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Abstract

In this paper, we describe a class of maps of the unit ball in CN into itself
that generalize the automorphisms and deserve to be called linear fractional
maps. They are special cases or generalizations of the linear fractional maps
studied by Krĕın and Smul’jan, Harris and others. As in the complex plane,
a linear fractional map on CN is represented by an (N+1)×(N+1) matrix.
Basic connections between the properties of the map and the properties of
this matrix viewed as a linear transformation on an associated Krĕın space
are established. These maps are shown to induce bounded composition
operators on the Hardy spaces Hp(BN ) and some weighted Bergman spaces
and we compute the adjoints of these composition operators on these spaces.
Finally, we solve Schroeder’s equation f ◦ ϕ = ϕ′(0)f when ϕ is a linear
fractional self-map of the ball fixing 0.
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1 Introduction

Linear fractional maps of the unit disk into itself and the automorphisms of
the disk play a basic role in the study of composition operators on spaces of
analytic functions on the unit disk. We would expect the analogues of these
maps in higher dimensions to play a similar role in the study of composition
operators on spaces of analytic functions on the unit ball in CN . The goal
of this paper is to introduce a class of maps that we hope will play this role,
to establish some of their properties, and to prove basic facts about their
composition operators. At the very least, because there are few concrete
examples of composition operators in spaces of several variable functions,
we hope that these examples will begin to outline the differences between
the one variable and the several variable theory.

The unit ball BN in CN is the set {z : |z| < 1} and the unit sphere is
the set {z : |z| = 1}. If H is a Hilbert space of analytic functions on the
unit ball and ϕ is an analytic map of the ball into itself, the composition
operator Cϕ is the operator given by Cϕf = f ◦ ϕ for f in H. We will be
most interested in composition operators induced by linear fractional maps
acting on the Hardy space H2(BN ) and the Bergman space A2(BN ), but
much of what we do will apply to other spaces as well.

Definition A map ϕ will be called a linear fractional map if

ϕ(z) = (Az +B)(〈z,C〉+D)−1

where A is an N × N matrix, B and C are (column) vectors in CN , and
D is a complex number. We will regard z as a column vector also and 〈·, ·〉
denotes the usual Euclidean inner product on CN .

For example, a linear transformation is a linear fractional map (Tz =
(Tz + 0)(〈z, 0〉+ 1)−1) and a translation is a linear fractional map (z + p =
(Iz + p)(〈z, 0〉 + 1)−1); thus an affine map that is a linear transformation
followed by a translation is a linear fractional map ((Tz + p)/(〈z, 0〉 + 1).

Clearly, the domain of a linear fractional map is the set of z in CN for
which 〈z,C〉+D 6= 0. For our purposes, we want the domain of ϕ to include
the closed ball; since z = −DC/|C|2 is a zero of 〈z,C〉 + D, this means
we will require | −DC/|C|2| > 1 or, equivalently, |D| > |C|. Conversely, if
|D| > |C|, then by the Cauchy-Schwarz inequality we will have 〈z,C〉+D 6= 0
for z in the closed ball. In particular, D is non-zero for the linear fractional
maps we consider.

Identifying a 1× 1 matrix with its entry, we occasionally write 〈z,C〉 =
C∗z. For example, using this identification we can see that a linear fractional
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map is constant if (and only if) A = BC∗/D. We will usually avoid the
case of constant maps.

In order to use tools from the theory of Krĕın spaces, we will sometimes
identify CN with equivalence classes of points in CN+1. If v = (v1, v2) where
v1 is in CN and v2 6= 0 is in C, identify v with v1/v2; in particular, z ↔ (z, 1).
We introduce a Krĕın space structure on CN+1 by letting [v,w] = 〈Jv,w〉
where 〈·, ·〉 is the usual (Euclidean) inner product on CN+1 and

J =

(
I 0
0 −1

)

In this setting, v represents a point of the unit sphere if and only if |v1| = |v2|
which occurs if and only if [v, v] = |v1|2 − |v2|2 = 0 and v represents a point
of the unit ball if and only if [v, v] < 0.

Definition If ϕ(z) = (Az + B)(〈z,C〉 + D)−1 is a linear fractional map,
the matrix

mϕ =

(
A B

C∗ D

)
will be called a matrix associated with ϕ.

Notice that if ϕ is a linear fractional map with ϕ(z) = w and v is a point
of CN+1 associated with z, then mϕv is associated with the point w and vice
versa. If ϕ1 and ϕ2 are linear fractional maps, direct computation of ϕ1 ◦ϕ2

and mϕ1mϕ2 shows that ϕ1 ◦ ϕ2 is a linear fractional map with associated
matrix mϕ1◦ϕ2 = mϕ1mϕ2 . In particular, if ϕ has a linear fractional inverse,
mϕ−1 = (mϕ)−1 and if mϕ is invertible, ϕ has a linear fractional inverse.

Before we can begin to exploit the representation of the linear fractional
maps of CN as linear maps on CN+1, we should settle the question of when
two linear fractional maps are the same, that is when does

(Az +B)(〈z,C〉+D)−1 = (A′z +B′)(〈z,C ′〉+D′)−1

The two maps are trivially the same if there is λ 6= 0 for which A′ = λA,
B′ = λB, C ′ = λC, and D′ = λD. A somewhat tedious computation, which
we omit, shows that the converse holds for non-constant maps.

In the second section of the paper, we review the connection between the
Krĕın space structure we have introduced on CN+1 and properties of linear
fractional maps. Specifically, we show that ϕ maps the unit ball into itself
if and only if mϕ is a multiple of a Krĕın contraction, and ϕ maps the ball
onto itself if and only if mϕ is a multiple of a Krĕın isometry. In the latter
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case we have precisely the automorphisms of the ball, and we discuss various
classes of automorphisms from the point of view of their matrix forms.

In Section 3, we establish several geometric facts about linear fractional
maps. For example, we show that linear fractional maps take balls to el-
lipsoids and affine sets to affine sets, and we establish a correspondence
between fixed points and fixed sets of linear fractional maps and invariant
subspaces of the associated linear transformation. Examples are given to
illustrate the results of Sections 2 and 3.

Section 4 contains the applications of these ideas to the study of compo-
sition operators with linear fractional symbol. For a variety of spaces, these
operators are always bounded and they are compact if and only if they map
the closed unit ball into the open unit ball. We introduce the adjoint map-
ping of a linear fractional map and use it to find the adjoint of composition
operators on a class of Hilbert spaces of analytic functions including the
classical Hardy and Bergman Hilbert spaces. The adjoint map also plays a
role in the final section, where the several variable analogue of Schroeder’s
functional equation, for linear fractional maps, is discussed.

