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INTEGRABILITY OF THE SUB-RIEMANNIAN MEAN

CURVATURE OF SURFACES IN THE HEISENBERG GROUP

D. DANIELLI, N. GAROFALO, AND D. M. NHIEU

(Communicated by Mario Bonk)

Abstract. The problem of the local summability of the sub-Riemannian
mean curvature H of a hypersurface M in the Heisenberg group, or in more
general Carnot groups, near the characteristic set of M arises naturally in sev-
eral questions in geometric measure theory. We construct an example which
shows that the sub-Riemannian mean curvature H of a C2 surface M in the
Heisenberg group H1 in general fails to be integrable with respect to the Rie-

mannian volume on M .

1. Introduction

The local summability of the sub-Riemannian mean curvature H of a hypersur-
face M in the Heisenberg group, or in more general Carnot groups, near the charac-
teristic set ofM , is a problem of interest in several questions in sub-Riemannian geo-
metric measure theory and geometry. For C2 surfaces in the first Heisenberg group
H1 the fine structure of the characteristic set was studied in the work [CHMY].
In this short paper we address the question of whether, given a C2 surface M in
the Heisenberg group H1, it is always guaranteed that the sub-Riemannian mean
curvature H of M is locally in L1 with respect to the standard Riemannian measure
on M near the characteristic set ΣM of M . We recall that ΣM is the collection of
points of M at which the tangent space coincides with the horizontal plane gener-
ated by contact distribution. Our interest in this problem arose in connection with
the generalization of a formula of Minkowski to hypersurfaces in the Heisenberg
group Hn, [DGN3]. In the proof of such a formula the local summability of H
plays a crucial role. In this respect we mention that some authors (see for instance
Lemma 4.3 in [RR], assumption (E) in section 5 in [HP], and Remark 2.47 in [Mo])
have in their works assumed such integrability of H, but without providing any
evidence in favor of the necessity of such an assumption. It was thus natural for us
to wonder whether such local summability of H near the characteristic set is always
true or if there exist examples of surfaces for which such a property fails.

In this paper we construct an example of a C2 surface M ⊂ H
1 for which H fails

to be locally in L1 with respect to the Riemannian volume on M , thus confirming
the appropriateness of such a summability assumption. Here is the precise result.
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812 D. DANIELLI, N. GAROFALO, AND D. M. NHIEU

Proposition 1.1. There exists a C2 graph M = {(x, y, t) ∈ H1 | (x, y) ∈ R2, t =
u(x, y)} such that its sub-Riemannian mean curvature function H has the property
that

H �∈ L1
loc(M,dσ).

Here, we have denoted by dσ the Riemannian volume on M .

It is worth mentioning that, as we point out in the proof of Proposition 1.1, our
construction does not provide a negative example in the C3 category. Since the
construction of an example of non-integrability for surfaces whose characteristic set
consists of a line is already delicate, it is natural to ask what happens when the
characteristic set consists of isolated points. In section 3 we analyze four possible
situations of this type and we show that for all of them H ∈ L1

loc(M,dσ). Although
it is tempting to conjecture that this should always be true, the local integrability
of H near an isolated characteristic point remains at this moment an open question.

Finally, in Proposition 3.5 below we prove that if the Riemannian volume is
replaced by the sub-Riemannian perimeter measure dσH , then for any hypersurface
in an arbitrary Carnot group the function H is locally integrable.

2. Proof of Proposition 1.1

We recall that the Heisenberg group H1 can be identified with R3, with coordi-
nates (x, y, t) and (non-Abelian) group law

(x, y, t) ◦ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ +
1

2
(xy′ − x′y)).

A basis for the Lie algebra of left-invariant vector fields on H1 associated with such
a group law is given by

X = ∂x − y

2
∂t, Y = ∂y +

x

2
∂t, T = ∂t.

We notice that the only non-trivial commutation relation satisfied by the vector
fields X,Y and T is given by

[X,Y ] = T.

