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FULL REGULARITY OF THE FREE BOUNDARY IN A
BERNOULLI-TYPE PROBLEM IN TWO DIMENSIONS

Donatella Danielli and Arshak Petrosyan

Abstract. In this note we prove that in dimension n = 2 there are no singular points on

the free boundary ∂{u > 0}∩Ω in the Bernoulli-type problem governed by the p-Laplace

operator

Jp(u) =

Z
Ω

`|∇u|p + λp
p χ{u>0}

´
dx → min,

for p in the range 2 − ε0 < p < ∞ for an absolute constant ε0 > 0.

1. Introduction

Let u ≥ 0 be a bounded absolute minimizer of the energy functional

(1.1) Jp(v) = Jp(v; Ω) :=
∫

Ω

(|∇v|p + λp
p χ{v>0}

)
,

where Ω ⊂ R
n is a bounded open set, 1 < p < ∞, and λp > 0 is a certain constant.

This is understood in a sense that u ∈ W 1,p(Ω) and

Jp(u) ≤ Jp(v) whenever u − v ∈ W 1,p
0 (Ω).

Then u satisfies the following overdetermined Bernoulli-type problem

Δpu := div(|∇u|p−2∇u) = 0 in {u > 0}(1.2)

u = 0, |∇u| = cp on ∂{u > 0} ∩ Ω(1.3)

in a certain generalized sense, where cp = λp(p − 1)−1/p. It is known that the free
boundary

Γ := ∂{u > 0} ∩ Ω
is locally of finite Hausdorff Hn−1 measure and the measure-theoretic reduced bound-
ary Γred := ∂red{u > 0} ∩ Ω is a union of real-analytic hypersurfaces. Moreover, the
conditions (1.2)–(1.3) are satisfied on Γred in the classical sense. This result has been
established by Alt and Caffarelli in their fundamental work [AC81] when p = 2 and
later generalized for all 1 < p < ∞ by the authors in [DP05].

It is also known that the set of singular points Γ\Γred is of Hn−1 measure zero. On
the other hand, it has been known since [AC81] (see also [Beu58]) that in dimension
n = 2 and when p = 2 the free boundary is fully regular; i.e. it has no singular points.
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A natural question to ask, whether this result is true for all 1 < p < ∞. We give a
partial answer to this question.

Main Theorem. Let n = 2 and u be an absolute minimizer of (1.1). Then the free
boundary ∂{u > 0}∩Ω is real analytic if 2− ε0 < p < ∞, where ε0 > 0 is an absolute
constant.

The method that we use goes back to Alt and Caffarelli [AC81]. Their approach
is based on the following observation: if u is an absolute minimizer of Jp on every
bounded domain in R

n and such that |∇u| = cp in {u > 0}, then necessarily u
is a so-called halfspace solution; i.e. u(x) = cp((x − x0) · e)+ for some unit vector
e (see Lemma 4.2). One basically needs to show that any absolute minimizer is
sufficiently close to a halfspace solution near any free boundary point x0. The closeness
is measured in terms of the functional

1
r2

∫
Br(x0)∩{u>0}

|cp
p − |∇u|p|dx.

Once we have that u is sufficiently close to a halfspace solution as r → 0, we apply
the “flatness implies regularity” theorem to show that the free boundary is regular
near x0.

This method works very well for p ≥ 2, but shows its limitations when 1 < p < 2.
Nevertheless, using a careful limiting procedure as p ↗ 2 (see Lemmas 5.1 and 5.3)
and a uniform-in-p version of “flatness implies regularity” theorem (see Theorem 3.3)
we were able to extend the result to the range 2 − ε0 < p < 2 for some small ε0 > 0.

When p = 2, an alternative approach, based on a monotonicity formula, has been
proposed by Weiss [Wei99], which allowed to reduce the question to the study of
the existence of singular absolutely minimizing cones (i.e. homogeneous of degree one
absolute minimizers). Taking this approach, Caffarelli, Jerison and Kenig [CJK04]
established that there are no such cones when n = 3, thus implying that the free
boundary is fully regular in three dimensions. In contrast, De Silva and Jerison
[DSJ05] showed the existence of a singular cone when n = 7. These results draw a
natural parallel with the theory of of minimal surfaces.

Unfortunately, no analogue of Weiss’s monotonicity formula is known (at least to
the authors at the time of writing) when p �= 2. Having such a formula would trivialize
the problem in dimension n = 2, as it is elementary to show that there are no singular
absolutely minimizing cones in the plane.

2. Lipschitz continuity and nondegeneracy

In the next two sections we recall some known properties of minimizers of the
functional Jp taken from [DP05]. In fact, we state the results in a slightly more
general form, namely with constants depending uniformly on

p ∈ Iμ := [1 + μ, 1 + 1/μ] ⊂⊂ (1,∞), μ ∈ (0, 1].