A number of authors have developed the theory of automorphisms of
the unit ball, or more generally, of bounded symmetric domains in CN ,
for example, Arazy [1], Harris [9, 10], Rudin [22], and Stein [23]. Some
of these have used an indefinite form, that is, a Krĕın space approach, in
their development. The linear fractional maps of the ball considered here
are special cases of those considered by Krĕın and Smul’jan in “On linear-
fractional transformations with operator coefficients” ([15]) and by Harris in
his work “Linear fractional transformations of circular domains in operator
spaces,” [9], because the unit ball in CN is an operator space, and our
approach is same as in these works. Our goal in studying linear fractional
maps is to provide a foundation for the study of linear fractional composition
operators on spaces of analytic functions in the ball, and this influences the
issues we consider in Sections 2 and 3. It is clear that the techniques here
will extend to maps of a variety of domains in CN into other domains or
themselves and the composition operators associated with those maps.

The authors would like to thank Mike Dritschel for several valuable sug-
gestions about this work.
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2 Maps on the Ball: Isometries and Contractions

In this section we exploit the representation of linear fractional maps as
(N + 1) × (N + 1) matrices acting on a Krĕın space to investigate linear
fractional maps of the ball BN into and onto itself. Recall that a linear
transformation T of a Krĕın space is called a contraction (or Krĕın con-
traction or J–contraction) if [Tv, Tv] ≤ [v, v] for all vectors v, and is an
isometry if [Tv, Tv] = [v, v] for all v. We will see that the non-constant
linear fractional transformations ϕ which map BN into BN are precisely
those for which the matrix mϕ is a non-zero multiple of a contraction on
our Krĕın space, and ϕ maps BN onto BN if and only if mϕ is a multiple
of an isometry. Since all automorphisms of the unit ball are linear frac-
tional maps (see [7, page 99]), the latter result gives a characterization of
the automorphism group of BN . These results are not new; indeed they are
special cases of work of Krĕın and Smul’jan ([15]) done in the more general
setting of linear fractional maps on operator spaces. However, to keep our
exposition reasonably self-contained and specific to the concrete setting of
maps of BN into itself we will give proofs appropriate to our setting.

We begin with two preparatory lemmas that have been modified from the
presentation of “plus” operators found in Bognar’s book [2, Section II.8] .
In Lemmas 1 and 2, the phrase “indefinite scalar product” in the hypothesis
means that the scalar products should not be positive or negative semi-
definite.

Lemma 1 Suppose [·, ·]1 and [·, ·]2 are indefinite scalar products on the vec-
tor space V such that [x, x]1 = 0 implies [x, x]2 ≤ 0. If [y, y]1 > 0 and
[z, z]1 < 0 then

[y, y]2
[y, y]1

≤ [z, z]2
[z, z]1

Proof. Suppose the conclusion is false, that is, suppose [y, y]1 = 1 and
[z, z]1 = −1 and [y, y]2 + [z, z]2 > 0. Let x = εy + z for |ε| = 1. Then

[x, x]1 = 2Re ε[y, z]1

and
[x, x]2 = [y, y]2 + 2Re ε[y, z]2 + [z, z]2 > 2Re ε[y, z]2

Now there are at least two choices of ε for which 2Re ε[y, z]1 = 0 and for
at least one of these, 2Re ε[y, z]2 ≥ 0. For this ε, we have [x, x]1 = 0
and [x, x]2 > 0 contrary to the hypothesis. This contradiction shows that
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[y, y]1 = 1 and [z, z]1 = −1 implies [y, y]2 ≤ −[z, z]2 and the conclusion
follows by multiplying y and z by appropriate constants.

Lemma 2 If [·, ·]1 and [·, ·]2 are indefinite scalar products on the vector
space V such that [x, x]1 = 0 implies [x, x]2 ≤ 0, then

γ = sup
[y,y]1=1

[y, y]2 <∞

and
[x, x]2 ≤ γ[x, x]1

for all x in V.

Proof. Let [y, y, ]1 = 1 and [z, z]1 = −1. Then Lemma 1 implies

[y, y]2 =
[y, y]2
[y, y]1

≤ [z, z]2
[z, z]1

= −[z, z]2

It follows that
γ = sup

[y,y]1=1
[y, y]2 ≤ −[z, z]2 <∞

and that
γ ≤ inf

[z,z]1=−1
−[z, z]2

which means
sup

[z,z]1=−1
[z, z]2 ≤ −γ

Now, if [x, x]1 > 0, letting y0 = x/
√

[x, x]1, we have

[y0, y0]1 =
1

[x, x]1
[x, x]1 = 1

which implies
[x, x]2
[x, x]1

= [y0, y0]2 ≤ sup
[y,y]1=1

[y, y]2 = γ

so it follows that [x, x]2 ≤ γ[x, x]1.
For [x, x]1 = 0, the hypothesis says [x, x]2 ≤ 0 = γ[x, x]1.
Finally, if [x, x]1 < 0, letting z0 = x/

√
−[x, x]1, we have

[z0, z0]1 =
1

−[x, x]1
[x, x]1 = −1
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so
[x, x]2
−[x, x]1

= [z0, z0]2 ≤ sup
[z,z]1=−1

[z, z]2 ≤ −γ

and
[x, x]2 ≤ (−γ)(−[x, x]1) = γ[x, x]1

Thus, the desired inequality holds no matter what the sign of [x, x]1.

The next two results characterize the linear fractional maps which take
BN into, and onto, BN .

Theorem 3 Let ϕ(z) = (Az + B)(〈z,C〉 + D)−1 be a non-constant linear
fractional map. If a non-zero multiple of the matrix

mϕ =

(
A B

C∗ D

)

is a contraction on the Krĕın space with

J =

(
I 0
0 −1

)

then ϕ maps the unit ball BN into itself. Conversely, if ϕ maps the unit ball
into itself, then mϕ is a non-zero multiple of a contraction on this Krĕın
space.

Proof. If v represents the point z in BN , then for λ 6= 0, the vector λmϕv

represents the point ϕ(z). If λmϕ is a contraction, then [λmϕv, λmϕv] ≤
[v, v] < 0. Since |λ|2[mϕv,mϕv] = [λmϕv, λmϕv] < 0, it follows that
[mϕv,mϕv] < 0 also and ϕ(z) is a point of BN .

Conversely, if ϕ maps the unit ball into itself, let [x, y]1 = [x, y] and let
[x, y]2 = [mϕx,mϕy]. The hypothesis that ϕ maps the ball into itself says
that [v, v]1 = [v, v] < 0 implies [v, v]2 = [mϕv,mϕv] < 0. By continuity, this
means that [v, v]1 ≤ 0 implies [v, v]2 ≤ 0. Since ϕ(0) is in the unit ball, [·, ·]2
takes negative values. Since ϕ is non-constant, A 6= BC∗/D and we may
find z0 ∈ CN with z0 in the domain of ϕ and ϕ(z0) 6∈ BN : if there exists
w ⊥ C with Aw 6= 0, let z0 = λw for |λ| suitably large, while if A = 0 on C⊥

and A 6≡ 0, let z0 = λC for λ sufficiently close to −D/|C|2; the remaining
case A ≡ 0 is trivial. Thus [·, ·]2 takes positive values as well as negative,
and the hypotheses of Lemma 2 are satisfied.
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The conclusion of Lemma 2 is that there is a number γ so that

[mϕv,mϕv] = [v, v]2 ≤ γ[v, v]1 = γ[v, v]

Since ϕ is non-constant, the left side of this inequality takes both positive
and negative values and γ 6= 0. Since we have a point z0 as described above
such that z0 and ϕ(z0) both lie outside BN , we see that if v represents z0,
both [mϕv,mϕv] and [v, v] are positive. Thus γ > 0 and it follows that
γ−1/2mϕ is a Krĕın contraction as desired.