The horizontal bundle HH1 is the union of all planes spanned by the horizontal
distribution {X,Y }. Given a C2 surface M ⊂ H1, the characteristic set ΣM is
defined as the collection of all points of M at which the tangent plane coincides
with span{X,Y }.

We will construct our surface M in the form of an entire graph t = u(x, y) on the
(x, y)-plane, where u ∈ C2(R2) and u(0, 0) = 0. Since for such a surface a global
defining function is given by Φ(x, y, t) = u(x, y) − t, it is well known that ΣM is
given by those points (x, y, t) ∈ M for which

XΦ = ux +
y

2
= 0, Y Φ = uy −

x

2
= 0.

In other words, ΣM is given by the solutions of the system

(2.1)

⎧⎪⎨
⎪⎩
ux(x, y)− y

2 = 0,

uy(x, y) +
x
2 = 0,

t = u(x, y).
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INTEGRABILITY OF THE SUB-RIEMANNIAN MEAN CURVATURE 813

Upon identifying R2 × {0} with R2, we see that the projection Σ′
M of ΣM onto

the (x, y)-plane is given by

(2.2) Σ′
M =

{
(x, y) ∈ R

2 | ux +
y

2
= 0, uy −

x

2
= 0

}
.

The sub-Riemannian mean curvature of M is independent of t and is given by the
formula

(2.3) H(x, y) =
(ux + y

2 )
2uyy − 2 (ux + y

2 )(uy − x
2 )uxy + (uy − x

2 )
2uxx(

(ux + y
2 )

2 + (uy − x
2 )

2
) 3

2

.

Of course, the quantity on the right-hand side of (2.3) is a priori well-defined only
outside the set Σ′

M .
In order to establish Proposition 1.1 we are going to choose the function u in the

form

(2.4) u(x, y) =
xy

2
+ g(y),

with g ∈ C2(R) and satisfying the additional assumptions

g(0) = g′(0) = 0.

(We note that if the function u took the form u(x, y) = xy
2 + g(x), then we would

have H ≡ 0, and the surface M would be minimal.) With the choice (2.4) in place,
we have

ux +
y

2
= y, uy −

x

2
= g′(y),

and since g′(0) = 0 we easily see that

Σ′
M = {(x, 0) ∈ R

2 |x ∈ R}.
Furthermore, the condition g(0) = 0 guarantees that the characteristic set is given
by the line

ΣM = {(x, 0, 0) ∈ R
3 | x ∈ R}.

To compute H we first observe that uxx = 0, uxy = 1/2 and uyy = g′′(y).
Therefore, outside the set Σ′

M , we obtain from (2.3),

H(x, y) =
y2g′′(y)− yg′(y)

(y2 + g′(y)2)
3
2

=

g′′(y)
y − g′(y)

y2(
1 + g′(y)2

y2

) 3
2

=
A′(y)(

1 + g′(y)2

y2

) 3
2

,(2.5)

where we have let

(2.6) A(y)
def
=

g′(y)

y
.

We notice that, since by the assumption g′(0) = 0 we have

lim
y→0

A(y) = lim
y→0

g′(y)

y
= g′′(0),

then for any given point on Σ′
M there exists a neighborhood of that point in which

the denominator of the last term in (2.5) does not vanish. As a consequence, the
local summability of H on M with respect to the Riemannian volume

dσ =
√
1 + u2

x + u2
y dx ∧ dy

is equivalent to the local summability of A′(y) with respect to dxdy.
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814 D. DANIELLI, N. GAROFALO, AND D. M. NHIEU

At this point we pause to observe that, under the additional hypothesis that
g ∈ C3(R), our construction does not produce an example of non-summability. For
this, it suffices to observe that, if g ∈ C3(R), then Taylor’s formula gives

lim
y→0

A′(y) = lim
y→0

{
g′′(y)

y
− g′(y)

y2

}
=

g′′′(0)

2
.