Since the regularity of the free boundary is a local property, we can restrict ourselves
to the absolute minimizers of Jp in balls centered at free boundary points. Also, in
what follows we will normalize λp = (p − 1)1/p in (1.1) so that cp = 1 in (1.3).

Definition 2.1. Given 1 < p < ∞, and a ball Bρ(x0), we say that u ∈ Sp(Bρ(x0)) if
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(i) u ≥ 0 in Bρ(x0), u ∈ W 1,p(Bρ(x0)) ∩ L∞(Bρ(x0));
(ii) u is an absolute minimizer of the functional Jp in (1.1) in Ω = Bρ(x0).
(iii) x0 ∈ ∂{u > 0}.
Note that classes Sp(Bρ(x0)) enjoy the following scaling and translating property:

u ∈ Sp(Bρ(x0)) ⇒ uλ,x0 ∈ Sp(Bρ/λ),

for any λ > 0, where

uλ,x0(x) :=
u(x0 + λx)

λ
, x ∈ Bρ/λ.

Theorem 2.2 (Uniform Lipschitz continuity). Let u ∈ Sp(B1) with p ∈ Iμ. Then
there exists a constant C = C(μ, n) such that

‖∇u‖L∞(B1/2) ≤ C.

Theorem 2.3 (Nondegeneracy). Let u ∈ Sp(B1) with p ∈ Iμ. Then there exists
c = c(μ, n) > 0 such that for γ := 1 + 1/μ(

−
∫

Br

uγ

)1/γ

≥ c r, 0 < r ≤ 1/2.

Theorem 2.4 (Density property). Let u ∈ Sp(B1) with p ∈ Iμ. Then there exists a
constant c = c(μ, n) > such that

c ≤ |{u = 0} ∩ Br|
|Br| ≤ 1 − c.

These three theorems correspond to Theorem 3.3, Lemma 4.2, and Theorem 4.4
in [DP05], respectively. The only difference is that we now allow p to change in
Iμ ⊂⊂ (1,∞). Therefore we will simply indicate the changes that are necessary to
make in the corresponding proofs in [DP05]. Generally, the parts of the proof that are
based on energy methods will go through with only slight cosmetic changes. However,
the arguments that are based on the compactness methods will need special attention.

We start with uniform-in-p versions of some known results for p-harmonic functions.

Lemma 2.5. Let u be a bounded solution of Δpu = 0 in the unit ball B1 in R
n with

p ∈ Iμ. Then there exists α = α(μ, n) such that

‖u‖C1,α(B1/2) ≤ C
(‖u‖L∞(B1), μ, n

)
.

Proof. This estimate is well known for fixed 1 < p < ∞. In particular, we refer to
the papers of Evans [Eva82] (for p ≥ 2) and Lewis [Lew83] (for 1 < p ≤ 2), where one
can easily trace that the constants depend uniformly on p away from 1 and ∞. �

Remark 2.6. In the special case n = 2 that we consider in this paper, a direct proof
can be given as follows. Without loss of generality we can assume that u ∈ C1,β

loc (B1)
with β = β(p, n). For any unit vector e, the directional derivative v := ue satisfies a
uniformly elliptic equation in divergence form

(2.1)
n∑

i,j=1

(aij(x) vxi)xj = 0, aij(x) := δij + (p − 2)
uxi

uxj

|∇u|2
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in the region {|∇u| > 0}, where u is actually C∞. The ellipticity of aij depends only
on μ for p ∈ Iμ; more specifically,

μ |ξ|2 ≤ aij(x) ξiξj ≤ μ−1|ξ|2.
Using now the fact (which is known only for n = 2) that the singular set {|∇u| = 0}
is discrete [Man88] together with the local boundedness of |∇u| we can remove the
singularities of v = ue, thus obtaining that (2.1) is satisfied in the entire ball B1.
Then, by the classical theorem of De Giorgi,

‖v‖Cα(B1/2) ≤ C(μ)‖v‖L2(B3/4)

and combining with Moser’s, Hölder’s, and Caccioppoli’s inequalities

‖v‖L2(B3/4) ≤ C1(μ)‖v‖L1+μ(B7/8)

≤ C2(μ)‖v‖Lp(B7/8) ≤ C3(μ)‖u‖Lp(B1).

This completes the proof of the lemma.
We also point out that in the case n = 2 Manfredi [Man88] showed that one can

actually take α = μ. Interestingly, p-harmonic functions in the plane enjoy much
higher regularity when p → 1, as shown by Iwaniec and Manfredi [IM89], however it
is impossible to trace the constants in terms of ‖u‖L∞(B1).

