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When we discuss teaching undergraduate mathematics with our colleagues, we frequently
distinguish two sorts of goals: first, we want students to be able to do computations related to
the course and, second, we want students to know the theory from the course. In a calculus
course, we want students to be able to integrate polynomials, so in class we tell them how, and
on the exam, we give them polynomials to integrate. In linear algebra class, we want the students
to know the theorems concerning determinants, so we prove the theorems from the book, and on
the exam, we ask them to prove that if A is an invertible matrix, then det(A−1) = 1/det(A).
Our hallway conversations elicit general agreement that most of our students do learn to do the
calculations we put on the exam and most don’t master the theory to the point that they can
write a coherent proof of any but the most trivial theorems.

I want to argue in this note that there is another goal, between these in accessibility, that
should be a conscious part of our teaching effort:

We should teach our students to read and understand mathematics.

And to reinforce our effort, we must test their ability to do so. Very few of our students will
ever, after leaving our courses, have to give a formal proof of a theorem and few will have to do
something so mundane as “Find the definite integral.” On the other hand, many of them will have
to read and understand mathematical writing to apply new ideas to the problems of their jobs.
Moreover, learning to read and understand mathematics will make the further step of learning
to prove theorems more possible and will have benefits for every course that follows. We need
to convince our students that, in the long run, understanding what the theorems mean will be
easier and have a bigger payoff than simply memorizing their statements. I do not believe that
our current goals should be dropped, they are an important part of every mathematics course.
On the other hand, I do not believe that learning to read can be left simply to chance; that’s
what we’ve been doing and it hasn’t worked!

If you need evidence that we have a problem, let one of your “B” students explain the statement
of a theorem from a homework exercise that they have not been able to prove or have them explain
the statement and proof of a theorem from a section in the book that you have skipped. My
students, at least, do not have the innate ability to read and understand what they have read.
When I ask them to read a problem and explain it to me, the majority simply recite the same
words back again.

To help them learn to read, we must give them opportunities to practice. In class, it is helpful
to discuss the meaning of a new theorem before proving it. It is especially important to discuss
hypotheses. Many students have not learned what role the hypothesis of a theorem plays. You
might give several examples of objects that could satisfy the hypotheses of a theorem and get
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your class to tell you which actually do. Asking them to restate the conclusion in a particular
instance is frequently a helpful way to deal with the conclusion. Drawing out corollaries that
have not yet been stated is another way to deal with the conclusion. For example, in an advanced
linear algebra course, I prove the following theorem:

Theorem. If A is an n by n matrix and µ is a number such that

‖A‖ < |µ|

then µI −A is invertible.

Comment: This theorem is true for any submultiplicative norm on matrices; the norm used below
is the one–norm:

‖A‖ = max{
n∑
i=1

|aij| : j = 1, · · · , n}

After writing the statement of the theorem on the blackboard, we can have the following
(idealized) discussion:

Instructor: What is the one–norm of the matrix

A =

(
.7 −.2
.5 1.4

)

Student: ‖A‖ = 1.6

Instructor: Good! What does this theorem say about the matrix

2I −A =

(
1.3 .2
−.5 .6

)

Student: The theorem says it’s invertible.

Instructor: That’s right! The µ in this case is 2 and since ‖A‖ = 1.6 < 2 = |µ|,
the hypothesis of the theorem is satisfied and the theorem says that
2I −A is invertible. In fact, the determinant of 2I −A is .88 6= 0 and
we can find the inverse by direct computation.

Instructor: What does this theorem say about the matrix

I −A =

(
.3 .2
−.5 −.4

)

Student 1: The theorem says it’s not invertible.

Instructor: Is that correct?

Student 2: No, the theorem doesn’t say anything about this matrix.
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Instructor: Student 2 is right! The µ in this case is 1 and since ‖A‖ = 1.6 > 1 =
|µ|, the hypothesis of the theorem is not satisfied and we cannot tell
from this theorem if the matrix I −A is invertible or not. In fact, the
determinant of I −A is −.02 so it is invertible. Similarly, for µ = 1.2,
the hypothesis of the theorem is not satisfied and we cannot tell from
this theorem if the matrix 1.2I − A is invertible or not. In this case,
we find that the determinant of 1.2I −A is 0, so the matrix 1.2I −A
isn’t invertible.

Instructor: Now, who can remind us of the definition of eigenvalue and tell some
things we know about eigenvalues?

Student: The number λ is an eigenvalue of the matrix A if there is a non–zero
vector v for which Av = λv. We know that λ is an eigenvalue if and
only if λI −A is singular.

Instructor: What does this theorem say about the eigenvalues of A?

Student: If the number λ satisfies |λ| > ‖A‖ then it is not an eigenvalue of A.

Typically, I would then formally state the corollary just given by the student and prove the
theorem (by adding up the geometric series) and the corollary. Classes need varying amounts of
coaxing and help in such a discussion but they require less coaxing after they are accustomed to
the style, especially if the instructor refuses to answer the questions for the class!

