorem 5 are more subtle. The most obvious difficulty
is that the space corresponding to P 2(|µ|) may not be positive. The extra
condition in Corollary 7 that guarantees closure of P 2(|µ|) in K2(|µ|) is
necessary for a converse, and may be difficult to deal with in practice. The
following example illustrates the possible failure of this condition.
Example We construct a measure ν = ν+ − ν− on 0 ≤ r ≤ 1 and integers
j0, j1, j2, · · · such that if the measure µ is defined by dµ = dν dθ/2π, then µ
induces a positive definite inner product on the analytic polynomials, but∫

r2jk dν < 4−k+1 and

∫
r2jk d|ν| > 2−k

for k = 0, 1, 2, · · ·. This means that the series
∑∞
k=0 2k/2zjk converges abso-

lutely in the inner product space defined by µ but diverges in L2(|µ|), so that
the norm induced by µ on the closure of the analytic polynomials in K2(|µ|)
does not make K2(|µ|) into a Hilbert space. Therefore, the corresponding
weighted shift is not Krein subnormal.

If 1
2 = ρ0 < ρ1 < ρ2 < · · · < 1 and 0 < ρ′n < ρn, then let

ν+ =
∞∑
n=0

2−nδρn

and let

ν− =
∞∑
n=1

2−nδρ′n

where δρ is point mass at ρ. Then∫
r2j dν = 4−j +

∞∑
n=1

2−n
(
(ρn)2j − (ρ′n)2j

)
and ∫

r2j d|ν| = 4−j +
∞∑
n=1

2−n
(
(ρn)2j + (ρ′n)2j

)
.

It is easily seen that the corresponding µ induces a positive definite inner
product on the analytic polynomials.
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We inductively choose integers j0 < j1 < j2 < · · ·; numbers ρ0 < ρ1 <

ρ2 < · · · < 1; and numbers 0 < α1 < α2 < · · · < 1 so that the choice
ρ′n = αnρn satisfies the conditions above. Let j0 = 1, α0 = 0, and ρ0 = 1/2.
Choose jk > jk−1 (which implies jk > k) so that

(ρn)2jk < 4−k for n = 0, 1, · · · , k − 1

choose αk with αk−1 < αk < 1 so that(
1− (αk)

2jk
)
< 2−k

and choose ρk with ρk−1 < ρk < 1 so that

(ρk)
2jk
(
1 + (αk)

2jk
)
> 1.

Now, ∫
r2jk dν = 4−jk +

∞∑
n=1

2−n(ρn)2jk
(
1− (αn)2jk

)

≤ 4−k +
k−1∑
n=1

2−n(ρn)2jk
(
1− (αn)2jk

)
+
∞∑
n=k

2−n(ρn)2jk
(
1− (αn)2jk

)

≤ 4−k +
k−1∑
n=1

2−n4−k +
∞∑
n=k

2−n2−k < 4−k + 4−k + 2 · 4−k = 4 · 4−k.

Moreover, ∫
r2jk d|ν| = 4−jk +

∞∑
n=1

2−n(ρn)2jk
(
1 + (αn)2jk

)

≥ 2−k(ρk)
2jk
(
1 + (αk)

2jk
)
≥ 2−k.

2

Theorem 5 and Corollary 7 give moment conditions applicable in special
cases that are analogous to those for subnormal operators and seem likely to
be as useful in studying Krein subnormal operators. The following theorem,
which is an application of Theorem 4, is a more general operator moment
condition analogous to the operator moment condition given by Embry [?]
for subnormal operators.
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Theorem 8 Let A be a bounded operator on the Hilbert space H. Then A

is a Krein subnormal operator if and only if there is a bounded self-adjoint
operator measure S(·) supported in the spectrum of A with decomposition
S(·) = S+(·)−S−(·) such that S+(·) and S−(·) are bounded positive operator
measures for which

(A∗)nAm =

∫
znzm S(dz)

and for all vectors x and y in H,∫
〈S±(dz)Amx,Any〉 =

∫
znzm 〈S±(dz)x, y〉.

Proof.(⇒) Let N be a Krein normal extension of A to the Krein space
K = K+ ⊕K− and let P be the [orthogonal] projection of K onto H. Since
N is a normal operator on the Hilbert space K with the inner product
[·, ·], the spectral theorem implies that there is a projection valued measure
E so that N =

∫
z E(dz), and since N is fundamentally reducible, N± =∫

z P±EP±(dz). Thus, for x and y in H,

〈(A∗)nAmx, y〉 = 〈Amx,Any〉 = 〈Nmx,Nny〉

= 〈Nmx+,Nny+〉+ 〈Nmx−,Nny−〉 = [Nmx+,Nny+]− [Nmx−,Nny−]

=

∫
znzm [P+EP+(dz)x, y] −

∫
znzm [P−EP−(dz)x, y]

=

∫
znzm 〈P+EP+(dz)x, y〉 −

∫
znzm 〈−P−EP−(dz)x, y〉

=

∫
znzm 〈S(dz)x, y〉

where

S+(∆) = PP+E(∆)P+P, S−(∆) = −PP−E(∆)P−P

and S(∆) = S+(∆) − S−(∆). It is easy to check that the measures satisfy
the conditions of the theorem.