Lemma 2.7 (Harnack inequality). Let u ≥ 0 satisfy Δpu = 0 in B1 with p ∈ Iμ.
Then there exists C = C(μ, n) such that

sup
B1/2

u ≤ C inf
B1/2

u.

Proof. We refer to Theorem 1.1 in Trudinger [Tru67]. �

Lemma 2.8 (Weak Harnack inequality). Let u ≥ 0 satisfy Δpu ≥ 0 in B1 with
p ∈ Iμ. Then for γ := 1 + 1/μ there exists C = C(μ, n) such that

sup
B1/2

u ≤ C

(∫
B1/2

uγdx

)1/γ

.

Proof. We refer to Theorem 1.3 in Trudinger [Tru67]. �

The next lemmas are the essential steps in the proof of Theorems 2.2–2.3.

Lemma 2.9. Let u ∈ Sp(B1) with p ∈ Iμ. Then there exists α = α(μ, n) such that

‖u‖Cα(B7/8) ≤ C
(‖u‖L∞(B1), μ, n

)
Proof. This lemma corresponds to Lemma 3.1 in [DP05] and requires no changes in
the proof. �

Lemma 2.10. Let u ∈ Sp(B1) with p ∈ Iμ. Then

‖u‖L∞(B1/4) ≤ C(μ, n).
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Proof. We refer to the proof of Lemma 3.2 in [DP05]. Since the proof is by compact-
ness, it requires some small changes that we outline below.

Arguing by contradiction, we assume that we there exists a sequence u ∈ Spk
(B1),

k = 1, 2, . . ., for some pk ∈ Iμ such that

max
B1/4

uk(x) > k.

The main difference with Lemma 3.2 in [DP05] is that pk is now allowed to vary.
Following the proof in [DP05] we construct the functions wk and vk exactly in the
same way. Observe that using the uniform-in-p version of the Harnack inequality
(Lemma 2.7 above) the property (3.7) in [DP05] will be satisfied with a constant c
independent of pk. Next, the equation (3.9) in [DP05], which now takes the form∫

B3/4

|∇(wk − vk)|pkdx → 0

easily implies by the Hölder inequality that

(2.2)
∫

B3/4

|∇(wk − vk)|1+μdx → 0.

Assuming now that pk → p0 ∈ Iμ, we can extract a subsequence such that vk → v0

in C1,α-norm in B5/8 (by Lemma 2.5 above). We thus have Δp0v0 = 0 in B5/8 in the
distributional sense, since

0 =
∫

B5/8

|∇vk|pk−2∇vk · ∇η dx →
∫

B5/8

|∇v0|p0−2∇vk · ∇η dx, η ∈ C∞
0 (B5/8).

On the other hand, wk can be assumed to converge in Cα norm to some function w0

(by Lemma 2.9 above). It follows from (2.2) that ∇(w0−v0) = 0 in the distributional
sense, thus implying w0 = v0 + const in B5/8. In particular we obtain that w0 is
p0-harmonic. On the other hand w0 ≥ 0, w0(0) = 0, and supB1/2

w0 ≥ c > 0, which
follows from the respective properties of the functions wk. This, however, contradicts
the strong minimum principle for p0-harmonic functions.

The proof of the lemma is complete. �

Proof of Theorems 2.2–2.4. The proofs of Theorems 2.2–2.3 follow from Lemmas 2.5–
2.10 exactly in the same manner as the proofs of Theorem 3.3 and Lemma 4.2 in
[DP05] do from their respective analogues. The proof of Theorem 2.4 follows the
lines of the proof of Theorem 4.4 in [DP05], which uses a compactness arguments.
Nevertheless it can be generalized to the case of variable p precisely in the same way
as in the proof of Lemma 2.10. �

3. Flatness implies regularity

In this section we recall the results from [DP05] concerning the regularity of the
free boundary. As in the previous section we state the result in uniform-in-p form
and indicate how to obtain their proofs from the corresponding results in [DP05].
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Definition 3.1. Let 0 ≤ σ+, σ− ≤ 1 and τ > 0. We say that u is of the flatness class
F p(σ+, σ−; τ) in the ball Bρ if u ∈ Sp(Bρ) and

u(x) = 0 for xn ≥ σ+ρ,(3.1)

u(x) ≥ −(xn + σ−ρ) for xn ≤ −σ−ρ,(3.2)

|∇u| ≤ 1 + τ in Bρ(3.3)

More generally, changing the direction en by ν and the origin by x0 in the definition
above, we obtain definition of the flatness class F p(σ+, σ−; τ) in Bρ(x0) in direction
ν.

Theorem 3.2 (Gradient Hölder estimate). Let u ∈ Sp(B1) with p ∈ Iμ. Then there
exist C = C(μ, n) > 0 and α(μ, n) > 0 such that

sup
Br

|∇u| ≤ 1 + Crα, 0 < r < 1/4.