A second opportunity for practice is in assigning homework over material not covered in class.
Most textbooks include much more material than can be covered in a typical course and much
of the material that must be skipped is interesting and valuable. Asking the students to read a
section of the book and do some related homework is a reasonable way for them to get practice
in reading for understanding. Such material needs to be carefully chosen for this purpose to be
sufficiently theoretical to be challenging yet down to earth enough that students can be successful.
For example, in some real analysis courses, it might be reasonable to have students read a section
in the text defining monotone function and culminating with the proof of the theorem that a
monotone function on a finite interval has at most countably many discontinuities. Students could
then be asked to prove that the sum of two increasing functions is increasing, give an example of
two monotone functions whose sum is not monotone, and perhaps prove that a monotone function
on the whole line has at most countably many discontinuities.

Finally, if we really expect students to take learning to read seriously, then we must put it
on our tests. Whatever other qualities our students have, they have learned to play the student
game well. For their part, the students learn to pass our tests and, for our part, we faculty have
capitulated to that hated question “Professor, will this be on the test?” Now we only expect them
to learn what we are putting on the test! We can use this to our advantage if we test them on
their reading ability.

Clearly, on an hour test, we cannot give the students a book chapter to read and describe.
To test reading mathematics that involves the ideas of the course, I have frequently included on
an exam a new (to the students) theorem, together with its proof, followed by a question that
(I hope) can be answered only by those who read and understood the theorem and proof. The
theorems need not be significant, although it’s nicer if they are. Moreover, since we want it to
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be possible to answer the question only by understanding the proof, the conclusion may not be
stated in the most elegant or cleanest way. Here are two examples.

The first example is from a course for mathematics education majors. The aims of the course
are to develop some understanding of theorems, proofs, and mathematical statements in general.
The topics include material on sets, number theory, real numbers, and polynomial equations.
This question comes from the first test of the semester which follows the material on number
theory; the course does not usually include any discussion of Pythagorean triples, solutions of
Diophantine equations, or writing integers as sums of squares.

Theorem. If m and n are positive integers such that

2m = n2 + 1

then m is the sum of the squares of two integers.

Proof. Since n2 + 1 is even, n2 and therefore n must be odd. That is, there is an integer k so
that n = 2k + 1. This means that

2m = n2 + 1 = (2k + 1)2 + 1 = (4k2 + 4k + 1) + 1 = 4k2 + 4k + 2

It follows that
m = 2k2 + 2k + 1 = k2 + (k2 + 2k + 1) = k2 + (k + 1)2

which expresses m as the sum of the squares of two integers.

Problem:
2 · 3785 = 7570 = 872 + 1

Write 3785 as the sum of the squares of two integers.

Of course, if we were really going to state and prove this “theorem” in a book, we would
probably spell out how m is written as the sum of two squares, but to do so in this context would
obviate the need to understand the proof. What I expect from this question is that students will
see from the proof that for k = (n− 1)/2, we have m = k2 + (k + 1)2. To write 3785 as the sum
of two squares, I expect them to see that in the notation of the theorem, n = 87, so k = 43 and
by the proof of the theorem 3785 = 432 + 442. If students perform this calculation, I infer that
they read and understood the proof well enough to do so.

The second example comes from a linear algebra course for engineers. At the time of the
test, the students had studied the spectral mapping theorem for polynomials which implies that
the positive integer powers of a diagonalizable matrix are similar to the powers of the diagonal
matrix, but had not seen the theorem on square roots of positive definite matrices.
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Theorem. If A is a diagonalizable matrix all of whose eigenvalues are non–negative, then there
is a matrix B with non–negative eigenvalues such that B2 = A.

Proof. SinceA is diagonalizable, there is an invertible matrix S such that L = S−1AS is diagonal.
The diagonal entries λ1, λ2, · · ·, λn of L (which are the eigenvalues of A) are non–negative by
hypothesis. Let µj =

√
λj be the non–negative square roots of the eigenvalues and let M be the

diagonal matrix with diagonal entries µ1, µ2, · · ·, µn. Clearly, M2 = L. Since similar matrices
have the same eigenvalues, the matrix B = SMS−1 has eigenvalues µ1, µ2, · · ·, µn, which are
non–negative. Moreover,

B2 = (SMS−1)2 = SMS−1SMS−1 = SM2S−1 = SLS−1 = A

Problem: The matrix A =

(
10 −9
6 −5

)
has eigenvalues 1 and 4. Find a matrix S as above and

use it to find a matrix B with positive eigenvalues such that B2 = A.

In this question, I expect the students to understand from the proof of the theorem that
the problem is to be solved by diagonalizing A and solving the corresponding problem for the
diagonal matrix. In particular, I expect them to use the given eigenvalues of A to find a basis of
eigenvectors, and thereby to construct S, L, M , and B.

I have not done a comparative analysis of my classes to see if trying to teach reading makes
a difference in how much students learn, but I am convinced it helps. At the very least, if we
communicate to the students that we think it is reasonable that they read mathematics and
understand it and that we expect it of them, then they may come to expect it of themselves. We
will all be better off if the students view the textbook as a source of information, not just as a
list of exercises interspersed with messages for the instructor.

I’d like to thank Dick Hunt, J. J. Price, and Bob Zink for their support and these colleagues
and the referee for suggestions concerning this note.
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