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PAULINHO TCHATCHATCHA

Chapter 2, problem 19.
(a) If A and B are disjoint closed sets in some metric space X, prove that they are separated.
(b) Prove the same for disjoint open set.
(c) Fix p ∈ X, δ > 0, define A to be the set of all q ∈ X for which d(p, q) < δ, define B
similarly, with > in place of < . Prove that A and B are separated.
(d) Prove that every connected metric space with at least two points is uncountable. Hint:
Use (c).

Solution.
(a) Let A and B are disjoint closed sets in some metric space X. We want to prove that
they are separated. Since A and B are disjoint and closed, we have

A ∩B = A ∩B = ∅, A ∩B = A ∩B = ∅.
Hence by definition 2.45, A and B are separated.
(b) Let A and B are disjoint open sets in some metric space X. We want to prove that they
are separated. Since A and B are open, the complements of A and B, say Ac and Bc are
closed. Suppose that A and B are not separated, ie, either A ∩ B or A ∩ B is nonempty.
Assume without loss of generality that A ∩ B 6= ∅. Let x ∈ A ∩ B. Then, since B is open,
there exists a neighborhood N of x such that N ⊂ B. But since x ∈ A, N∩A 6= ∅. Therefore,
since A ∩N ⊂ A ∩B, A ∩B 6= ∅, a contradiction. Hence A and B are separated.
(c) Fix p ∈ X, δ > 0, define

A = {q ∈ X|d(p, q) < δ}, B = {q ∈ X|d(p, q) > δ}.
First it not hard to see that A and B are open. Indeed, if q ∈ A, then consider the
neighborhood

Nr(q) = {z ∈ X|d(q, z) < r}, 0 < r < δ − d(p, q).

Then if z ∈ Nr(q), we have

d(p, z) ≤ d(p, q) + d(z, q) < d(p, q) + δ − d(p, q) = δ.

So z ∈ A, and since z ∈ Nr(q) is arbitrary, Nr(q) ⊂ A and A is open.
Similarly one can show that for any q ∈ B, Nr(q) ⊂ B for any 0 < r < d(p, q) − δ, using
that for any z ∈ Nr(q)

d(p, z) ≥ d(p, q)− d(q, z) > d(p, q)− d(p, q) + δ = δ.

Clearly A and B are disjoint open sets in X, so by (b) they are separated.
(d) Let X be a connected metric space with at least two points. We want to show that X
can not be countable.
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For each t ∈ (0, 1), let rt = td(x1, x2). We have that since X has at least two points, say
x1, x2 ∈ X, then d(x1, x2) > 0, and rt > 0. For each t ∈ (0, 1) consider

At = {q ∈ X|d(x1, q) < rt}, Bt = {q ∈ X|d(x2, q) > rt}.

We have that x1 ∈ A and x2 ∈ B, so A and B are nonempty open sets. So either X = At∪Bt

or there exists xt ∈ X such that d(x1, xt) = rt. Since X is connected, X 6= At ∪Bt, and for
each t ∈ (0, 1), there exists xt ∈ X s.t. d(x1, xt) = rt, but this gives an injective correspon-
dence f : (0, 1) → X, f(t) = xt. Since (0, 1) is uncountable, since we have this injective
correspondence f , X is also uncountable.
Q.E.D.

Chapter 2, problem 22. A metric space is called separable if it contains a countable
dense subset. Show that Rk is separable.

Solution.
Let Qk be the set of points of Rk which have only rational coordinates, ie,

Qk = Q× · · · ×Q
k times

= {(q1, ..., qk) ∈ Rk|qj ∈ Q, j = 1, ..., k}.

Clearly Qk is countable since it is a finite product of countable sets.
We now want to show that Qk is dense in Rk, ie, for any x = (x1, ..., xk) ∈ Rk and any
ε > 0, there exists q ∈ Qk such that

|q − x| < ε.

Since Q is dense in R, for each j = 1, ..., k, there exists qj ∈ Q such that

|qj − xj| <
ε√
k
, j = 1, ..., k.