Now if T is a linear transformation on CN+1, then [Tv, Tv] ≤ [v, v] if and
only if 〈JTv, Tv〉 ≤ 〈Jv, v〉 if and only if 0 ≤ 〈(J−T∗JT )v, v〉. This happens
for all v in CN+1 if and only if the operator J−T∗JT is positive semidefinite:
this gives a quite concrete condition to check to see if a linear transformation
is a Krĕın contraction. On the other hand, the condition of the theorem, that
a multiple of mϕ is a contraction, is much more subtle. While the definition
of Hilbert space contraction is formally the same, the positivity of the inner
product on a Hilbert space means every linear transformation is a multiple
of a contraction! In an indefinite space, the condition treats positive vectors
(that is, vectors with [v, v] > 0) differently than negative vectors (vectors
with [v, v] < 0): to get a contraction, we want small multiples to satisfy the
condition for positive vectors and large multiples to satisfy the condition for
negative vectors. In many cases for which ϕ maps BN into itself, there is
precisely one positive multiple of mϕ that is a Krĕın contraction! Examples
will be given in the next section.

Theorem 4 If the matrix

mϕ =

(
A B

C∗ D

)

is a multiple of an isometry on the Krĕın space with

J =

(
I 0
0 −1

)

then ϕ(z) = (Az + B)(〈z,C〉 + D)−1 maps the unit ball BN onto itself.
Conversely, if ϕ(z) = (Az +B)(〈z,C〉 +D)−1 is a linear fractional map of
the unit ball onto itself, then mϕ is a multiple of an isometry.
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Proof. Since multiples of mϕ give the same linear fractional map, we will
assume mϕ is an isometry. Since CN+1 is a finite dimensional Krĕın space,
all isometries are invertible. Now if z is a point of the ball with ϕ(z) = w

and if v is a vector in CN+1 that represents z, then u = mϕv represents w.
Since mϕ is an isometry, [v, v] < 0 if and only if [u, u] < 0 which says z is in
the ball if and only if ϕ(z) is in the ball.

To prove the converse, first note that the linear transformation mϕ must
be invertible. Indeed, writing ej for the jth standard basis vector in CN ,
since ϕ maps onto the ball, the points 0 and ej/2 for j = 1, 2, · · ·, N , are in
ϕ(BN ). Since the range of mϕ is a subspace, this means that (0, · · · , 0, 1),
and (ej/2, 1) are in the range of mϕ. But these N + 1 vectors are linearly
independent, so the range of mϕ is CN+1.

Since mϕ is invertible, ϕ has a linear fractional inverse ϕ−1 : BN → BN ,
and (mϕ)−1 = mϕ−1. By Theorem 3 there are positive numbers k1 and k2

so that k1mϕ and k2mϕ−1 are contractions on the given Krĕın space. In
particular,

k2
2 [v, v] = [k2v, k2v] ≤ [mϕv,mϕv] ≤ 1

k2
1

[v, v]

Since this holds for both positive and negative vectors v, we must have
k1k2 = 1, and consequently

[v, v] ≤ k2
1 [mϕv,mϕv] ≤ [v, v]

which implies [k1mϕv, k1mϕv] = [v, v] for all v, as desired.

For U to be an invertible isometry on a Krĕın space means that U−1 =
U×, the Krĕın adjoint. In general, the Krĕın adjoint is the operator that
satisfies [Tv,w] = [v, T×w] and it is not difficult to see that T× = JT∗J
where T∗ is the usual Hilbert space adjoint. In the case we are interested
in, (

A B

C∗ D

)×
=

(
A∗ −C
−B∗ D∗

)
(1)

Writing out UU× = I and U×U = I gives eight equations that characterize
isometries on our Krĕın space, that is, the automorphisms of BN .
Examples We wish to identify the expressions for certain automorphisms.
First, note that the automorphism given by a unitary operator U on CN ,
ϕ(z) = Uz, can be represented by

mϕ =

(
U 0
0 1

)
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The automorphisms ϕ fixing e1 = (1, 0, · · · , 0) and −e1 can be written
as ϕ(z) = (Az + B)(〈z,C〉 + D)−1 where B = C = ce1, c real, D = d > 1
with c = ±

√
d2 − 1, and A has the block form(

d 0
0 V

)

where V is an (N − 1) × (N − 1) (Euclidean) unitary. When V = I the
corresponding automorphism is called a non-isotropic dilation of the ball.

Finally, if p is a point of BN , we would like to find an automorphism
ϕ so that ϕ(ϕ(z)) = z and ϕ(0) = p. Such automorphisms will be called
involutions. The transitivity of the automorphism group follows from the
existence of involutions. An involution satisfies ϕ−1 = ϕ so, choosing a rep-
resentation mϕ of ϕ for which mϕ is an isometry andD ≥ 1, there is λ so that
λmϕ

× = mϕ. Equation (1) gives A = λA∗, B = −λC, and D = λD∗ = λD.
The final equality implies λ = 1, so we get A = A∗ and B = −C. From the
relations mϕmϕ

× = mϕ
×mϕ = I we obtain D = (1 − |p|2)−1/2, Ap = −Dp,

and A2 = I on the orthogonal complement of the subspace spanned by
p. Conversely, if D = (1 − |p|2)−1/2 and A is a selfadjoint matrix with
Ap = −Dp and A2 = I on the orthogonal complement of the subspace
spanned by p, letting ϕ(z) = (Az + B)(〈z,C〉 + D)−1 where B = Dp and
C = −Dp gives an automorphism of BN with ϕ(0) = p and ϕ(ϕ(z)) = z.

Proposition 5 The unitary maps and the non-isotropic dilations generate
the full group of automorphisms of the ball. Specifically, if ϕ is a (non-
unitary) automorphism of the ball, then there are unitaries W1 and W2 and
a non-isotropic dilation δ so that ϕ = W1δW2.

Proof. First, for 0 < b < 1, consider the involution automorphism ϕb
that takes be1 to 0 given by ϕb(z) = (Az + B)(〈z,C〉 + D)−1 where A is
diagonal with diagonal entries (−s−1, 1, · · · , 1), B = −C = bs−1e1, and
D = s−1 for s =

√
1− |b|2. Let δb be the non-isotropic dilation given by

δb(z) = (A′z+B′)(〈C ′, z〉+D′)−1 where A′ is diagonal with diagonal entries
(s−1, 1, · · · , 1), B′ = C ′ = bs−1e1, and D′ = s−1. If U is the diagonal unitary
with diagonal entries (−1, 1, · · · , 1), then a computation with the associated
linear transformations shows that ϕb = δbU .

