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PAULINHO TCHATCHATCHA

Chapter 3, problem 8. If ) a, converges, and if {b,} is monotonic and bounded,
prove that > a,b, converges.

Solution.

Since {b,} is monotonic and bounded, {b,} converges by Theorem 3.14, say b, — b € R.
Since {b,} is monotonic, we either b,,; > b, for all n (non-decreasing) or b,,; < b, for
all n (non-increasing). Assume, without loss of generality, that {b,} is monotonic non-
decreasing, otherwise consider —b,. If {b,} is non-decreasing, then b, < b for all n. Then
consider ¢, = b — b,,.

We have that since ) a,, converges, the partial sums A, of > a,, form a bounded sequence;
co>c1>cp>--- and ¢, — 0.

Therefore by Theorem 3.42 > a,,b,, converges.

Chapter 3, problem 9. Find the radius of convergence of each of the following power
series:

"
@Y 52"
Solution.

1
By Theorem 3.39, the radius of convergence of > ¢,2" is R = —, where a = limsup y/|c,|.
a

n—oo

Note that by Theorem 3.37, if lim exists, then lim Cntl _ «

n—oo  Cp n—oo Cp

(a) We have by theorems 3.3 and 3.20

Cn+1

a = limsup{/|n3| = limsup(Y/n)® = (limsup{/n)* = 1.

n—oo n—oo n—oo

Hence R =1.



2 PAULINHO TCHATCHATCHA

(b) We have
2n+1 2
lim 20— i 2 =0
n—oo F n—oo M,
Hence R = oc.
(c) We have
2n+1
n 2n?
lim 22— gy 2
n—oo 3 n—o00 (n + 1)
H R 1
ence R = —
2
(d) We have
(n+1)3 3
lim 2 = lim 1(1—}—1) :1
n—00 g_n n—oo 3
Hence R = 3.

Chapter 3, problem 11. Suppose a,, > 0, s, = a; + ... + a,, and >_ a,, diverges.

(a) Prove that Z
(b) Prove that

diverges.
n

a a s
NAL o ONtR g SN
SN+1 SN+k SN+k
and deduce that ) ¢= diverges.
(c) Prove that
nol 1
Sh Sp—1 Sn

and deduce that Z — converges.
(d) What can be sald about

a a
Zl+nan a Zl—l—nQan
Solution.
(a) If {a,} is not bounded, then a,, — oo. Then
" 1
lim (1——2") = lim =0
n—00 1+ a, n—oo 1 4+ a,

—>1andz

So assume that {a,} is bounded "We have then that there exists M > 0 such that an < M.

diverges by theorem 3.23.

Hence
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1 S 1
1
14+a, — 1+M’a

Qy, ay, 1
Zl+an221+M:1+MZa”'

Then d

. . a .
Since ) a,, diverges, by theorem 3.25 E “— diverges.
1+ a,
(b) Since a,, > 0, $,41 > s, for all n. Then
AN+1 AN+k  AN+1 AN+k  GN41 t+* *GN+k  SN+k — SN SN
4+t > 4+t = = =1— .
SN+1 SN+k SN+k SN+k SN+k SN+k SN+k

ap, . .
Suppose that — converges. Then given 0 < € < 1, there exists N € N such that
s

n

AN+1 4 4 AN+k >1_ SN
SN+1 SN+k SNtk

€ >

for all k.
Since ) a,, diverges, {s,} is not bounded, so s, — oo. Hence since in the inequality above
k is arbitrary, if we let & — oo, we get € > 1 a contradiction with e < 1. Therefore ) 9=
diverges.

(c) Similarly as before, since s, > s,_; for all n > 1, we have

a_n< ap  Sp—Sp—1 1 _i
8% ~ Sp—15n Sn—15n Sn—1 Sn
Hence
N N
a 1 1 1 1 1
Z—§§1+Z( ——>:1+———<1+—
0 Sh 1 Sn—1 Sn ao SN Qo

N
Qn,
Then we get that all the partial sums of Zivzo % are bounde by 1+1/ag, so E —, converges.
n s
n=0 T

(d) We have that

p Qy, 1

< —.
1+ n2a, — n2a, n?
. 1 Qn,
Since g — converges, g ——5— converges.
n 1+ n4a,

1
For a,, = —, we have that
n

Z % = Z % diverges.