Let q = (q1, q2, ..., qk). Then

|q − x|2 = (q1 − x1)
2 + · · ·+ (qk − xk)2 <

ε2

k
+ ...+

ε2

k
= ε2.

Hence Qk is dense in Rk and Rk is separable.

Chapter 2, problem 29. Prove that every open set in R is the union of an at most
countable collection of disjoint segments.

Solution.
Let O ⊂ R be open. Assume that O is nonempty.
For each q ∈ O ∩ Q, let Rq = {r > 0|(q − r, q + r) ⊂ O}. Since O is open, by what we
showed above Rq 6= ∅ and if r0 ∈ Rq, then r ∈ Rq for every 0 < r ≤ r0.
Note that if ∪r∈Rq

(q − r, q + r) = R, then O = R, otherwise

rq = supRq <∞.
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So assume that supRq <∞, and consider rq = supRq. We see that

Iq = (q − rq, q + rq) = ∪r∈Rq
(q − r, q + r) ⊂ O.

We claim that
O = ∪q∈O∩QIq.

Since O ∩Q ⊂ Q, then O ∩Q is countable, so the union above is also countable.
Clearly,

∪q∈O∩QIq ⊂ O.

Now if x ∈ O, there exists ε > 0, such that (x − ε, x + ε) ⊂ O. By the density of Q in R,
there exists q ∈ OQ such that 0 < x− q < ε/2. We see that (q − ε/2, q + ε/2) ⊂ O. Indeed,
if z ∈ (q − ε/2, q + ε/2), then

|z − x| ≤ |z − q|+ |q − x| < ε/2 + ε/2 = ε,

ie, z ∈ (x− ε, x+ ε) ⊂ O. So ε/2 ≤ rq by the definition of rq, and we have that

x ∈ (q − ε/2, q + ε/2) ⊂ (q − rq, q + rq) = Iq.

Since x ∈ O is arbitrary, we have that

O ⊂ ∪q∈O∩QIq,

and hence O = ∪q∈O∩QIq. Since O ∩ Q is countable, say O ∩ Q = {q1, q2, ..., qn, ...} and
Iqj

= Ij. Then
O = ∪∞j=1Ij.

Let En = In \ ∪n−1
j=1 Ij, n = 2, 3, ..., E1 = I1. We have that

O = ∪∞j=1Ij = ∪∞n=1En.

Note that by construction, each En is either a segment, a finite disjoint union of segments
or empty, and En∩Em = if n 6= m. Therefore the equility above proves that O is the union
of an at most countable collection of disjoint segments.

Chapter 3, problem 1. Prove that convergence of {sn} implies convergence of {|sn|}. Is
the converse true?

Solution.
Suppose that sn → s. We have

||sn| − |s|| ≤ |sn − s|.
Since sn → s, given ε > 0, there exists N such that |sn − s| < ε for all n ≥ N. By the
inequality above we see that ||sn| − |s|| < ε for all n ≥ N. Since ε > 0 is arbitrary, we see
that |sn| → s.
The converse is not true. Indeed, consider sn = (−1)n. Then {sn} does NOT converge, but
|sn| = 1 converge to 1.

Chapter 3, problem 2. Calculate lim
n→∞

(
√
n2 + n− n).
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Solution.
We have

√
n2 + n− n =

√
n2 + n− n√
n2 + n+ n

(
√
n2 + n+ n) =

n2 + n− n2

√
n2 + n+ n

=
n√

n2 + n+ n
, ∀n > 0.

Now note that
n√

n2 + n+ n
=

1√
1 + 1

n
+ 1
→ 1

2
as n→∞.

Therefore

lim
n→∞

(
√
n2 + n− n) =

1

2
.

Chapter 3, problem 3. If s1 =
√

2, and

sn+1 =
√

2 +
√
sn, (n = 2, 3, ...),

prove that {sn} coverges, and that sn < 2 for n = 1, 2, 3, ....