We thus conclude that, when g ∈ C3(R), then A′ ∈ L1
loc(R

2, dxdy).
Back to our example, we now make a specific choice of g. To define g we use the

formula (2.6). Precisely, we fix b > 0 and for y > 0 we set

(2.7) A(y) =

∫ b

y

sin (ln η)

ln η

dη

η
=

∫ ln 1
y

ln 1
b

sin z

z
dz,

where we have made the substitution z = − ln η. It is clear that

(2.8) L = lim
y→0+

A(y) =

∫ ∞

ln 1
b

sin z

z
dz < ∞.

Again for y > 0 we now let

(2.9) G(y) =

∫ y

0

ηA(η)dη,

and finally define g : R → R by setting g(y) = G(|y|). We note that G ∈ C2((0,∞))
and that furthermore, if we set

G(0) = G′(0) = 0,

then G ∈ C2([0,∞)), and G′′(0) = L. As a consequence, g ∈ C2(R), g(0) = g′(0) =
0, and g′′(0) = L.

Having made our choice of g, to reach the desired conclusion we now go back to
the last term in (2.5), and observe that with our choice we have A′ �∈ L1

loc(R
2, dxdy).

We have in fact for any 0 < ε < 1,∫ ε

0

|A′(y)| dy =

∫ ε

0

| sin(ln y)|
| ln y|

dy

y
=

∫ ∞

ln 1
ε

| sin z|
z

dz = ∞.

3. Isolated characteristic points

As the proof of Proposition 1.1 shows, the construction of an example of non-
integrability for surfaces in H

1 whose characteristic set consists of a line is somewhat
delicate. It is thus natural to wonder what happens when the characteristic set
ΣM consists of isolated points. In this respect we must say that our attempts
at constructing an example of non-integrability of H in this situation have not
been met with success, and therefore it would be tempting to make the following
conjecture:

Conjecture. Let M ⊂ H1 be a C2 immersed surface. If its characteristic set ΣM

consists of isolated points, then H ∈ L1
loc(M,dσ).

Although this conjecture remains an open question, in this section we provide
some interesting evidence in its favor. In what follows we exclusively consider the
case of an isolated characteristic point on the surface M . Using left-translations,
we can without loss of generality assume that such a point be the origin (0, 0, 0),
and that M be locally given by the equation

(3.1) t = u(x, y), (x, y) ∈ U,
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INTEGRABILITY OF THE SUB-RIEMANNIAN MEAN CURVATURE 815

with U ⊂ R2 being a sufficiently small neighborhood of (0, 0), u ∈ C2(U), and
u(0, 0) = 0. The following simple result provides the first evidence in favor of the
conjecture.

Proposition 3.1. Suppose that M has cylindrical symmetry near the isolated char-
acteristic point (0, 0, 0), i.e., that

u(x, y) = f

(
x2 + y2

4

)
.

Then H ∈ L1(M,dσ).

Proof. We use formula (3.14) in [DGN2], which gives for the horizontal mean cur-
vature

H = −2sf ′′(s) + f ′(s)(1 + f ′(s)2)

2
√
s(1 + f ′(s)2)3/2

, s =
x2 + y2

4
.

From such a formula it is immediate to verify that, given B(r) = {(x, y, t) ∈ H1 |
(x2 + y2)2 + 16t2 < r4}, then∫

M∩B(r)

|H|dσ ∼=
∫
x2+y2<r2

dxdy√
x2 + y2

< ∞. �

Returning to the general situation (3.1) we remark that if we consider the two
functions

p = ux +
y

2
, q = uy −

x

2
, (x, y) ∈ U,

then py = uxy +
1
2 , qx = uxy − 1

2 , and so

py(x, y) �= qx(x, y), at every (x, y) ∈ U.