Proof. This is the counterpart of Theorem 7.1 in [DP05]. The proof is based on
the uniform gradient estimate (Lemma 2.2) and the fact that the p-Laplace equation
Δpu = 0 can be written in a nondivergence form

n∑
i,j=1

aij(x)uxixj
= 0, aij(x) := δij + (p − 2)

uxiuxj

|∇u|2 ,

in {|∇u| > 0} where the ellipticity of the matrix aij is uniform for p ∈ Iμ:

μ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ (1/μ)|ξ|2.

�

Theorem 3.3 (Flatness implies regularity). Let u ∈ Sp(B1) with p ∈ Iμ. Then there
exist positive constants α, β, σ0, τ0 depending only on n and μ such that

if u is of class F p(σ, 1;∞) in Bρ, with σ ≤ σ0, ρ ≤ τ0 σ2/β ,

then ∂{u > 0} ∩ Bρ/4 is a C1,α surface.

Proof. This is the analogue of Theorem 9.1 in [DP05] and Theorem 8.1 in [AC81].
The proof is obtained by iteration from Lemma 3.4 below, which corresponds to
Lemma 7.10 in [AC81]. �

Lemma 3.4. Let u ∈ Sp(B1) with p ∈ Iμ and θ > 0. Then there exist constants
σθ = σ(θ, μ, n) > 0, cθ = c(θ, μ, n) > 0 and C = C(n, μ) > 0 such that if

u is of class F p(σ, 1; τ) in Bρ in direction ν,

with σ ≤ σθ and τ ≤ cθσ
2, then

u is of class F p(θσ, θσ; θ2τ) in Bρ̄ in direction ν̄

for some ρ̄, ν̄ with cθρ ≤ ρ̄ ≤ ρ/4 and |ν − ν̄| ≤ Cσ.
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Proof. The proof is obtained by using the properties of the so-called nonhomogeneous
blowup, see Section 8 in [DP05] (see also Section 7 in [AC81]). By using the uniform-
in-p versions of the properties of absolute minimizers from our Section 2 as well
as Lemmas 3.5–3.6 below, we realize that constants in the results of Section 8 in
[DP05] depend uniformly on p ∈ Iμ. We explicitly observe that even though it is a
compactness argument, the proof doesn’t change even if allow p to vary. �
Lemma 3.5. Let u ∈ Sp(B1) with p ∈ Iμ. Then there exist σ0 > 0 and C0 > 0
depending only on μ and n such that

u is of class F p(σ, 1; σ) in B1 =⇒ u is of class F p(2σ, C0σ; σ) in B1/2

for 0 < σ < σ0.

Lemma 3.6. Let u ∈ Sp(B1) with p ∈ Iμ, and δ > 0. Then there exist σδ > 0 and
Cδ > 0 depending only on δ, μ and n such that

u is of class F p(σ, 1; σ) in B1 =⇒ |∇u| ≥ 1 − δ in B1/2 ∩ {xn ≤ −Cδσ}
for 0 < σ < σδ.

Proof of Lemmas 3.5–3.6. See Theorems 6.3–6.4 in [DP05]. The proofs of these the-
orems in [DP05] are in some sense simultaneous and are obtained by bootstrapping
from their weaker versions (see Lemmas 6.5–6.6 in [DP05]). Again, if we use the
results stated in our Section 2, we will obtain the proof of Lemmas 3.5–3.6. �

4. Blowups and halfspace solutions

The proof of Main Theorem that we will give in the next section will require
the properties of so-called blowups with variable p. Namely, let uk ∈ Spk(B1) with
pk ∈ Iμ, k = 1, 2, . . . , and consider the rescalings

vk(x) = uk,λk
(x) :=

uk(λkx)
λk

, for x ∈ B1/λk

for a certain sequence λk → 0. Since ∇vk(x) = ∇uk(λkx), by the uniform gradient
bound in Theorem 2.2 we can assume that over a subsequence vk is converging in
Cα

loc(R
n) to a function v0. We will call such v0 a blowup.

Lemma 4.1. Let vk ∈ Spk(BRk
) with pk ∈ Iμ, pk → p0 and Rk → ∞. Then there

exist a subsequence (still denoted by vk) and a function v0, Lipschitz continuous in
R

n, such that

vk → v0 in Cα
loc(R

n)

∇vk → ∇v0 a.e. in R
n

for a certain Lipschitz continuous v0 in R
n. Then

v0 ∈ Sp0(BR) for any R > 0.

