HOMEWORK #4 - MA 504

PAULINHO TCHATCHATCHA

Chapter 2, problem 19.

(a) If A and B are disjoint closed sets in some metric space X, prove that they are separated.(b) Prove the same for disjoint open set.

(c) Fix $p \in X$, $\delta > 0$, define A to be the set of all $q \in X$ for which $d(p,q) < \delta$, define B similarly, with > in place of < . Prove that A and B are separated.

(d) Prove that every connected metric space with at least two points is uncountable. Hint: Use (c).

Solution.

(a) Let A and B are disjoint closed sets in some metric space X. We want to prove that they are separated. Since A and B are disjoint and closed, we have

$$\overline{A} \cap B = A \cap B = \emptyset, \quad A \cap \overline{B} = A \cap B = \emptyset.$$

Hence by definition 2.45, A and B are separated.

(b) Let A and B are disjoint open sets in some metric space X. We want to prove that they are separated. Since A and B are open, the complements of A and B, say A^c and B^c are closed. Suppose that A and B are not separated, ie, either $\overline{A} \cap B$ or $A \cap \overline{B}$ is nonempty. Assume without loss of generality that $\overline{A} \cap B \neq \emptyset$. Let $x \in \overline{A} \cap B$. Then, since B is open, there exists a neighborhood N of x such that $N \subset B$. But since $x \in \overline{A}$, $N \cap A \neq \emptyset$. Therefore, since $A \cap N \subset A \cap B$, $A \cap B \neq \emptyset$, a contradiction. Hence A and B are separated. (c) Fix $p \in X$, $\delta > 0$, define

$$A = \{q \in X | d(p,q) < \delta\}, \quad B = \{q \in X | d(p,q) > \delta\}.$$

First it not hard to see that A and B are open. Indeed, if $q \in A$, then consider the neighborhood

$$N_r(q) = \{ z \in X | d(q, z) < r \}, \quad 0 < r < \delta - d(p, q).$$

Then if $z \in N_r(q)$, we have

$$d(p,z) \le d(p,q) + d(z,q) < d(p,q) + \delta - d(p,q) = \delta.$$

So $z \in A$, and since $z \in N_r(q)$ is arbitrary, $N_r(q) \subset A$ and A is open. Similarly one can show that for any $q \in B$, $N_r(q) \subset B$ for any $0 < r < d(p,q) - \delta$, using that for any $z \in N_r(q)$

$$d(p,z) \ge d(p,q) - d(q,z) > d(p,q) - d(p,q) + \delta = \delta.$$

Clearly A and B are disjoint open sets in X, so by (b) they are separated.

(d) Let X be a connected metric space with at least two points. We want to show that X can not be countable.

PAULINHO TCHATCHATCHA

For each $t \in (0, 1)$, let $r_t = td(x_1, x_2)$. We have that since X has at least two points, say $x_1, x_2 \in X$, then $d(x_1, x_2) > 0$, and $r_t > 0$. For each $t \in (0, 1)$ consider

$$A_t = \{q \in X | d(x_1, q) < r_t\}, \quad B_t = \{q \in X | d(x_2, q) > r_t\}.$$

We have that $x_1 \in A$ and $x_2 \in B$, so A and B are nonempty open sets. So either $X = A_t \cup B_t$ or there exists $x_t \in X$ such that $d(x_1, x_t) = r_t$. Since X is connected, $X \neq A_t \cup B_t$, and for each $t \in (0, 1)$, there exists $x_t \in X$ s.t. $d(x_1, x_t) = r_t$, but this gives an injective correspondence $f : (0, 1) \to X$, $f(t) = x_t$. Since (0, 1) is uncountable, since we have this injective correspondence f, X is also uncountable. Q.E.D.

Chapter 2, problem 22. A metric space is called separable if it contains a countable dense subset. Show that \mathbb{R}^k is separable.

Solution.