This means that, in particular, py and qx cannot vanish simultaneously at any point
(x, y) ∈ U . Since we are assuming that (0, 0, 0) is an isolated characteristic point
of M , by possibly shrinking the open set U we can assume that Σ′

M ∩U = {(0, 0)}.
Suppose that py(0, 0) �= 0 (if this is not the case, then it must be qx(0, 0) �= 0,

and we argue similarly). By the implicit function theorem the zero set of p is locally
described as y = f(x) in a neighborhood of x = 0.

We now consider the situation in which u is of the form

(3.2) u(x, y) =
xy

2
+ F (x) +G(y),

where F,G ∈ C2(I) for I = (−δ, δ) and some small δ > 0, and

F (0) = G(0) = F ′(0) = G′(0) = 0.

We note that for surfaces in the form (3.2) it is relatively easy to describe the local
structure of the characteristic set around the isolated characteristic point (0, 0, 0).
We note in fact that in the present case we have

p = y + F ′(x), q = G′(y),

and thus the zero set of p is the curve passing through the origin:

C = {(x, y) | x ∈ I, y = −F ′(x)}.
On the other hand, from our assumption that G′(0) = 0, we see that all points on
the straight line {(x, 0) | x ∈ R} are on the zero set of the function q. However,
if y0 ∈ R is such that G′(y0) = 0, then also the line {(x, y0) | x ∈ R} is contained
in the zero set of q. The assumption that (0, 0, 0) be isolated translates into the
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816 D. DANIELLI, N. GAROFALO, AND D. M. NHIEU

fact that in a sufficiently small neighborhood of x = 0 the curve C has no other
intersections with the zero set of q. If the zeros of the function G′ do not accumulate
at y = 0, this means that C has no other intersection with the x-axis. Now, three
situations can typically occur: 1) C is transverse to the x-axis; 2) C is tangent to
the x-axis with a contact of finite order; 3) C is tangent to infinite order to the
x-axis. In each case we show that H ∈ L1

loc(M,dσ), thus providing some further
evidence in favor of the conjecture.

For convenience we now set

f(x) = F ′(x), g(y) = G′(y).

Then f, g ∈ C1(I), and it is easy to see from (2.3) that for a function u of the form
(3.2) the horizontal mean curvature is given by

(3.3) H(x, y) =
g′(y)(y + f(x))2 − g(y)(y + f(x)) + g(y)2f ′(x)

((y + f(x))2 + g(y)2)3/2
.

We begin by analyzing a situation in which the curve C is transverse to the
x-axis.

Proposition 3.2. Suppose that f ′(0) �= 0 and g(y) = y. Then, H ∈ L1
loc(M,dσ).

Proof. From (3.3) we easily obtain

(3.4) |H| =
∣∣∣∣ (y + f(x))2 − y(y + f(x))− y2f ′(x)

((y + f(x))2 + y2)
3
2

∣∣∣∣ ≤ C√
(y + f(x))2 + y2

,

where in (3.4) we have used the fact that |f ′| ≤ C on I. To prove that H ∈
L1(M,dσ) it thus suffices to show that

(3.5)

∫
B(0,δ)

dxdy√
(y + f(x))2 + y2

< ∞.

The assumption f ′(0) �= 0 implies that, by possibly restricting the interval I =
(−δ, δ), the function f is invertible on I. We thus consider the change of vari-
ables (x, y) = Φ(v, w) = (f−1(v − w), w), which is invertible with inverse (v, w) =
Φ−1(x, y) = (y + f(x), y). The Jacobian of the non-singular transformation Φ is
|JΦ(v, w)| = |(f−1)′(v − w)|. Since f ′ is C1, |JΦ| is bounded in Ω = Φ−1(B(0, δ)).
Notice that (0, 0) ∈ Ω. Hence,∫

B(0,δ)

1√
(y + f(x))2 + y2

dxdy =

∫
Ω

|JΦ(v, w)|√
w2 + v2

dwdv < ∞. �

Next, we analyze a situation in which the curve C has a finite order of contact
with the x-axis.