Proof. By Theorem 2.2, after rescaling, we will have that |∇vk| ≤ C = C(μ, n) in
BRk/2. Thus, we can indeed extract a subsequence converging in Cα

loc to a nonnegative
Lipschitz continuous function v0 in R

n. Besides, we can assume that ∇vk → ∇v0 ∗-
weakly in L∞

loc(R
n).

Claim 1. Over a subsequence, ∇vk → ∇u0 a.e. in R
n.
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Indeed, let x0 ∈ {v0 > 0}. Then there exist small γ, δ > 0 such that v0 ≥ γ
in Bδ(x0). Then, for sufficiently large k, vk ≥ γ/2 in Bδ(x0). In particular vk is
pk-harmonic in Bδ(x0). Besides, {uk} is uniformly bounded in Bδ(x0) and thus the
uniform-in-p interior C1,α estimates (Lemma 2.5) yield that, over a subsequence,
∇vk → ∇v0 uniformly in Bδ/2(x0). As a consequence, in order to prove the claim it
remains to show that

∇vk → ∇v0 a.e. on {v0 = 0}.
In the set {v0 = 0} a.a. points x0 have density 1. Denote the set of such points by S.
We assert that if x0 ∈ S then

(4.1) v0(x0 + x) = o(|x|).
Assuming the contrary, let rj → 0 and yj ∈ Brj (x0) be such that v0(yj) ≥ γrj for

some γ > 0. Then, by the Lipschitz continuity of v0,

v0 >
γ

2
rj in Bcγrj (yj)

for some c > 0. This implies that {v0 > 0} has a positive density at x0, contradicting
x0 ∈ S.

From (4.1) we deduce that for any ε > 0
vk

r
< ε in Br(x0) for small r.

But then, by the uniform-in-p nondegeneracy (Theorem 2.3), it follows that vk = 0
in Br/2(x0). Consequently v0 = 0 in a neighborhood of x0. This implies that S is
an open set. Furthermore, the above argument shows that vk = v0 = 0 on compact
subsets of S for sufficiently large k. This completes the proof of the claim.

Claim 2. v0 ∈ Sp0(BR) in any R > 0.

Let η ∈ C∞
0 (BR) be such that 0 ≤ η ≤ 1. Then for any w0 with w0−v0 ∈ C∞

0 (BR)
set

wk = w0 + (1 − η)(vk − v0).
Therefore, wk = vk on ∂BR and if Rk ≥ R, we must have

(4.2)
∫

BR

|∇vk|pk + λpk
pk

χ{vk>0} ≤
∫

BR

|∇wk|pk + λpk
pk

χ{wk>0}

Since |∇vk| ≤ C and ∇vk → ∇v0 a.e. by Claim 1 above,∫
BR

|∇vk|pk →
∫

BR

|∇v0|p0 .

Similarly, ∫
BR

|∇wk|pk →
∫

BR

|∇w0|p0 .

Noting also that
χ{wk>0} ≤ χ{w0>0} + χ{η<1},

we obtain from (4.2)∫
BR

|∇v0|p0 + λp0
p0

χ{v0>0} ≤
∫

BR

|∇w0|p0 + λp0
p0

χ{w0>0} + λp0
p0

∫
BR

χ{η<1}.
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Choosing a sequence of η’s with |{η < 1}| → 0, we obtain that v0 is an absolute
minimizer of Jp0 in BR. Finally, to see that 0 ∈ ∂{v0 > 0}, observe that by the
uniform-in-p nondegeneracy (Theorem 2.3), after passing to the limit, we have(

−
∫

Br

vγ
0

)1/γ

> c r, r > 0

which implies that indeed 0 ∈ ∂{v0 > 0}. �
Ultimately, we want to prove that all blowups v0 are so-called halfspace solutions

v0(x) = (x · e)+ for some unit vector e. We will use the following observation, which
is the basis for Alt and Caffarelli’s [AC81] approach.

Lemma 4.2 (Characterization of halfspace solutions). Let v0 be as in Lemma 4.1
above; i.e. v0 ∈ Sp0(BR) for any R > 0. Suppose moreover

|∇v0| = 1 a.e. in {v0 > 0}.
Then there exists a unit vector e such that

v0(x) = (x · e)+ for any x ∈ R
n.

Proof. Observe that v0 is p0-harmonic in {v0 > 0} so that |∇v0| = 1 actually at every
point there. Let now x0 ∈ {v0 > 0}. Then there exists a unit vector e such that

∂ev0(x0) = |∇v0(x0)| = 1.