Let \mathbb{Q}^k be the set of points of \mathbb{R}^k which have only rational coordinates, ie,

$$\mathbb{Q}^{k} = \mathbb{Q} \times \cdots \times \mathbb{Q} = \{(q_{1}, ..., q_{k}) \in \mathbb{R}^{k} | q_{j} \in \mathbb{Q}, j = 1, ..., k\}.$$

Clearly \mathbb{Q}^k is countable since it is a finite product of countable sets.

We now want to show that \mathbb{Q}^k is dense in \mathbb{R}^k , i.e., for any $x = (x_1, ..., x_k) \in \mathbb{R}^k$ and any $\epsilon > 0$, there exists $q \in \mathbb{Q}^k$ such that

$$|q - x| < \epsilon.$$

Since \mathbb{Q} is dense in \mathbb{R} , for each j = 1, ..., k, there exists $q_j \in \mathbb{Q}$ such that

$$|q_j - x_j| < \frac{\epsilon}{\sqrt{k}}, \quad j = 1, ..., k.$$

Let $q = (q_1, q_2, ..., q_k)$. Then

$$|q-x|^2 = (q_1 - x_1)^2 + \dots + (q_k - x_k)^2 < \frac{\epsilon^2}{k} + \dots + \frac{\epsilon^2}{k} = \epsilon^2.$$

Hence \mathbb{Q}^k is dense in \mathbb{R}^k and \mathbb{R}^k is separable.

Chapter 2, problem 29. Prove that every open set in \mathbb{R} is the union of an at most countable collection of disjoint segments.

Solution.

Let $O \subset \mathbb{R}$ be open. Assume that O is nonempty.

For each $q \in O \cap \mathbb{Q}$, let $R_q = \{r > 0 | (q - r, q + r) \subset O\}$. Since O is open, by what we showed above $R_q \neq \emptyset$ and if $r_0 \in R_q$, then $r \in R_q$ for every $0 < r \leq r_0$. Note that if $\bigcup_{r \in R_q} (q - r, q + r) = \mathbb{R}$, then $O = \mathbb{R}$, otherwise

$$r_q = \sup R_q < \infty.$$

So assume that $\sup R_q < \infty$, and consider $r_q = \sup R_q$. We see that

$$I_q = (q - r_q, q + r_q) = \bigcup_{r \in R_q} (q - r, q + r) \subset O.$$

We claim that

$$O = \bigcup_{q \in O \cap \mathbb{Q}} I_q.$$

Since $O \cap \mathbb{Q} \subset \mathbb{Q}$, then $O \cap \mathbb{Q}$ is countable, so the union above is also countable. Clearly,

$$\cup_{q\in O\cap\mathbb{Q}}I_q\subset O.$$

Now if $x \in O$, there exists $\epsilon > 0$, such that $(x - \epsilon, x + \epsilon) \subset O$. By the density of \mathbb{Q} in \mathbb{R} , there exists $q \in O\mathbb{Q}$ such that $0 < x - q < \epsilon/2$. We see that $(q - \epsilon/2, q + \epsilon/2) \subset O$. Indeed, if $z \in (q - \epsilon/2, q + \epsilon/2)$, then

$$|z-x| \le |z-q| + |q-x| < \epsilon/2 + \epsilon/2 = \epsilon,$$

ie, $z \in (x - \epsilon, x + \epsilon) \subset O$. So $\epsilon/2 \leq r_q$ by the definition of r_q , and we have that

$$x \in (q - \epsilon/2, q + \epsilon/2) \subset (q - r_q, q + r_q) = I_q$$

Since $x \in O$ is arbitrary, we have that

$$O \subset \cup_{q \in O \cap \mathbb{Q}} I_q,$$

and hence $O = \bigcup_{q \in O \cap \mathbb{Q}} I_q$. Since $O \cap \mathbb{Q}$ is countable, say $O \cap \mathbb{Q} = \{q_1, q_2, ..., q_n, ...\}$ and $I_{q_j} = I_j$. Then

 $O = \bigcup_{j=1}^{\infty} I_j.$ Let $E_n = I_n \setminus \bigcup_{j=1}^{n-1} I_j, n = 2, 3, ..., E_1 = I_1$. We have that

$$O = \bigcup_{j=1}^{\infty} I_j = \bigcup_{n=1}^{\infty} E_n.$$

Note that by construction, each E_n is either a segment, a finite disjoint union of segments or empty, and $E_n \cap E_m = \text{if } n \neq m$. Therefore the equility above proves that O is the union of an at most countable collection of disjoint segments.