Proposition 3.3. Suppose f(x) = xm, g(y) = yk, where m and k are positive
integers. Then H ∈ L1

loc(M,dσ).

Proof. The case m = k = 1 is contained in Proposition 3.2. Hence, we assume that
either m ≥ 2 and k ≥ 1 or m ≥ 1 and k ≥ 2. In this situation, we compute the
quantities p and q. We have

p = ux + y/2 = y + xm, q = uy − x/2 = yk,

uxx = mxm−1, uxy =
1

2
, uyy = kyk−1.
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INTEGRABILITY OF THE SUB-RIEMANNIAN MEAN CURVATURE 817

From these equations and (3.3) we obtain

(3.6) |H| =
∣∣∣∣∣
kyk−1(y + xm)2 − (y + xm)yk +mxm−1y2k

((y + xm)2 + y2k)
3/2

∣∣∣∣∣ ≤
C√

(y + xm)2 + y2k

for (x, y) ∈ B(0, 1). Hence, it suffices to show that

I =

∫
B(0,1)

dxdy√
(y + xm)2 + y2k

< ∞.

By elementary considerations we can reduce this to proving the finiteness of the
integral on the region B(1)+ = {(x, y) ∈ B(0, 1) |x, y > 0}. With this objective in
mind, we make the change of variables

(x, y) = Φ(r, θ) = (r
1
m cos

1
m θ, y = r sin θ),

whose Jacobian is

|JΦ(r, θ)| =
1

m
r

1
m cos

1
m−1 θ.

We now observe that: (i) B(1)+ ⊂ E(1)+
def
= {(x, y) |x, y > 0, x2m + y2 < 1}, and

(ii) Φ−1 maps E(1)+ onto (0, 1) × (0, π/2) injectively. It will therefore suffice to
prove the finiteness of the integral on E(1)+. But one easily has
∫
E(1)+

dxdy√
(y + xm)2 + y2k

=
1

m

∫ π/2

0

∫ 1

0

r
1
m−1 cos

1
m−1 θ√

(sin θ + cos θ)2 + r2(k−1) sin2k θ
drdθ

≤ 1

m

∫ π/2

0

dθ

| sin θ + cos θ| cos1− 1
m θ

∫ 1

0

dr

r1−
1
m

< ∞.

This establishes the proposition. �

Finally, we analyze a situation in which the curve C has a contact of infinite
order with the x-axis.

Proposition 3.4. If f(x) = exp(−x−2) and g(y) = y, then H ∈ L1
loc(M,dσ).

Proof. We have f ′(x) = 2
x3 f(x), and thus from (3.3),

H =
f(x)2 + yf(x) + f ′(x)y2

((y + f(x))2 + y2)3/2
=

f(x)2 + yf(x) + 2
x3 f(x)y

2

((y + f(x))2 + y2)3/2
.

Since as a function of (x, y) we have H ∈ C(R2 \ {(0, 0)}), to show that H is locally
integrable it suffices to show that

(3.7)

∫
B(0, 12 )

|H|dxdy < ∞.

We now observe that

|H| ≤
f(x)2 + |y|f(x) + 2

|x|3 f(x)y
2

((y + f(x))2 + y2)3/2

and that furthermore we have for any 0 < ε < 1,

(y + f(x))2 + y2 ≥ 2y2 + f(x)2 − εf(x)2 − 1

ε
y2 = (1− ε)f(x)2 + (2− 1

ε
)y2.
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818 D. DANIELLI, N. GAROFALO, AND D. M. NHIEU

If we choose ε = 3
4 , then this inequality gives

(y + f(x))2 + y2 ≥ 1

4
(y2 + f(x)2).

To prove (3.7) it will thus suffice to show that

(3.8)

∫
B(0, 12 )

f(x)2 + |y|f(x) + 2
|x|3 f(x)y

2

(y2 + f(x)2)
3/2

dxdy < ∞.