Consider now the partial derivative

w(x) := ∂ev0(x),

which satisfies a uniformly elliptic divergence-form equation∑
i,j=1n

(aij(x)wxi
)xj

, aij(x) = δij + (p0 − 2)
v0,xiv0,xj

|∇v0|2

in {v0 > 0}, since |∇v0| = 1 > 0 there. Now, by construction, we have w(x0) = 1.
On the other hand

w(x) ≤ |∇v0(x)| = 1
at every point in {v0 > 0}. Thus, by the strict maximum principle applied to w, we
obtain that ∂ev0 = 1 in the connected component of {v0 > 0}. This also implies that
∂νv0 = 0 there for a direction ν orthogonal to e. Hence, v0(x) = ((x · e)− c)+ in this
connected component. Arguing in this way, we obtain that the only possibilities for
v0 are as follows (recall that 0 ∈ ∂{v0 > 0}):

1) v0(x) = (x · e)+ in R
n, or

2) v0(x) = (x · e)+ + (a − (x · e))+ in R
n.

Let us show that the second case contradicts the fact that v0 ∈ Sp0(R) for large
R > 0. Indeed, we will easily have that

|{v0 = 0} ∩ BR| ≤ CRn−1

while from the density property for the absolute minimizers (Theorem 2.4) we should
have

|{v0 = 0} ∩ BR| ≥ cRn

This is clearly a contradiction, which shows that the case 2) is impossible. Hence
v0(x) = (x · e)+. The proof is complete. �
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Using Lemmas 4.1–4.2 we can now state the conditions that guarantee that the
blowup is a halfspace solution.

Lemma 4.3. Let vk ∈ Spk(Rk) with pk ∈ Iμ, pk → p0, and Rk → ∞. Suppose also
that for a sequence εk → 0 we have

(i) |∇vk| ≤ 1 + εk in BRk

(ii) for all 0 < r < Rk

(4.3)
1
r2

∫
Br∩{vk>0}

(1 − |∇vk|pk)dx ≤ εk.

Then, there exists a unit vector e such that over a subsequence

vk → (x · e)+ in Cα
loc(R

2).

Proof. By Lemma 4.1, we can assume that vk → v0 in Cα
loc(R

2), where v0 is an
absolute minimizer of J2 in every ball BR ⊂ R

2. Moreover, we can assume that
∇vk → ∇v0 a.e. in R

2. In fact, we claim that there exists a unit vector e such that

v0(x) = (x · e)+.

First observe that 0 ∈ ∂{v0 > 0}, which follows from the uniform nondegeneracy of
vk at 0 ∈ ∂{vk > 0}, see Theorem 2.3. Next, because of a.e. convergence ∇vk → ∇v0,
conditions (i) and (ii) in the lemma will imply that

|∇v0| = 1 a.e. in {v0 > 0}.
Then by the characterization of halfspace solutions, see Lemma 4.2, v0(x) = (x · e)+
in R

2 for some unit vector e. The proof is complete. �

5. Full regularity of the free boundary

In this section we prove Main Theorem.
The rough idea of the proof is as follows: we show that every u ∈ Sp(B1) is

sufficiently close to a halfspace solution in a small neighborhood of the origin and
therefore is flat. Then by Theorem 3.3 the free boundary is smooth near the origin.

To show the closeness to a halfspace solution, we use the characterization found in
Lemmas 4.2–4.3. The analogue of the following core lemma in the case p = 2 is due
to Alt and Caffarelli [AC81].

Lemma 5.1. Let n = 2 and u ∈ Sp(B1). Then

lim sup
r↘0

1
r2

∫
Br∩{u>0}

(1 − |∇u|p) dx ≤ γ(p)

where

γ(p) = 0 for p ≥ 2

γ(p) → 0 as p ↗ 2.

Moreover, the inequality is uniform in the sense that for every ε > 0 there exists
r(ε, p) > 0 such that

1
r2

∫
Br∩{u>0}

(1 − |∇u|p) dx ≤ γ(p) + ε

for any 0 < r < r(ε, p), u ∈ Sp(B1).
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Proof. Let ζ ∈ C∞
0 (B1/2), ζ ≥ 0 and ε > 0. Then

uε := max(u − εζ, 0)

is an admissible function, and we have

Jp(u) ≤ Jp(uε).

Thus, ∫
{0<u≤εζ}

λp
p dx ≤

∫
B1

(|∇uε|p − |∇u|p) dx

= −
∫
{0<u≤εζ}

|∇u|p dx +
∫
{u>εζ}

(|∇uε|p − |∇u|p) dx.

To estimate the second integral, we use the inequality

(5.1) |ξ|p − |η|p ≤ −p |ξ|p−2ξ · (ξ − η)

for any ξ, η ∈ R
n and p > 1, which follows from the convexity of the function ξ �→ |ξ|p.