Chapter 3, problem 1. Prove that convergence of $\{s_n\}$ implies convergence of $\{|s_n|\}$. Is the converse true?

Solution.

Suppose that $s_n \to s$. We have

$$||s_n| - |s|| \le |s_n - s|.$$

Since $s_n \to s$, given $\epsilon > 0$, there exists N such that $|s_n - s| < \epsilon$ for all $n \ge N$. By the inequality above we see that $||s_n| - |s|| < \epsilon$ for all $n \ge N$. Since $\epsilon > 0$ is arbitrary, we see that $|s_n| \to s$.

The converse is not true. Indeed, consider $s_n = (-1)^n$. Then $\{s_n\}$ does NOT converge, but $|s_n| = 1$ converge to 1.

Chapter 3, problem 2. Calculate $\lim_{n\to\infty}(\sqrt{n^2+n}-n)$.

Solution.

We have

$$\sqrt{n^2 + n} - n = \frac{\sqrt{n^2 + n} - n}{\sqrt{n^2 + n} + n} (\sqrt{n^2 + n} + n) = \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n} = \frac{n}{\sqrt{n^2 + n} + n}, \quad \forall n > 0.$$

Now note that

$$\frac{n}{\sqrt{n^2 + n} + n} = \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} \to \frac{1}{2} \quad \text{as} \quad n \to \infty.$$

Therefore

$$\lim_{n \to \infty} (\sqrt{n^2 + n} - n) = \frac{1}{2}.$$

Chapter 3, problem 3. If $s_1 = \sqrt{2}$, and

$$s_{n+1} = \sqrt{2 + \sqrt{s_n}}, \quad (n = 2, 3, ...),$$

prove that $\{s_n\}$ coverges, and that $s_n < 2$ for n = 1, 2, 3, ...

Solution.

Let $s \in \mathbb{R}$ be such that $s = \sqrt{2 + \sqrt{s}}$. We see that such s exists since the function $f(s) = s - \sqrt{2 + \sqrt{s}}$ is continuous and f(4) > 0, $f(\sqrt{2}) < 0$, so there must be a s, $\sqrt{2} < s < 4$, such that f(s) = 0. We have that

$$|s_{n+1} - s| = |\sqrt{2 + \sqrt{s_n}} - \sqrt{2 + \sqrt{s}}| = \frac{|\sqrt{2 + \sqrt{s_n}} - \sqrt{2 + \sqrt{s}}|}{\sqrt{2 + \sqrt{s_n}} + \sqrt{2 + \sqrt{s}}} (\sqrt{2 + \sqrt{s_n}} + \sqrt{2 + \sqrt{s}}) = \frac{|\sqrt{s_n} - \sqrt{s}|}{\sqrt{2 + \sqrt{s_n}} + \sqrt{2 + \sqrt{s}}} \le \frac{|\sqrt{s_n} - \sqrt{s}|}{2\sqrt{2}},$$

The inequality follows form the fact that $s, s_n > 0$, so $\sqrt{2 + \sqrt{s_n}}, \sqrt{2 + \sqrt{s}} > \sqrt{2}$, so $\sqrt{2 + \sqrt{s_n}} + \sqrt{2 + \sqrt{s}} > 2\sqrt{2}$ and $\frac{1}{\sqrt{2 + \sqrt{s_n}} + \sqrt{2 + \sqrt{s}}} < \frac{1}{2\sqrt{2}}$.

