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PAULINHO TCHATCHATCHA

Chapter 3, problem 8. If
∑
an converges, and if {bn} is monotonic and bounded,

prove that
∑
anbn converges.

Solution.
Since {bn} is monotonic and bounded, {bn} converges by Theorem 3.14, say bn → b ∈ R.
Since {bn} is monotonic, we either bn+1 ≥ bn for all n (non-decreasing) or bn+1 ≤ bn for
all n (non-increasing). Assume, without loss of generality, that {bn} is monotonic non-
decreasing, otherwise consider −bn. If {bn} is non-decreasing, then bn ≤ b for all n. Then
consider cn = b− bn.
We have that since

∑
an converges, the partial sums An of

∑
an form a bounded sequence;

c0 ≥ c1 ≥ c2 ≥ · · ·, and cn → 0.
Therefore by Theorem 3.42

∑
anbn converges.

Chapter 3, problem 9. Find the radius of convergence of each of the following power
series:

(a)
∑

n3zn,

(b)
∑ 2n

n!
zn,

(c)
∑ 2n

n2
zn,

(d)
∑ n3

3n
zn.

Solution.

By Theorem 3.39, the radius of convergence of
∑
cnz

n is R =
1

α
, where α = lim sup

n→∞

n
√
|cn|.

Note that by Theorem 3.37, if lim
n→∞

cn+1

cn
exists, then lim

n→∞

cn+1

cn
= α.

(a) We have by theorems 3.3 and 3.20

α = lim sup
n→∞

n
√
|n3| = lim sup

n→∞
( n
√
n)3 = (lim sup

n→∞

n
√
n)3 = 1.

Hence R = 1.
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(b) We have

lim
n→∞

2n+1

(n+1)!

2n

n!

= lim
n→∞

2

n
= 0.

Hence R =∞.

(c) We have

lim
n→∞

2n+1

(n+1)2

2n

n2

= lim
n→∞

2n2

(n+ 1)2
= 2.

Hence R =
1

2
.

(d) We have

lim
n→∞

(n+1)3

3n+1

n3

3n

= lim
n→∞

1

3

(
1 +

1

n

)3

=
1

3
.

Hence R = 3.

Chapter 3, problem 11. Suppose an > 0, sn = a1 + ...+ an, and
∑
an diverges.

(a) Prove that
∑ an

1 + an

diverges.

(b) Prove that
aN+1

sN+1

+ · · ·+ aN+k

sN+k

≥ 1− sN

sN+k

and deduce that
∑

an

sn
diverges.

(c) Prove that
an

s2
n

≤ 1

sn−1

− 1

sn

and deduce that
∑ an

s2
n

converges.

(d) What can be said about∑ an

1 + nan

and
∑ an

1 + n2an

?

Solution.
(a) If {an} is not bounded, then an →∞. Then

lim
n→∞

(
1− an

1 + an

)
= lim

n→∞

1

1 + an

= 0.

Hence
an

1 + an

→ 1 and
∑ an

1 + an

diverges by theorem 3.23.

So assume that {an} is bounded. We have then that there exists M > 0 such that an ≤M .
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Then
1

1 + an

≥ 1

1 +M
, and∑ an

1 + an

≥
∑ an

1 +M
=

1

1 +M

∑
an.

Since
∑
an diverges, by theorem 3.25

∑ an

1 + an

diverges.

(b) Since an > 0, sn+1 > sn for all n. Then

aN+1

sN+1

+ · · ·+ aN+k

sN+k

≥ aN+1

sN+k

+ · · ·+ aN+k

sN+k

=
aN+1 + · · ·aN+k

sN+k

=
sN+k − sN

sN+k

= 1− sN

sN+k

.

Suppose that
an

sn

converges. Then given 0 < ε < 1, there exists N ∈ N such that

ε >
aN+1

sN+1

+ · · ·+ aN+k

sN+k

≥ 1− sN

sN+k

,

for all k.
Since

∑
an diverges, {sn} is not bounded, so sn →∞. Hence since in the inequality above

k is arbitrary, if we let k → ∞, we get ε ≥ 1 a contradiction with ε < 1. Therefore
∑

an

sn

diverges.

(c) Similarly as before, since sn > sn−1 for all n ≥ 1, we have

an

s2
n

≤ an

sn−1sn

=
sn − sn−1

sn−1sn

=
1

sn−1

− 1

sn

.

Hence
N∑

n=0

an

s2
n

≤ 1 +
N∑

n=1

(
1

sn−1

− 1

sn

)
= 1 +

1

a0

− 1

sN

≤ 1 +
1

a0

.

Then we get that all the partial sums of
∑N

n=0
an

s2
n

are bounde by 1+1/a0, so
N∑

n=0

an

s2
n

converges.

(d) We have that
an

1 + n2an

≤ an

n2an

=
1

n2
.

Since
∑ 1

n2
converges,

∑ an

1 + n2an

converges.

For an =
1

n
, we have that ∑ an

1 + nan

=
∑ 1

2n
diverges.

Now consider an = 1 when n = 2k for some k ∈ N, and an = 2−n otherwise. Then∑
an ≥

∞∑
k=0

1 diverges,
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but ∑ an

1 + nan

≤
∞∑

k=0

1

1 + 2k
+
∞∑

n=1

1

2n + n
coverges.