Now consider a,, = 1 when n = 2* for some k € N, and a,, = 27" otherwise. Then

Z Qp > f: 1 diverges,
k=0
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but

o

Z n <°° L +Z ! coverges
1+nan_k:01+2k c= 2" +n ges.

Therefore might converge or diverge.

na,,

Chapter 3, problem 13. Prove that the Cauchy product of two absolutely convergent
series converges absolutely.

Solution.
n

Let > a, and > b, be absolutely convergent series. Consider ¢, = Z aib,_1. We want to
k=0

show that > ¢, converges absolutely.

Indeed we have

N n
Z len] < ZZ |ag|[bn—k| = |ao| Bn+|a1| By—1+---+|an|Bo < (|ao|+---|an|) By = AnBn,
n=0 k=0

where A, =1 lak|, Bn = > 50— bkl
Since Y a, and ) b, are absolutely convergent, {A,} and {B,} are bounded. Therefore by
the inequality above > |¢,| converges.

Problem A. Prove Theorem 4.4 using: 1) The definition of limit; 2) Theorems 4.2 and 3.3.

Solution.

Suppose E C X, a metric space, p is a limit point of F, f and g are complex functions on
E, and

lim f(x) = A, limg(z) = B.

Z—p Z—p
First we want to show
lim(f +g)(z) = A+ .

Indeed, given € > 0, there exists d; > 0 such that

|f(z) — Al <e if |z —p| <6
Similarly, there exists 0o > 0 such that

lg(z) — B| <€, if |z—p|<ds.
Let § = min{dy, d2}. Then

[(f +9)(x) = (A+ B)| < |f(z) — Al +[g(2) — B] <2 if |o—p| <o

Since € > 0 is arbitrary, we have that

lim(f+g)(x) = A+ B.

r—p
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Or take a sequence {p,} such that p, — p with p, # p.
Then by theorem 4.2

lim f(p,) = A4, lim g(p,) = B.
So by theorem 3.3
Tim (f + g)(pn) = lim_ f(pa) + lim g(pn) = A+ B.

Since {p,} is an arbitrary sequence such that p,, — p with p, # p, it follows from theorem
4.2 that

lim(f 4+ g)(z) = A+ B.

Now we want to show '
lim(fg)(x) = AB.
Indeed, let € > 0 be given. Similarly as before we can take 6 > 0 such that
|f(z) — Al < eand |g(x) — B| <€ if |z —p| <.
We have then
(F9)(@)—AB| = |(f(2)=A) (g(x)~B)+Alg(a)—B)+B(f(x)=A)| < | f(x)—Allg(a)~B|+|Allg(x)~B|+|B

Since € > 0 is arbitrary, we can take 1 > ¢ > 0 as small as we want, so that e(e+ |A|+|B|) <
€(1+ |A| + |B|) can be as small as we want. So

lim(fg)(z) = AB.
T—p
Or take take a sequence {p,} such that p, — p with p, # p.
Then by theorem 4.2
lim f(p,) =A, lim g(p,) = B.
So by theorem 3.3
lim (fg)(pa) = (lim f(pn))(lim g(pn)) = AB.

n—oo

As, before since {p,} is an arbitrary sequence such that p, — p with p,, # p, it follows from
theorem 4.2 that

lim(fg)(z) = AB.

r—p

Finally we want to show

glgig;l, (—) (x) = %, if B #0.

Indeed, let € > 0 be given. Similarly as before we can take § > 0 such that
|f(x) — Al < eand |g(x) — B| <e if |x—p| <.

Since B # 0, we might assume € < |B|/2. Then

|B]

9(e)| = 1B — lgle) = BI > Bl —e > L if [z —p| <6
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So
e g s
Bl MWW‘)“(@E)’ 1%“‘@5
S

Since € > 0 is arbitrary,

Or take take a sequence {p,} such that p, — p with p, # p.
Then by theorem 4.2

lim f(p,) = A4, lim g(p,) = B.
So by theorem 3.3

lim

n—oo

(i) (pn) = iince (Pn) _ A
g) """ lim,g(pn) B
As, before since {p,} is an arbitrary sequence such that p, — p with p,, # p, it follows from

theorem 4.2 that
y f (z) A
m( =) (z) =—=.
z—p \ ¢ B