Now for any point p of the ball, p 6= 0, if V is a unitary that such that
V p = |p|e1 then V ∗ϕ|p|V is an involution automorphism that takes p to 0.
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Moreover, for any automorphism ϕ, if p = ϕ(0) and ψ is an involution that
takes p to 0, then ψ ◦ϕ maps 0 to 0 and, by Cartan’s Theorem [22, Theorem
2.1.3], is therefore a unitary W . Since ψ ◦ ϕ = W and ψ is an involution,
ϕ = ψ ◦ ψ ◦ ϕ = ψW . Putting these maps together, we see that we have
ϕ = V ∗δ|p|(UVW ) for any automorphism ϕ.

The automorphisms allow us to “change variables” via conjugation: we
say ϕ and ψ are conjugate if there is an automorphism of the ball τ such
that ψ = τ−1 ◦ ϕ ◦ τ . Conjugation allows convenient normalizations. For
example, every linear fractional map ϕ of the ball into itself with a fixed
point in the ball is conjugate to one fixing 0, via an involution automorphism
interchanging 0 and a fixed point of ϕ. Similarly, every linear fractional self-
map ϕ(z) = (Az+B)(〈z,C〉+D)−1 of the ball is conjugate to a map ψ(z) =
(A′z + B′)(cz1 + 1)−1 for some 0 ≤ c < 1, via a unitary automorphism U

chosen so that U∗C = D|D|−1|C|e1, with A′ = D−1U∗AU , B′ = D−1U∗B
and c = |D|−1|C|. The condition |C| < |D| implies c < 1.

3 Geometric Properties

Next, we consider some geometric facts about linear fractional maps. In the
complex plane, the principal geometric fact about linear fractional maps is
that they map circles to circles. In higher dimensions, there is much more
flexibility, but the appropriate analogies are not obvious. By an ellipsoid, we
mean a translate of the image of the unit ball under an invertible (complex)
linear transformation. Because translations and linear transformations are
linear fractional maps, every ellipsoid is the image of the unit ball under a
linear fractional map. The next result gives a converse.

Theorem 6 If ϕ is a one-to-one linear fractional map defined on a ball, B,
in CN , then ϕ(B) is an ellipsoid.

Proof. Without loss of generality, we may assume that the ball B is BN ,
and we may write ϕ(z) = (Az + B)(〈z,C〉 + D)−1 where |D|2 = 1 + |C|2.
Then ϕ(BN ) is an ellipsoid if and only if ψ(ϕ(BN )) is an ellipsoid for an
invertible affine map ψ. Following ϕ by the translation z 7→ z−BD−1 gives
an invertible linear fractional map taking 0 to 0:(

I −BD−1

0 1

)(
A B

C∗ D

)
=

(
A−BD−1C∗ 0

C∗ D

)
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Moreover, since ϕ is one-to-one, mϕ is invertible and this implies A −
BD−1C∗ is invertible; if not find a non-zero vector x with (A−BD−1C∗)x =
0 and note that the non-zero vector (x,−D−1C∗x) is mapped by mϕ to 0.
Now if ψ is the affine map with

mψ =

(
(A−BD−1C∗)−1 0

0 1

)(
I −BD−1

0 1

)

then ψ(ϕ(z)) = z(〈z,C〉 +D)−1.
Now consider the affine map Ψ(z) = Xz+Y where X =

√
(I + CC∗)−1

and Y = XC. Note that the matrix CC∗ is positive semidefinite, so I+CC∗
is invertible and positive definite. The matrix X is the unique positive
definite square root of this inverse and by the spectral theorem, X commutes
with CC∗. The linear fractional map Ψ(ψ(ϕ(z))) then is associated with
the linear transformation(

X Y

0 1

)(
I 0
C∗ D

)
=

(
X + Y C∗ Y D

C∗ D

)

and (
X + Y C∗ Y D

C∗ D

)(
X + CY ∗ −C
−D∗Y ∗ D∗

)
has upper left entry

(X + Y C∗)(X + CY ∗)− Y DD∗Y ∗

= (X +XCC∗)(X +CC∗X)−XCDD∗C∗X
= X2

(
(I +CC∗)2 − |D|2CC∗

)
= X2(I + CC∗) = I

(where we used the relationships |D|2 = 1 + |C|2 and C∗C = |C|2), has
upper right entry

(X + Y C∗)(−C) + Y DD∗ = −XC − Y C∗C + Y DD∗

= −XC −XC|C|2 +XC(1 + |C|2) = 0

has lower left entry

C∗(X + CY ∗)−DD∗Y ∗ = 0

12



and has lower right entry

−C∗C +DD∗ = 1

That is, the matrix (
X + Y C∗ Y D

C∗ D

)
is a Krĕın isometry. This means that the linear fractional map Ψ ◦ ψ ◦ ϕ is
an automorphism of the ball! In particular, the image ϕ(BN ) is the same
as the image of the affine map (Ψ ◦ ψ)−1 which is an ellipsoid.

If ϕ is a linear fractional map defined on a closed ball B that is not
one-to-one, the image ϕ(B) will be the intersection of an ellipsoid with a
translate of a k dimensional subspace of CN , for some k < N . To see this,
we again assume without loss of generality that ϕ(0) = 0 and note that

mϕ =

(
A 0
C∗ D

)
=

(
A 0
0 D

)(
I 0

D−1C∗ 1

)

The first factor on the right-hand side corresponds to the linear transforma-
tion D−1Az and the second factor corresponds to a one-to-one linear frac-
tional map also defined on B. If ϕ is not one-to-one, then rankA = k < N ,
and by Theorem 6 ϕ(B) is a translate of the image of a ball under some
linear transformation of rank k.

Recall that if z1, z2, · · ·, zn are points in CN , the affine set determined
by these points is the set

[z1, z2, · · · , zn] =


n∑
j=1

αjzj :
n∑
j=1

αj = 1; αj ∈ C


Affine sets are just translates of (complex) subspaces and the dimension of
an affine set is the dimension of this subspace. The following theorem says
that linear fractional maps take affine sets to affine sets.

Theorem 7 If ϕ is a linear fractional transformation and z1, z2, · · ·, zn
are points in the domain ∆ of ϕ, then the closure of ϕ([z1, z2, · · · , zn] ∩∆)
is [ϕ(z1), ϕ(z2), · · · , ϕ(zn)].

Note that the closure in the statement of the theorem is necessary: if
ϕ(z) = 1/z in the plane, and z1 = −1 and z2 = 1, then the affine set
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[z1, z2] is the complex plane, but ϕ([z1, z2] ∩∆) does not contain 0.