Since the integrand in (3.8) is even both in x and y, it thus suffices to prove that

(3.9)

∫
B+

f(x)2 + yf(x) + 2
x3 f(x)y

2

(y2 + f(x)2)3/2
dxdy < ∞,

where B+ = B(0, 1
2 )∩Q+, and Q+ denotes the first (open) quadrant of the plane.

Let us now consider the set E+ = {(x, y) ∈ R2 | e−
2
x2 + y2 < 1

4} ∩ Q+. Since for

every x > 0 we have x2 ≥ e−
2
x2 , it is clear that B+ ⊂ E+. Therefore, (3.9) will be

true provided that

(3.10)

∫
E+

f(x)2 + yf(x) + 2
x3 f(x)y

2

(y2 + f(x)2)
3/2

dxdy < ∞.

The change of variable Φ : (0, 12 )× (0, π2 ) → R
2 defined by

(x, y) = Φ(r, θ) =

⎛
⎝ 1√

log 1
r cos θ

, r sin θ

⎞
⎠

is a one-to-one mapping onto E+. Its inverse is given by

f(x) = exp(−x−2) = r cos θ, y = r sin θ.

The Jacobian of Φ is given by

|JΦ(r, θ)| =
1

2

(
log

1

r cos θ

)−3/2

sec θ.
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Using this mapping we obtain∫
E+

f(x)2 + yf(x) + 2
x3 f(x)y

2

(y2 + f(x)2)
3/2

dxdy

=
1

2

∫ π/2

0

sec θ

∫ 1/2

0

r2 cos2 θ+r2 sin θ cos θ+2r3 sin2 θ cos θ(− log(r cos θ))3/2

r2 (− log(r cos θ))
3/2

dr

r
dθ

=
1

2

∫ π/2

0

∫ 1/2

0

cos θ + sin θ + 2r sin2 θ (− log(r cos θ))3/2

(− log(r cos θ))3/2
dr

r
dθ

=
1

2

∫ π/2

0

∫ cos θ
2

0

cos θ + sin θ + 2v sec θ sin2 θ
(
log 1

v

)3/2
(
log 1

v

)3/2 dv

v
dθ

=
1

2

∫ π/2

0

(cos θ + sin θ)

∫ cos θ
2

0

1(
log 1

v

)3/2 dvv dθ +

∫ π/2

0

sec θ sin2 θ

∫ cos θ
2

0

dvdθ

=
1

2

∫ π/2

0

sin2 θdθ +
1

2

∫ π/2

0

(cos θ + sin θ)

∫ ∞

log 2
cos θ

dξ

ξ3/2
dξdθ.

From this computation we conclude that (3.10) holds if and only if∫ π/2

0

(cos θ + sin θ)

∫ ∞

log 2
cos θ

dξ

ξ3/2
dξdθ < ∞.

But this is true if and only if∫ π/2

0

cos θ + sin θ(
log 2

cos θ

)1/2 dθ < ∞.

Since the integrand is continuous on [0, π2 ], the desired conclusion follows. �

We close this paper with a general result which says that if we replace the
Riemannian volume on M with the sub-Riemannian one, then in fact H is locally
in L1.

Proposition 3.5. Let G be a Carnot group of arbitrary step, let M ⊂ G be a C2

manifold of codimension one, and indicate with dσH the sub-Riemannian volume
on M . Then,

H ∈ L1
loc(M,dσH).