Using also that Δpu = 0 in {u > 0} we will obtain∫
{0<u≤εζ}

λp
p dx ≤ −

∫
{0<u≤εζ}

|∇u|p dx − p

∫
{u>εζ}

|∇uε|p−2∇uε · ∇(εζ) dx

+ p

∫
Ω

|∇u|p−2∇u · ∇min (εζ, u) dx

= (p − 1)
∫
{0<u≤εζ}

|∇u|p dx

+ p

∫
{u>εζ}

(|∇u|p−2∇u − |∇uε|p−2∇uε

) · ∇(εζ) dx.

(5.2)

Now, recall that we normalized λp = (p − 1)1/p. Thus, we will have∫
{0<u≤εζ}

(1 − |∇u|p) dx ≤

p

p − 1

∫
{u>εζ}

(|∇u|p−2∇u − |∇uε|p−2∇uε

) · ∇(εζ) dx.

(5.3)

To estimate the right-hand side in (5.3), we use the following inequality

(5.4)
∣∣|ξ|p−2ξ − |η|p−2η

∣∣ ≤
{

(p − 1) max(|ξ|p−2, |η|p−2)|ξ − η| for p ≥ 2,

22−p|ξ − η|p−1 for 1 < p < 2.

for any ξ, η ∈ R
n. The easy proof is left to the reader.

According to the cases in the inequality (5.4), we subdivide our proof into two
parts.

Case 1: p ≥ 2. Recall that by Theorem 2.2 we have |∇u| ≤ C(p) in B1/2, which also
implies that u ≤ C(p) r in Br for r ≤ 1/2. Furthermore, arguing as in Theorem 6.6
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from [AC81], given small 0 < r < R = 1/2, we choose ε = C(p)r and

ζ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 for x ∈ Br,
log(R/|x|)
log(R/r)

for x ∈ BR \ Br,

0 elsewhere,

which is the 2-capacitary potential of the annular region BR \Br. Note that for small
r we will have |∇(εζ)| ≤ C1(p) in B1 and consequently |∇uε| ≤ max(C(p), C1(p)).
Then, from (5.3) and (5.4) it follows∫

{0<u≤εζ}
(1 − |∇u|p) dx ≤ p

∫
{u>εζ}

max(|∇u|p−2, |∇uε|p−2)|∇(εζ)|2 dx

≤ C2(p)
∫
{u>εζ}

|∇(εζ)|2 dx.

Now observing that Br ⊂ {u ≤ εζ} and explicitly computing the 2-capacity of the
ring BR \ Br, we will arrive at

(5.5)
∫
{u>0}∩Br

(1 − |∇u|p) dx ≤ C3(p)
r2

log (R/r)

and letting r → 0, we conclude that

lim sup
r→0

1
r2

∫
{u>0}∩Br

(1 − |∇u|p) dx ≤ 0.

Case 2: 1 < p < 2. The inequalities (5.3)–(5.4) imply in this case that

(5.6)
∫
{0<u≤εζ}

(1 − |∇u|p) dx ≤ p 22−p

p − 1

∫
{u>εζ}

|∇(εζ)|p dx.

Note that for the purpose of the lemma we may assume p ∈ [3/2, 2). Then by
Theorem 2.2 there exists an absolute constant C0 > 0 such that |∇u| ≤ C0 in B1/2.
Then for a given 0 < r < R = 1/2, we choose ε = C0r and deduce

(5.7)
∫
{0<u≤εζ}

(1 − |∇u|p) dx ≤ p 22−p Cp
0

p − 1
rp

∫
{u>εζ}

|∇ζ|p dx.

Let now ζ(x) = η(x/r), where

η(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 for x ∈ B1,
|x|−α − ρ−α

1 − ρ−α
for x ∈ Bρ \ B1,

0 elsewhere

for ρ = R/r and

α = α(p) :=
2 − p

p − 1
.
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Notice that η is the p-capacitary potential of the annular region Bρ \ B1. Then,

(5.8)

rp

∫
BR\Br

|∇ζ|pdx = r2

∫
Bρ\B1

|∇η|pdx

= 2πr2 αp−1

(1 − ρ−α)p−1
→ 2πr2αp−1 as ρ → ∞.

Combining (5.7)–(5.8) and observing that Br ⊂ {u ≤ εζ}, we obtain that

lim sup
r→0

1
r2

∫
{u>0}∩Br

(1 − |∇u|p) dx ≤ p 22−p Cp
0

p − 1

(
2 − p

p − 1

)p−1

.

This completes the proof of the lemma. �

We are now ready to prove the Main Theorem.

Proof of the Main Theorem. Without loss of generality we may assume that
u ∈ Sp(B1) and we will need to show that ∂{u > 0} ∩ Br is a smooth surface for
small r > 0. The idea is to show that the statement in Lemma 5.1 implies that u is
of flatness class F (σ, 1;∞) in Br for sufficiently small σ, which by Theorem 3.3 will
then imply the smoothness of the free boundary near the origin.