Proof. Let ϕ(z) = (Az +B)(〈z,C〉 +D)−1 and z1, z2, · · ·, zn be given. If
z is in the domain of ϕ where z =

∑
αjzj for

∑
αj = 1, let

βj = αj
〈zj , C〉+D

〈z,C〉+D

Now a calculation shows that
∑
βj = 1 and

∑
βjϕ(zj) = ϕ(z). Thus if

z in ∆ is an affine combination of z1, z2, · · ·, zn, then ϕ(z) is an affine
combination of ϕ(z1), ϕ(z2), · · ·, ϕ(zn).

Conversely, suppose u1 and u2 are points in [z1, z2, · · · , zn]∩∆ and w =
β1ϕ(u1)+β2ϕ(u2) where β1+β2 = 1. If β1(〈u2, C〉+D)+β2(〈u1, C〉+D) 6= 0,
let

α1 =
β1(〈u2, C〉+D)

β1(〈u2, C〉+D) + β2(〈u1, C〉+D)

and

α2 =
β2(〈u1, C〉+D)

β1(〈u2, C〉+D) + β2(〈u1, C〉+D)

so that α1 + α2 = 1. A computation shows that

〈(α1u1 + α2u2), C〉+D =
(〈u1, C〉+D)(〈u2, C〉+D)

β1(〈u2, C〉+D) + β2(〈u1, C〉+D)

which is non-zero so that α1u1 + α2u2 is in the domain of ϕ. Further com-
putation verifies ϕ(α1u1 + α2u2) = w so that w is in ϕ([z1, z2, · · · , zn] ∩∆).

On the other hand, if β1(〈u2, C〉+D)+β2(〈u1, C〉+D) = 0, then 〈u1, C〉+
D = β1〈(u1 − u2), C〉. Since u1 is in the domain of ϕ, 〈u1, C〉+ D 6= 0 and
this means 〈(u1− u2), C〉 6= 0. Therefore, we can apply the above argument
to β1+ε and β2−ε for all non-zero ε to show that (β1+ε)ϕ(u1)+(β2−ε)ϕ(u2)
is in ϕ([z1, z2, · · · , zn] ∩∆) for all non-zero ε. Since

w = lim
ε→0

(β1 + ε)ϕ(u1) + (β2 − ε)ϕ(u2)

this shows w is in the closure of ϕ([z1, z2, · · · , zn] ∩∆).
Thus, the closure of ϕ([z1, z2, · · · , zn] ∩∆) is an affine set that contains

ϕ(z1), ϕ(z2), · · ·, ϕ(zn) so it contains [ϕ(z1), ϕ(z2), · · · , ϕ(zn)]. Together
with the containment proved in the first half of the argument, this shows
that the conclusion is correct.
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A slice of the ball is the intersection of the ball with a subspace of CN .
A slice is copy of a unit ball of lower dimension and if a map ϕ fixes a slice
as a set, there is a unitary transformation of this ball of lower dimension
onto the slice that allows one to pull the restriction of ϕ to the slice back to
a map of the ball of lower dimension.

The next result follows immediately from Theorem 7 via conjugation by
an automorphim sending a point of the fixed affine set to 0.

Corollary 8 If ϕ is a linear fractional map of the unit ball into itself that
fixes an affine set (as a set) then ϕ is conjugate to a linear fractional map
ψ that fixes a slice (as a set).

We wish to determine when a linear fractional map of the ball into itself
fixes an affine set (as a set) or has a fixed point.

Theorem 9 Let ϕ be a linear fractional map of the ball into itself with
associated linear transformation mϕ. If S is an affine set whose intersection
with the ball is fixed as a set by ϕ, then the closure of the set of points in
CN+1 whose equivalence classes are points of S is a subspace MS of CN+1

that is invariant for mϕ. Conversely, if M is a subspace of CN+1 that is
invariant for mϕ, then the set of equivalence classes in the ball of the vectors
in M is (either empty or) the intersection SM of the ball with an affine set
that is fixed as a set by ϕ. In particular, z is a fixed point of ϕ, that is,
ϕ(z) = z, if and only if (z, 1) is an eigenvector of mϕ.

Proof. Subspaces of CN+1 correspond, under the quotient mapping
(v1, v2) ↔ v1/v2 (where v1 is in CN and v2 6= 0 is a number), to affine sets
in CN . Indeed, if (v1, v2) is in the subspace, then so is (v1/v2, 1). Thus, if
z = v1/v2 and w = u1/u2 are points of CN that are quotients of vectors in
the subspace, then αz+(1−α)w is also a quotient of a point in the subspace,
namely

α(v1/v2, 1) + (1− α)(u1/u2, 1) = (αv1/v2 + (1− α)u1/u2, 1)

Conversely, if S is an affine subset of CN , then the set of points of CN+1

whose quotients are in S is a subspace: clearly every multiple such a vector
is in the set because the multiple has the same quotient. Similarly, if (v1, v2)
and (u1, u2) have quotients z and w in S and v2 + u2 6= 0 then

v2/(v2 + u2)z + u2/(v2 + u2)w

15



is an affine combination of z and w that is a quotient of (v1 + u1, v2 + u2).
(If v2 +u2 = 0, then take the limit as t approaches 1 of (v1, v2) + (tu1, tu2).)

The conclusions follow from the observation that ϕ(z) = w if and only
if mϕ(z, 1) = (λw, λ) for some λ 6= 0.

There are intuitive difficulties in dealing with CN for large N (that is,
N > 1) because CN is hard to visualize. The goal of the following theorem
is to give a foundation for expanding our intuition by restricting to the real
case — we can imagine that the unit balls of C2 and C3 look “just like” the
unit balls of R2 and R3.

Theorem 10 Let ϕ(z) = (Az+B)(〈z,C〉+D)−1 be a linear fractional map
for which the matrices A, B, C, and D are real. Then ϕ maps the unit ball
in RN into itself if and only if ϕ maps the unit ball in CN into itself.

Proof. Since ϕ maps RN into itself, if ϕ maps the unit ball in CN into itself,
then ϕ will map the unit ball of RN into itself since it is the intersection of
BN with RN .

Conversely, suppose ϕ maps the unit ball in RN into itself. This means
that if v = (x, c) represents the point x/c in the unit ball of RN , then for
(p, a) = mϕv, we get p/a = ϕ(x/c) in the unit ball as well. We wish to show
that mϕ as a linear transformation on CN+1 has the same property.

Suppose (z, ζ) satisfies |ζ| = 1 and |z|2 < 1 so that z/ζ is in BN . For
each real number θ, the vector (eiθz, eiθζ) represents the same point of BN
as (z, ζ). Write eiθz = x + iy (x, y in RN ) and eiθζ = c + is (c, s in R).
Since c2 + s2 = 1, |z|2 = |x|2 + |y|2 < 1, and c varies from −1 to 1 as θ
varies, |x|2 − c2 takes on both negative and non-negative values as θ ranges
over R. By continuity we may choose θ so that |x|2 − c2 = 0.