We have now that

$$\frac{|\sqrt{s_n} - \sqrt{s}|}{2\sqrt{2}} = \frac{|\sqrt{s_n} - \sqrt{s}|}{2\sqrt{2}} \frac{\sqrt{s_n} + \sqrt{s}}{\sqrt{s_n} + \sqrt{s}} = \frac{|s_n - s|}{2\sqrt{2}(\sqrt{s_n} + \sqrt{s})}$$

Now note that, by definition, $s_n \ge \sqrt{2}$ for all n, and $s > \sqrt{2}$, so

$$\frac{|s_n - s|}{2\sqrt{2}(\sqrt{s_n} + \sqrt{s})} \le \frac{|s_n - s|}{2\sqrt{2}(2^{1/4} + 2^{1/4})} \le \frac{|s_n - s|}{4}.$$

Therefore we showed

$$|s_{n+1} - s| \le \frac{|s_n - s|}{4}.$$

If we continue this process we have

$$|s_{n+1} - s| \le \frac{|s_n - s|}{4} \le \frac{|s_{n-1} - s|}{2^4} \le \dots \le \frac{|s_{n+1-k} - s|}{2^{2k}}, \quad k \le n.$$

So for k = n, we have

$$|s_{n+1} - s| \le \frac{|s_1 - s|}{2^{2n}} = |s_{n+1} - s| \le \frac{|\sqrt{2} - s|}{2^{2n}} \le \frac{4}{2^{2n}} = \frac{1}{2^{2n-2}}, \quad n \ge 2.$$

Since $\frac{1}{2^{2n-2}} \to 0$, as $n \to \infty$, we have that $s_n \to s$.

Since $\sqrt{x} \leq x$ for any $x \geq 1$, and $\sqrt{x^{1/2}} \leq \sqrt{x} \leq x, x \geq 1$. Clearly one has that $s_2 =$ $\sqrt{2+\sqrt{2^{1/2}}} < \sqrt{2+2} = 2$. Now using induction, assuming $s_n < 2$, $s_{n+1} = \sqrt{2+\sqrt{s_n}} < 2$ $\sqrt{2+2} = 2$. Therefore $s_n < 2$ for n = 1, 2, 3,

Problem A. Show that a sequence $\{p_n\}$ is converging to a point p if, and only if, every subsequence of $\{pn\}$ converges to p. Solution.

Suppose that $p_n \to p$. Let $\{p_{n_j}\}$ be a subsequence of $\{p_n\}$. Since $p_n \to p$, for every $\epsilon > 0$, there exists N such that

$$|p_n - p| < \epsilon, \quad \forall n \ge N.$$

In particular

$$|p_{n_i} - p| < \epsilon, \quad \forall n_j \ge N.$$

Hence $\{p_{n_i}\}$ coverges to p.

Now assume that $\{p_n\}$ does not converges to p. Then given $\epsilon > 0$, for every $k \in \mathbb{N}$ there exists $n_k \ge k$ such that $|p_{n_k} - p| \ge \epsilon$. Then $\{p_{n_k}\}$ does not converge to p. Therefore if every subsequence of $\{pn\}$ converges to p, then $\{p_n\}$ is converging to a point p.

Problem B. Show that a sequence $\{p_n\}$ is Cauchy if, and only if, diam $(E_N) \to 0$ as $N \to \infty$ (here, $E_N = \{p_N, p_{N+1}, ...\}$). Solution.

Let $E_N = \{p_N, p_{N+1}, ...\}$. We have

$$\operatorname{diam}(E_N) = \sup\{|p_n - p_m| : n, m \ge N\}.$$

So if $\{p_n\}$ is Cauchy, then for every $\epsilon > 0$ there exists M such that

$$p_n - p_m | < \epsilon, \quad \forall n, m \ge M.$$

This implies that diam $(E_N) \leq \epsilon$, for all $N \geq M$. Since $\epsilon > 0$ is arbitrary, we have that diam $(E_N) \to 0$ as $N \to \infty$.

Now if diam $(E_N) \to 0$ as $N \to \infty$, then we have for every $\epsilon > 0$, there exists M such that

$$\operatorname{diam}(E_N) = \sup\{|p_n - p_m| : n, m \ge N\} < \epsilon, \quad \forall N \ge M$$

in particular

$$|p_n - p_m| < \epsilon, \quad \forall n, m \ge M$$

ie, since $\epsilon > 0$ is arbitrary $\{p_n\}$ is Cauchy.