Case 1: p ≥ 2. The proof of the Main Theorem in this case does not actually require
the uniform-in-p versions of the theorems that we stated earlier in the paper; the
versions with fixed p would be sufficient.

Lemma 5.2. Let p ≥ 2. Then for any σ > 0 there exists ρ = ρ(σ, p) > 0 such that
any u ∈ Sp(B1) is of flatness class F (σ, 1;∞) in Bρ in some direction ν.

Proof. Assume the contrary. Then there exists σ > 0 and sequences ρk → 0 and
uk ∈ Sp(B1) such that uk is not of class F (σ, 1;∞) in any direction ν in Bρk

. Consider
then

vk(x) :=
uk(ρkx)

ρk
in B1/ρk

.

Then from Lemma 5.1 and Theorem 3.2, the sequence vk will satisfy the conditions
of Lemma 4.3 with pk = p0 = p. Hence, over a subsequence, vk → (x · e)+ uniformly
on every compact subset of R

2. By the nondegeneracy (Theorem 2.3) we obtain that
for sufficiently large k, vk must vanish on B1 ∩{x · e ≤ −σ}, implying that it is of the
flatness class F (σ, 1;∞) in B1. Rescaling back to uk we obtain that it is the flatness
class F (σ, 1;∞) in Bρk

, contrary to our assumption. This completes the proof of the
lemma. �

When p ≥ 2, the Main Theorem follows easily from Lemma 5.2 and Theorem 3.3.
Indeed, let p ≥ 2 be fixed and constants α, β, σ0, τ0 be as in Theorem 3.3. Then by
Lemma 5.2, there exists ρ ≤ τ0 σ

2/β
0 such that u is of flatness class F (σ0, 1;∞) in Bρ

in some direction ν. Then, by Theorem 3.3, ∂{u > 0} ∩ Bρ/4 is a C1,α surface and
therefore smooth and this completes the proof of the Main Theorem when p ≥ 2.
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Case 2: p < 2. This case is trickier, and it is unknown to the authors if the statement
of Lemma 5.2 is still valid for all 1 < p < 2. However, if we have take p sufficiently
close to 2 we can guarantee the free boundary to be as flat as we wish.

Lemma 5.3. For every σ ≥ 0 there exists an ε0 = ε0(σ) > 0 such that if 2 − ε0 <
p < 2, then any absolute minimizer u ∈ Sp(B1) will be in the flatness class F (σ, 1;∞)
in Bρ(p) in some direction ν and for some radius ρ(p) > 0.

Proof. From Lemma 5.1, for every 1 < p < 2, there exist r(p) > 0 such that
1
r2

∫
(1 − |∇u|p) dx ≤ 2γ(p) for every 0 < r ≤ r(p) and u ∈ Sp(B1).

Besides, we can assume from Theorem 3.2 that

|∇u| ≤ 1 + ε(p) in Br(p)

for some ε(p) → 0 as p ↗ 2. We claim that one can take ρ(p) = r(p)2 in the assertion
of the lemma. Assuming the contrary, there exists a σ > 0, a sequence pk ↗ 2
and minimizers of uk ∈ Spk(B1) such that uk does not belong to the flatness class
F (σ, 1;∞) in Bρ(p) in any direction ν. Consider then the rescalings

vk(x) =
uk(ρ(pk)x)

ρ(pk)
in B

1/
√

ρ(pk)

Assuming, without loss of generality, that ρ(p) → 0 as p ↗ 2, we notice that the
sequence vk satisfies the conditions of Lemma 4.3 with p0 = 2. As a consequence,
over a subsequence, vk → (x · e)+ uniformly on every compact subset of R

2. By the
uniform-in-p nondegeneracy (Theorem 2.3) we obtain that for sufficiently large k, vk

must vanish on B1∩{x ·e ≤ −σ}, implying that it is of the flatness class F (σ, 1;∞) in
B1. Rescaling back to uk we obtain that it is the flatness class F (σ, 1;∞) in Bρ(pk),
contrary to our assumption. This completes the proof of the lemma. �

When p < 2, the Main Theorem follows easily from Lemma 5.3 and Theorem 3.3.
Indeed, let the absolute constants α, β, σ0, τ0 be as in Theorem 3.3 with μ = 1/2.
Then by Lemma 5.3, there exists a small ε0 > 0 such that every u ∈ Sp(B1) with
2 − ε0 < p < 2 is of flatness class F (σ0, 1;∞) in the ball Bρ(p) in some direction
ν. Without loss of generality we may assume that ρ(p) ≤ τ0 σ

2/β
0 . Then applying

Theorem 3.3, we obtain that ∂{u > 0} ∩ Bρ(p)/4 is C1,α and therefore smooth.
The proof of the Main Theorem is complete. �
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