Suppose c 6= 0. Since |x|2 − c2 = 0 and

|y|2 − s2 = |x|2 − c2 + |y|2 − s2 = |z|2 − |ζ|2 < 0

both (x, c) and (y, s) represent points of the closed unit ball in RN . The
hypothesis guarantees that mϕ(x, c) = (p, a) represents a point of the closed
unit ball and mϕ(y, s) = (q, b) represents a point of the unit ball in RN .
Now, (

eiθz

eiθζ

)
=

(
x

c

)
+ i

(
y

s

)
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and

mϕ

(
eiθz

eiθζ

)
= mϕ

(
x

c

)
+ imϕ

(
y

s

)

=

(
p

a

)
+ i

(
q

b

)
≡
(
w

η

)

We see that
|w|2 − |η|2 = |p|2 − a2 + |q|2 − b2 < 0

so (w, η) represents a point of the unit ball in CN .
If c = 0, then |x|2 − c2 = 0 means x = 0 also. It follows that

z

ζ
=
iy

is
=
y

s

so z/ζ is point of the unit ball of RN and ϕ(z/ζ) is a point of the unit ball
of RN , hence of BN , by hypothesis.

We can illustrate Theorems 3, 6, and 10 with some examples. If

A =

(
1 0
0 t

)
B =

(
1
0

)
C =

(
−1
0

)
and D = 3

then ϕ(z) = (Az + B)(〈z,C〉 + D)−1 maps B2 into itself for −2 ≤ t ≤ 2.
Indeed, if T = 1

2mϕ, then J − T∗JT is positive semidefinite so that 1
2mϕ is

a J–contraction; moreover, this is the only positive multiple of mϕ with this
property. The more conventional way to write these maps, say in a class on
multivariate calculus, would be

ϕ((x, y)) = (
1 + x

3− x,
ty

3− x)

Since all the matrices in mϕ are real, ϕ maps the unit ball in R2 into itself
as well. Figure 1 shows the intersections of the ellipsoids that are the images
of ϕ(B2) with the unit ball in R2, that is, the images of the restriction of ϕ
to the unit ball of R2, for t = 0 (the line segment), .25, .50, · · ·, 1.75, and 2
(the largest ellipse).
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Figure 1: Images of some linear fractional maps.
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4 The Adjoint Mapping and Composition Oper-

ators with Linear Fractional Symbol

Our goal was to introduce linear fractional maps of the ball to be able to
better understand composition operators on spaces of analytic functions in
several variables. While composition operators induced by automorphisms
have received some previous attention (e.g. [17]), using general linear frac-
tional maps as the symbol has not been specifically addressed. In this sec-
tion, we prove some basic facts about the composition operators induced
by linear fractional maps. This study provides further justification for the
introduction of the Krĕın space structure because the map in the follow-
ing definition plays a role in the construction of the adjoints of composition
operators and the proof of boundedness. In the one variable case, this defini-
tion leads to a notion of duality between Hilbert spaces of analytic functions
(see Hurst [12]).

Definition If ϕ(z) = (Az +B)(〈z,C〉+D)−1 is a linear fractional map of
the ball BN into itself, define the adjoint map σ = σϕ by

σ(z) =
A∗z − C

〈z,−B〉+D∗

Notice that ϕ(BN ) ⊂ BN implies ϕ(0) = |BD−1| < 1 so | − B| < |D|
and the domain of σ contains the closed unit ball.

Proposition 11 If ϕ(z) = (Az + B)(〈z,C〉 + D)−1 is a linear fractional
transformation mapping BN into itself, then the adjoint map σ(z) = (A∗z−
C)(〈z,−B〉+D∗)−1 maps BN into itself.

Proof. If ϕ is a map of BN into itself, we have seen (Theorem 3) that some
non-zero multiple of mϕ is a Krĕın contraction. Thus, suppose λ 6= 0 is a
scalar such that mϕ satisfies [λmϕv, λmϕv] ≤ [v, v]. Since we are working
in a finite dimensional space, this means λmϕ

× = (λmϕ)× is also a Krĕın
contraction [14, page 106]. Thus, by Theorem 3 and the observation that
mσ = mϕ

×, we see that σ maps the ball into itself.

Lemma 12 If ϕ,ψ are linear fractional maps of BN into BN , then σϕ◦ψ =
σψ ◦ σϕ.
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Proof. By Proposition 11 we know σψ ◦σϕ is a linear fractional map of BN
into itself. The conclusion follows from

mσϕ◦ψ = m×ϕ◦ψ = (mϕmψ)× = m×ψm
×
ϕ = mσψmσϕ

Proposition 13 Let ϕ be a linear fractional map of BN into BN and let σ
be its adjoint map. Then σ is an automorphism of BN if and only if ϕ is an
automorphism, σ is one-to-one if and only if ϕ is one-to-one, and σ(BN )
is contained in an affine set of dimension k < N if and only if ϕ(BN ) is
contained in an affine set of dimension k.

Proof. Since the adjoint map of ϕ is σ if and only if the adjoint map for σ
is ϕ, it is enough to only prove each of the “if” statements.

If ϕ is an automorphism of BN , we may assume without loss of generality
that mϕ is an isometry. As in the proof of Proposition 11, we see that
mσ = mϕ

× is also an isometry, and hence that σ is an automorphism. An
alternate proof, based on Proposition 5 and Lemma 12 can be given, since
the adjoint map of a unitary is unitary, and the adjoint of a non-isotropic
dilation is again a non-isotropic dilation.

If ϕ is a linear fractional map of BN into BN with ϕ(0) = a, then ϕa ◦ϕ
is a linear fractional map of BN into BN fixing 0, where ϕa is an involution
automorphism interchanging a and 0 (see the discussion preceding Proposi-
tion 5). Since ϕ = ϕa ◦ (ϕa ◦ ϕ), Lemma 12 shows that σϕ = σϕa◦ϕ ◦ σϕa ,
where by the first part of the proof, σϕa is an automorphism. Thus it suf-
fices to prove the remaining parts of the proposition under the additional
hypothesis that ϕ(0) = 0 so that ϕ(z) = Az(〈z,C〉 + D)−1. If ϕ is one-to-
one, A is non-singular, and σϕ(z) = (A∗z−C)/D∗ is clearly also one-to-one.
Similarly, if ϕ(BN ) is contained in an affine set of dimension k < N , then
the rank of A is at most k, and the expression σϕ(z) = (A∗z−C)/D∗ shows
that σϕ(BN ) is contained in an affine set of dimension at most k.

We use Proposition 11 in the next result, which shows that all linear
fractional maps of BN into BN induce bounded composition operators on
the Hardy spaces Hp(BN ).

Theorem 14 If ϕ is a linear fractional map of BN into BN then Cϕ is
bounded on Hp(BN ) for all p > 0.
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Proof. This is trivially true for p = ∞, so we consider 0 < p < ∞. Since
the automorphisms of BN give bounded composition operators [7, page 172],
it is enough to prove the theorem under the assumption that ϕ(0) = 0. Thus
we may assume that ϕ(z) = Az/(〈z,C〉 + 1) where |C| < 1.