Solution.
Let s ∈ R be such that s =

√
2 +
√
s. We see that such s exists since the function

f(s) = s −
√

2 +
√
s is continuous and f(4) > 0, f(

√
2) < 0, so there must be a s,√

2 < s < 4, such that f(s) = 0.
We have that

|sn+1 − s| = |
√

2 +
√
sn −

√
2 +
√
s| =

|
√

2 +
√
sn −

√
2 +
√
s|√

2 +
√
sn +

√
2 +
√
s

(
√

2 +
√
sn +

√
2 +
√
s) =

=
|√sn −

√
s|√

2 +
√
sn +

√
2 +
√
s
≤
|√sn −

√
s|

2
√

2
,

The inequality follows form the fact that s, sn > 0, so
√

2 +
√
sn,

√
2 +
√
s >

√
2, so√

2 +
√
sn +

√
2 +
√
s > 2

√
2 and

1√
2 +
√
sn +

√
2 +
√
s
<

1

2
√

2
.

We have now that

|√sn −
√
s|

2
√

2
=
|√sn −

√
s|

2
√

2

√
sn +

√
s

√
sn +

√
s

=
|sn − s|

2
√

2(
√
sn +

√
s)
.

Now note that, by definition, sn ≥
√

2 for all n, and s >
√

2, so

|sn − s|
2
√

2(
√
sn +

√
s)
≤ |sn − s|

2
√

2(21/4 + 21/4)
≤ |sn − s|

4
.

Therefore we showed

|sn+1 − s| ≤
|sn − s|

4
.
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If we continue this process we have

|sn+1 − s| ≤
|sn − s|

4
≤ |sn−1 − s|

24
≤ · · · ≤ |sn+1−k − s|

22k
, k ≤ n.

So for k = n, we have

|sn+1 − s| ≤
|s1 − s|

22n
= |sn+1 − s| ≤

|
√

2− s|
22n

≤ 4

22n
=

1

22n−2
, n ≥ 2.

Since
1

22n−2
→ 0, as n→∞, we have that sn → s.

Since
√
x ≤ x for any x ≥ 1, and

√
x1/2 ≤

√
x ≤ x, x ≥ 1. Clearly one has that s2 =√

2 +
√

21/2 <
√

2 + 2 = 2. Now using induction, assuming sn < 2, sn+1 =
√

2 +
√
sn <√

2 + 2 = 2. Therefore sn < 2 for n = 1, 2, 3, ... .

Problem A. Show that a sequence {pn} is converging to a point p if, and only if, ev-
ery subsequence of {pn} converges to p.
Solution.
Suppose that pn → p. Let {pnj

} be a subsequence of {pn}. Since pn → p, for every ε > 0,
there exists N such that

|pn − p| < ε, ∀n ≥ N.

In particular
|pnj
− p| < ε, ∀nj ≥ N.

Hence {pnj
} coverges to p.

Now assume that {pn} does not converges to p. Then given ε > 0, for every k ∈ N there
exists nk ≥ k such that |pnk

− p| ≥ ε. Then {pnk
} does not converge to p. Therefore if every

subsequence of {pn} converges to p, then {pn} is converging to a point p.

Problem B. Show that a sequence {pn} is Cauchy if, and only if, diam(EN) → 0 as
N →∞ (here, EN = {pN , pN+1, ...}).
Solution.
Let EN = {pN , pN+1, ...}. We have

diam(EN) = sup{|pn − pm| : n,m ≥ N}.
So if {pn} is Cauchy, then for every ε > 0 there exists M such that

|pn − pm| < ε, ∀n,m ≥M.

This implies that diam(EN) ≤ ε, for all N ≥ M. Since ε > 0 is arbitrary, we have that
diam(EN)→ 0 as N →∞.
Now if diam(EN)→ 0 as N →∞, then we have for every ε > 0, there exists M such that

diam(EN) = sup{|pn − pm| : n,m ≥ N} < ε, ∀N ≥M,

in particular
|pn − pm| < ε, ∀n,m ≥M,

ie, since ε > 0 is arbitrary {pn} is Cauchy.