Therefore
an

1 + nan

might converge or diverge.

Chapter 3, problem 13. Prove that the Cauchy product of two absolutely convergent
series converges absolutely.

Solution.

Let
∑
an and

∑
bn be absolutely convergent series. Consider cn =

n∑
k=0

akbn−k. We want to

show that
∑
cn converges absolutely.

Indeed we have
N∑

n=0

|cn| ≤
∑ n∑

k=0

|ak||bn−k| = |a0|BN +|a1|BN−1+···+|aN |B0 ≤ (|a0|+···|aN |)BN = ANBN ,

where An =
∑n

k=0 |ak|, Bn =
∑n

k=0 |bk|.
Since

∑
an and

∑
bn are absolutely convergent, {An} and {Bn} are bounded. Therefore by

the inequality above
∑
|cn| converges.

Problem A. Prove Theorem 4.4 using: 1) The definition of limit; 2) Theorems 4.2 and 3.3.

Solution.
Suppose E ⊂ X, a metric space, p is a limit point of E, f and g are complex functions on
E, and

lim
x→p

f(x) = A, lim
x→p

g(x) = B.

First we want to show

lim
x→p

(f + g)(x) = A+B.

Indeed, given ε > 0, there exists δ1 > 0 such that

|f(x)− A| < ε, if |x− p| < δ1.

Similarly, there exists δ2 > 0 such that

|g(x)−B| < ε, if |x− p| < δ2.

Let δ = min{δ1, δ2}. Then

|(f + g)(x)− (A+B)| ≤ |f(x)− A|+ |g(x)−B| < 2ε if |x− p| < δ.

Since ε > 0 is arbitrary, we have that

lim
x→p

(f + g)(x) = A+B.
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Or take a sequence {pn} such that pn → p with pn 6= p.
Then by theorem 4.2

lim
n→∞

f(pn) = A, lim
n→∞

g(pn) = B.

So by theorem 3.3

lim
n→∞

(f + g)(pn) = lim
n→∞

f(pn) + lim
n→∞

g(pn) = A+B.

Since {pn} is an arbitrary sequence such that pn → p with pn 6= p, it follows from theorem
4.2 that

lim
x→p

(f + g)(x) = A+B.

Now we want to show

lim
x→p

(fg)(x) = AB.

Indeed, let ε > 0 be given. Similarly as before we can take δ > 0 such that

|f(x)− A| < ε and |g(x)−B| < ε if |x− p| < δ.

We have then

|(fg)(x)−AB| = |(f(x)−A)(g(x)−B)+A(g(x)−B)+B(f(x)−A)| ≤ |f(x)−A||g(x)−B|+|A||g(x)−B|+|B||f(x)−A| < ε(ε+|A|+|B|).
Since ε > 0 is arbitrary, we can take 1 > ε > 0 as small as we want, so that ε(ε+ |A|+ |B|) <
ε(1 + |A|+ |B|) can be as small as we want. So

lim
x→p

(fg)(x) = AB.

Or take take a sequence {pn} such that pn → p with pn 6= p.
Then by theorem 4.2

lim
n→∞

f(pn) = A, lim
n→∞

g(pn) = B.

So by theorem 3.3

lim
n→∞

(fg)(pn) = ( lim
n→∞

f(pn))( lim
n→∞

g(pn)) = AB.

As, before since {pn} is an arbitrary sequence such that pn → p with pn 6= p, it follows from
theorem 4.2 that

lim
x→p

(fg)(x) = AB.

Finally we want to show

lim
x→p

(
f

g

)
(x) =

A

B
, if B 6= 0.

Indeed, let ε > 0 be given. Similarly as before we can take δ > 0 such that

|f(x)− A| < ε and |g(x)−B| < ε if |x− p| < δ.

Since B 6= 0, we might assume ε < |B|/2. Then

|g(x)| ≥ |B| − |g(x)−B| > |B| − ε > |B|
2

if |x− p| < δ.
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So ∣∣∣∣ 1

g(x)
− 1

B

∣∣∣∣ =

∣∣∣∣B − g(x)

Bg(x)

∣∣∣∣ ≤ 2

|B|2
|B − g(x)| < 2ε

|B|2
, |x− p| < δ.∣∣∣∣f(x)

g(x)
− A

B

∣∣∣∣ =

∣∣∣∣ 1

g(x)
(f(x)− A) + A

(
1

g(x)
− 1

B

)∣∣∣∣ ≤ |f(x)− A|
|g(x)|

+ |A|
∣∣∣∣ 1

g(x)
− 1

B

∣∣∣∣
⇒
∣∣∣∣f(x)

g(x)
− A

B

∣∣∣∣ ≤ 2ε

|B|
+

2|A|ε
|B2|

.

Since ε > 0 is arbitrary,

lim
x→p

(
f

g

)
(x) =

A

B
.

Or take take a sequence {pn} such that pn → p with pn 6= p.
Then by theorem 4.2

lim
n→∞

f(pn) = A, lim
n→∞

g(pn) = B.

So by theorem 3.3

lim
n→∞

(
f

g

)
(pn) =

limn→∞ f(pn)

limn→∞ g(pn)
=
A

B
.

As, before since {pn} is an arbitrary sequence such that pn → p with pn 6= p, it follows from
theorem 4.2 that

lim
x→p

(
f

g

)
(x) =

A

B
.