Since ϕ is smooth on the closed ball, we may appeal to a theorem of
W. R. Wogen [24] to see that if Cϕ fails to be bounded on Hp(BN ) then
there must exist ζ and η in ∂BN with ϕ(ζ) = η and τ in ∂BN with 〈ζ, τ〉 = 0
so that

Dζϕη(ζ) = |Dττϕη(ζ)| (2)

where ϕη(z) = 〈ϕ(z), η〉 is the coordinate of ϕ in the η− direction and Dζ

is the derivative in the ζ direction. By pre– and post–composing ϕ with
unitary maps we may assume without loss of generality that ζ = η = e1 =
(1, 0′); that is, if there is a linear fractional map of BN fixing 0 for which
Equation (2) holds, then there is a linear fractional map of BN fixing 0 for
which the normalized version of Equation (2) holds: ϕ(e1) = e1 and

D1ϕ1(e1) = |Dττϕ1(e1)| (3)

for some τ in ∂BN with 〈e1, τ〉 = 0.
Writing A = (aij) and C = (c1, . . . , cN )t the condition ϕ(e1) = e1 says

that
a11 = 1 + c1 and aj1 = 0 for j = 2, 3, . . . ,N (4)

A computation then shows that D1ϕ1(e1) = a11(1+c1)−2 = (1+c1)−1. Now
choose eiθ so that eiθc1 = −|c1|. Since ϕ(eiθe1) must be in the closed ball,
we have

|a11|
1− |c1|

=
|1 + c1|
1− |c1|

≤ 1

so that c1 = −|c1|. In particular, this shows thatD1ϕ1(e1) = (1−|c1|)−1 > 0.
Now by Proposition 11 we know that σ(z) = A∗z−C also maps BN into

BN . In particular, |σ(e1)| ≤ 1. But

σ(e1) = (a11 − c1, a12 − c2, . . . , a1N − cN )

and we know a11 = 1 + c1 so we must have

a12 = c2, a13 = c3, . . . , a1N = cN (5)

Returning to ϕ we see by direct computation (using (4) and (5)) that for
j, k = 2, 3, . . . ,N

Djkϕ1(e1) = 0
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From this it follows that whenever 〈τ, e1〉 = 0 the second order derivative
Dττϕ1(e1) must be 0. This contradicts Equation (3) and hence Cϕ must in
fact be bounded on Hp(BN ).

Having established that all linear fractional maps induce bounded com-
position operators on the Hardy spaces, we can extend this result to Bergman
or weighted Bergman spaces, defined for 0 < p <∞ and α > −1 by

Apα(BN ) = {f analytic :

∫
BN

|f(z)|p(1− |z|2)α dν(z) <∞}

where ν is normalized volume measure on BN .

Theorem 15 If ϕ is a linear fractional map of BN into itself, then Cϕ is
bounded on Apα(BN ) for all α > −1 and p > 0.

Proof. Again we may restrict attention to those linear fractional maps ϕ
fixing 0 since the automorphisms give bounded composition operators on
these spaces as well (see, for example, Exercises 3.5.4 or 3.5.9 in [7]). For
0 < r < 1 consider ϕr(z) = ϕ(rz). By the theorem just proved, Cϕ is
bounded on H2(BN ) and it is easy to see that ‖Cϕr‖ ≤ ‖Cϕ‖ on H2(BN ).
By this observation and the Carleson measure criterion for boundedness on
H2(BN ) ([7, page 161])there is a finite constant K so that

µ(ϕ−1
r S(ζ, h)) ≤ KhN

for all Carleson sets S(ζ, h) = {z ∈ BN : |1−〈z, ζ〉| < h} in the ball, where µ
is normalized Lebesgue measure on ∂BN . Since ‖Cϕr‖ ≤ ‖Cϕ‖ the constant
K may be chosen independent of r. We are assuming ϕ(0) = 0 so that by
the Schwarz lemma we have |ϕ(z)| ≤ |z| for z in BN . Changing to polar
coordinates we see that∫

ϕ−1S(ζ,h)
(1− |z|2)α dν(z)

= 2N

∫ 1

1−h
r2N−1(1− r2)α dr

∫
∂BN

χϕ−1S(ζ,h)(rη) dµ(η)

where the inner integral is bounded above by KhN . This yields

ναϕ
−1S(ζ, h) ≤ K ′hα+N+1
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for some finite constant K ′, where dνα(z) = (1 − |z|2)αdν(z). This guaran-
tees that Cϕ is bounded on the weighted Bergman space Apα(BN ) (see [7,
page 164]).

Linear fractional maps can induce compact composition operators on
the Hardy or weighted Bergman spaces only if ‖ϕ‖∞ < 1. This follows
immediately from the observation that if |ϕ(ζ)| = 1 for some ζ in ∂BN then
the smoothness of ϕ on BN implies that ϕ has finite angular derivative at
ζ. This prevents Cϕ from being compact on Hp(BN ) or Apα(BN ) ([7, page
171]).

If H a Hilbert space of analytic functions on the ball and h is an analytic
function on the ball, we say h is a multiplier of H if the operator Th defined
by Th(f) = hf for f in H is bounded on H. If w is a point of the ball,
the reproducing kernel function Kw is the function in H that gives the
linear functional of evaluation at w, that is, for which 〈f,Kw〉 = f(w) for
all f in H. It is not difficult to check that T∗h (Kw) = h(w)Kw when h

is a multiplier of H. In particular, ‖Th‖ ≥ sup|z|<1 |h(z)|, so multipliers
must be in H∞(BN ). The following theorem identifies the adjoints of linear
fractional composition operators on many spaces of analytic functions on the
ball, including the usual Hardy and Bergman Hilbert spaces, since Kw(z) =
(1 − 〈z,w〉)−N is the reproducing kernel on the Hardy space H2(BN ) and
Kw(z) = (1 − 〈z,w〉)−N−1 is the reproducing kernel on the Bergman space
A2(BN ). The following theorem is a generalization of results of Cowen [4]
and Hurst [12].