Proof. For the sake of brevity, we will use without giving further details the notation
in [DGN1]. By Proposition 9.9 in [DGN1] we have

(3.11) H =
m∑
i=1

∇H,M
i pi,

where, with ν denoting the Riemannian Gauss map on M , we have let

pi = 〈ν,Xi〉 and pi =
pi
W

,

with

W =
√
p21 + · · ·+ p2m.
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From formulas (6.10) and (8.3) in the same paper we have

(3.12) dσH = Wdσ,

where we have denoted by dσ the differential of the Riemannian volume on M .
With the above notation, the characteristic set ΣM of M is the closed subset

given by

ΣM = {p ∈ M | W (p) = 0}.
We now recall the following result proved by Balogh in the Heisenberg group (see
Theorem 1.1 in [B]) and subsequently extended by Magnani to all Carnot groups
(see [Ma]): if M ⊂ G is a C1 codimension one manifold with characteristic set ΣM ,
then

(3.13) σH(ΣM ) = 0.

From (3.11) and using the fact that p21 + · · ·+ p2m = 1, we obtain on M \ ΣM :

H =
∑
i

Xipi =
1

W

m∑
i=1

Xipi −
1

W 2

m∑
i=1

piXiW

=
1

W

m∑
i=1

Xipi −
1

W 3

m∑
i,j=1

pipjXipj .

Now, since M is of class C2, the functions p1, . . . , pm ∈ C1, and therefore Xipj are
continuous functions on M . On the other hand, thanks to (3.13), for the functions
pi/W = pi we have |pi| ≤ 1 σH -a.e. on M . We thus conclude that there exists
C > 0, depending on M , such that

|H| ≤ C

W
, σH -a.e. on M.

To reach the desired conclusion we only need to observe that if K ⊂ M is a compact
set, then ∫

K

|H|dσH ≤
∫
K

C

W
dσH = Cσ(K) < ∞. �

Acknowledgments

This paper was presented by the third-named author at the Sinica-NCTS/TPE
Geometry Seminar in December 2010. We thank Jih-Hsin Cheng, Jenn Fang Hwang
and Luca Capogna for stimulating conversations.

References

[B] Z. M. Balogh, Size of characteristic sets and functions with prescribed gradients,
J. Reine Angew. Math., 564 (2003), 63-83. MR2021034 (2005d:43007)

[CHMY] J. H. Cheng, J. F. Hwang, A. Malchiodi and P. Yang, Minimal surfaces in pseudoher-
mitian geometry and the Bernstein problem in the Heisenberg group, revised version,
2004, Ann. Sc. Norm. Sup. Pisa, 4 (2005), 129-177. MR2165405 (2006f:53008)

[DGN1] D. Danielli, N. Garofalo and D. M. Nhieu, Sub-Riemannian calculus on hypersur-
faces in Carnot groups, Advances in Math., 215 (2007), no. 1, 292–378. MR2354992
(2009h:53061)

[DGN2] , A partial solution of the isoperimetric problem for the Heisenberg group, Forum
Math., 20 (2008), no. 1, 99–143. MR2386783 (2009j:53030)

[DGN3] , A sub-Riemannian Minkowski formula, in preparation.

Licensed to Purdue Univ. Prepared on Sun Oct 12 19:45:10 EDT 2014 for download from IP 128.210.126.199.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2021034
http://www.ams.org/mathscinet-getitem?mr=2021034
http://www.ams.org/mathscinet-getitem?mr=2165405
http://www.ams.org/mathscinet-getitem?mr=2165405
http://www.ams.org/mathscinet-getitem?mr=2354992
http://www.ams.org/mathscinet-getitem?mr=2354992
http://www.ams.org/mathscinet-getitem?mr=2386783
http://www.ams.org/mathscinet-getitem?mr=2386783


INTEGRABILITY OF THE SUB-RIEMANNIAN MEAN CURVATURE 821

[HP] R. K. Hladky and S. D. Pauls, Variation of perimeter measure in sub-Riemannian
geometry, preprint, 2007.

[Ma] V. Magnani, Characteristic points, rectifiability and perimeter measure on stratified
groups, J. Eur. Math. Soc. (JEMS), 8 (2006), no. 4, 585–609. MR2262196 (2007i:53032)

[Mo] F. Montefalcone, Isoperimetric, Sobolev and Poincaré inequalities on hypersurfaces in
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