(⇐) If the bounded positive operator measures S+ and S− satisfy the
conditions of the theorem, let Š = S+ + S− and let

[x, y] =

∫
〈Š(dz)x, y〉.
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Then

〈x, x〉 =

∫
〈S(dz)x, x〉 ≤

∫
〈Š(dz)x, y〉 = [x, y]

and

[x, x] =

∫
〈Š(dz)x, x〉 ≤ ‖Š(σ(A))‖〈x, x〉.

This means that [·, ·] is equivalent to 〈·, ·〉 on H.
For x0, x1, · · · , xn in H,

n∑
i,j=1

〈Aixj, Ajxi〉 =
n∑

i,j=1

∫
zizj〈S(dz)xj , xi〉

and
n∑

i,j=1

[Aixj, A
jxi] =

n∑
i,j=1

∫
zizj〈Š(dz)xj , xi〉

which implies

n∑
i,j=1

[Aixj , A
jxi]−

n∑
i,j=1

〈Aixj , Ajxi〉 = 2
n∑

i,j=1

∫
zizj〈S−(dz)xj , xi〉.

Since S− is a bounded positive operator measure, the right hand side is
non-negative. Indeed, if

∑m
k=1 αkχ∆k

is a simple function approximating z
on σ(A), then the integral on the right is approximately

n∑
i,j=1

(
m∑
k=1

αikαk
j〈S−(∆k)xj , xi〉

)

=
m∑
k=1

 n∑
i,j=1

〈S−(∆k)
1/2αk

jxj , S
−(∆k)

1/2αk
ixi〉


=

m∑
k=1

∥∥∥∥∥∥
n∑
j=1

S−(∆k)
1/2αk

jxj

∥∥∥∥∥∥
2

≥ 0.

Thus,
n∑

i,j=1

〈Aixj, Ajxi〉 ≤
n∑

i,j=1

[Aixj, A
jxi].

In the same way,

n∑
i,j=1

[Aixj , A
jxi] +

n∑
i,j=1

〈Aixj , Ajxi〉 = 2
n∑

i,j=1

∫
zizj〈S+(dz)xj , xi〉,
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so

−
n∑

i,j=1

〈Aixj , Ajxi〉 ≤
n∑

i,j=1

[Aixj, A
jxi].

By Theorem 4, this means that A is Krein subnormal.
2

It is illuminating to contrast this result with the result of Corollary 7.
The closure of the original space in the Krein space extension, in the shift
case, results from the constant c that gives the equivalence of the norms
determined by ν and |ν|, whereas, in the operator moment theorem, it results
from the assumption that the measures are bounded in the original norm.

We conclude with some questions that seem pertinent.

Question 1. Is the minimal Krein normal extension of every Krein sub-
normal operator unique?

We have proved this only in the cyclic case (Theorem 5). In that case,
the result is a consequence of the Hahn and Jordan decomposition theorems
for real measures. It would seem, in analogy with the cyclic case, that if self-
adjoint operator versions of the decomposition theorems could be proved,
then the uniqueness would follow as before using Theorem 8.

The corresponding question is unresolved in Wu’s work [?, ?, ?] also.
Our conjecture is that minimal normal extensions are unique for Krein sub-
normal operators but not for J-subnormal operators.

Question 2. Which operators that are similar to a subnormal operator are
actually Krein subnormal operators?

We have seen that every Krein subnormal operator on a Hilbert space
is similar to a subnormal one. It would be interesting to find a condition
on the relation between an invertible operator V and a subnormal operator
S that would guarantee that V −1SV is a Krein subnormal operator. The
finite dimensional case shows that not all operators similar to a subnormal
are Krein subnormal, and it would seem likely that the required conditions
will be subtle.

Question 3. What other moment conditions imply that an operator is Krein
subnormal? Can the operator moment condition of Theorem 8 be weakened
to be a condition on the interval 0 ≤ t ≤ ρ?

A theorem of Lambert [?] says that a bounded operator S on a Hilbert
space is subnormal if and only if for each vector x there is a positive measure
µx on 0 ≤ t ≤ ρ such that ‖Anx‖2 =

∫
t2n dµx(t). Corollary 7 and the
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associated example show that one cannot simply replace “positive” by “real”
in this theorem. It would be desirable, in general, to be able to get moment
conditions on the interval 0 ≤ t ≤ ρ rather than the spectrum of A. This
may be impossible because of the cancellation of the positive and negative
parts of the mass on the circles that are integrated to give the measure on
the interval.

Question 4. If an operator is both hyponormal and Krein subnormal, is it
a subnormal operator?

It seems likely that the positivity condition of hyponormality and the
measure conditions of Krein subnormality would be enough to give the pos-
itive measure conditions needed for subnormality.

In addition to these specific questions, there are several general themes
that deserve to pursued and further connections sought. For example,
McEnnis [?] studied fundamental reducibility of J-self-adjoint operators
and discovered that some growth conditions on the resolvent were impor-
tant. Are there similar conditions that apply here? Quasi-normality is one
of the important tools in the theory of subnormal operators. Moreover, the
proof of Wu’s theorem on J- subnormal operators closely resembles proofs
concerning quasi-normal operators. Is there an appropriate notion of quasi-
normality in this context?
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