Theorem 16 Let H be a Hilbert space of analytic functions on the unit
ball for which all functions in H∞(BN ) are multipliers and for which the
reproducing kernel functions are given by

Kw(z) = (1− 〈z,w〉)−r

for some positive number r. Suppose ϕ(z) = (Az + B)(〈z,C〉 + D)−1 is a
linear fractional map of BN into itself for which Cϕ is a bounded operator
on H. Let σ(z) = (A∗z − C)(〈z,−B〉 + D∗)−1 be the adjoint mapping.
Then Cσ is a bounded operator on H, g(z) = (〈z,−B〉+D∗)−r and h(z) =
(〈z,C〉 +D)r are in H∞(BN ), and

C∗ϕ = TgCσT
∗
h
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Proof. Because ϕ and therefore also σ map BN into itself, we have |C| < |D|
and |B| < |D|. Thus the functions h, h−1, g, and g−1 are in H∞(BN ). We
will show Cσ = T−1

g C∗ϕ(T∗h )−1.
Let w be in BN . Since

(T∗h )−1Kw = (T−1
h )∗Kw = (h(w))−1Kw

and C∗ϕKw = Kϕ(w) a calculation gives

T−1
g C∗ϕ(T∗h )−1(Kw)(z) = h(w)

−1
(g(z))−1Kϕ(w)(z)

= h(w)
−1

(g(z))−1
(
1− 〈z, (Aw +B)(C∗w +D)−1〉

)−r
= (C∗w +D)

−r
(−B∗z +D∗)r(C∗w +D)

r
(
(C∗w +D)− 〈z,Aw +B〉

)−r
= (−B∗z +D∗)r

(
−B∗z +D∗ − 〈A∗z,w〉 + 〈C,w〉

)−r
=

(
1− 〈(A∗z − C)(−B∗z +D∗)−1, w〉

)−r
= Cσ(Kw)(z)

Since the Kw span a dense set of H and T−1
g , C∗ϕ , and (T∗h )−1 are each

bounded operators, Cσ = T−1
g C∗ϕ(T∗h )−1 and Cσ is a bounded operator. The

formula in conclusion follows easily from this relation.

The hypotheses of Theorem 16 are more restrictive than necessary. In
particular the positivity of r is inessential, and rather than all H∞(BN )
functions being multipliers of H it suffices to only know that g, h, and their
reciprocals are multipliers. Typically, though, when r is negative determin-
ing the multipliers of H becomes more difficult.

5 Schroeder’s Equation

For an arbitrary analytic map ϕ of the diskD to itself, fixing 0 with ϕ′(0) = λ

satisfying 0 < |λ| < 1, work of Koenigs in 1884 ([13]) gives an essentially
unique analytic function f in D solving Schroeder’s functional equation

f ◦ ϕ = λf. (6)
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By analogy, when ϕ is an analytic map of BN into BN with ϕ(0) = 0 we
may seek a CN -valued analytic function f on BN solving the several variable
Schroeder equation

f ◦ ϕ = Af (7)

where A = ϕ′(0) is an N × N matrix. To avoid certain exceptional cases
we assume ϕ′(0) has no eigenvalues of modulus 1. In [8] we use tools
from the theory of compact composition operators to construct solutions
to Schroeder’s functional equation in several variables. Certain complica-
tions may arise is the case N > 1 which are never present when N = 1;
in particular Equation (7) may fail to have a locally univalent solution f

in BN when certain algebraic relationships hold between the eigenvalues of
ϕ′(0) (see [8]). However, in this section we show that when ϕ is a linear
fractional map fixing 0, Equation (7) always has an analytic solution which
is univalent on BN if ϕ′(0) has no eigenvalue of modulus 1. The argument
uses the Krĕın adjoint of ϕ introduced in the last section.

Since we are assuming ϕ(0) = 0 (this being a normalization of the re-
quirement that ϕ has a fixed point in BN ) the maps we wish to consider
may be written as

ϕ(z) =
Az

〈z,C〉+ 1

Recall that ϕ(BN ) ⊂ BN implies |C| < 1. The case C = 0 is uninteresting,
so we assume C 6= 0. Note that ϕ′(0) = A. We will produce a CN− valued
analytic solution f(z) to Schroeder’s equation f ◦ ϕ = Af which is initially
defined in a neighborhood of 0 and univalent there. In the case that ϕ′(0)
has no eigenvalue of modulus 1, this solution will in fact be analytic and
univalent on all of BN .

Lemma 17 If ϕ(z) = Az/(〈z,C〉+ 1) maps BN into BN then C is orthog-
onal to the null-space of A− I.

Proof. Suppose ζ is in ker(A − I) with |ζ| = 1. If 〈ζ, C〉 6= 0 choose the
complex number λ with |λ| = 1 and λ〈ζ, C〉 = −|〈ζ, C〉| 6= 0. Then λζ is a
point of the unit sphere but

ϕ(λζ) =
A(λζ)

〈λζ,C〉+ 1
=

λζ

1− |〈ζ, C〉|

which is not in the closed unit ball. Thus ϕ doesn’t map BN into BN , a
contradiction.
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Theorem 18 Suppose ϕ : BN → BN is a linear fractional map with ϕ(0) =
0. Then there is an invertible linear fractional map f defined in a neighbor-
hood of 0, with f ◦ ϕ = ϕ′(0)f .

Proof. Write ϕ(z) = Az/(〈z,C〉 + 1). Since C is orthogonal to the null-
space of A− I we may solve (I −A∗)P = C for P . Define f by

f(z) =
z

〈z, P 〉 + 1

Then f is analytic in {z : 〈z, P 〉 6= −1}, and this is a neighborhood of 0.
A computation shows that f ◦ϕ = Af = ϕ′(0)f . Moreover f is univalent,

since if
z

〈z, P 〉+ 1
=

w

〈w,P 〉+ 1
(8)

we must have w = λz for some λ ∈ C. But then Equation (8) implies λ = 1
and z = w.

The next result shows that if ϕ′(0) has no eigenvalue of modulus 1,
then the mapping f given by the previous theorem is actually analytic (and
univalent) on BN .

Theorem 19 Let ϕ(z) = Az/(〈z,C〉+1) map BN into BN and assume that
A has no eigenvalue of modulus 1. Then there is a univalent, CN -valued
mapping f defined on BN with f ◦ ϕ = ϕ′(0)f .

Proof. By hypothesis, 1 is not an eigenvalue of A∗. Let P = (I −A∗)−1C

and set f(z) = z/(〈z, P 〉+ 1). As before, f ◦ ϕ = ϕ′(0)f and f is univalent.
We need only check that f is analytic on BN . For this it suffices to show
|P | ≤ 1, because it will then follow that |〈z, P 〉| ≤ |z||P | ≤ |z| < 1, so
〈z, P 〉 + 1 is non-zero in the open ball, BN .

Since ϕ maps BN into BN , so does its Krein adjoint τ(z) = A∗z−C by
Proposition 11. Since |C| < 1, this says τ(C), τ(τ(C)), τ(τ(τ(C))), . . . are
all in BN . Computing these iterates, we find that for each positive integer
n

(A∗)nC − (A∗)n−1C − · · · −A∗C − C ∈ BN (9)

Since all eigenvalues of A have modulus less than 1, there is a positive integer
m so that |Am| < 1. Thus, given ε > 0, there exists M so that for all n ≥M

|(A∗)nC| < ε (10)
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Since (I −A∗)−1 =
∑

(A∗)k we have

C +A∗C + (A∗)2C + · · · + (A∗)nC → (I −A∗)−1C = P

as n→∞. We may suppose that M is chosen large enough that

|P − (C +A∗C + (A∗)2C + · · · + (A∗)n−1C)| < ε (11)

for all n ≥ M . Properties (9), (10), and (11) say that |P | < 1 + 2ε; since ε
is arbitrary, |P | ≤ 1.
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