HOMEWORK #4 - MA 504

PAULINHO TCHATCHATCHA

Chapter 2, problem 19.
(a) If A and B are disjoint closed sets in some metric space X, prove that they are separated.
(b) Prove the same for disjoint open set.
(¢) Fix p € X, 6 > 0, define A to be the set of all ¢ € X for which d(p,q) < 0, define B
similarly, with > in place of < . Prove that A and B are separated.
(d) Prove that every connected metric space with at least two points is uncountable. Hint:
Use (c).

Solution.
(a) Let A and B are disjoint closed sets in some metric space X. We want to prove that
they are separated. Since A and B are disjoint and closed, we have

ANB=ANB=0, ANB=ANB=10.

Hence by definition 2.45, A and B are separated.
(b) Let A and B are disjoint open sets in some metric space X. We want to prove that they
are separated. Since A and B are open, the complements of A and B, say A° and B¢ are
closed. Suppose that A and B are not separated, ie, either AN B or AN B is nonempty.
Assume without loss of generality that AN B # (). Let 2 € AN B. Then, since B is open,
there exists a neighborhood N of z such that N C B. But since z € A, NNA # (). Therefore,
since ANN C AN B, AN B # (), a contradiction. Hence A and B are separated.
(c) Fix p € X, § > 0, define

A={qe Xld(p,q) <6}, B={qe Xld(p,q) > d}.
First it not hard to see that A and B are open. Indeed, if ¢ € A, then consider the
neighborhood

No(g) = {z € X|d(g,2) <7}, 0<r<6—dp,q)
Then if z € N,(q), we have

d(p,2) < d(p,q) +d(z,q) < d(p,q) + 6 —d(p,q) = 9.

So z € A, and since z € N,(q) is arbitrary, N,(q¢) C A and A is open.
Similarly one can show that for any ¢ € B, N,(q) C B for any 0 < r < d(p,q) — 9, using
that for any z € N,(q)

d(p, 2) > d(p,q) — d(q,2) > d(p,q) — d(p,q) + = 0.

Clearly A and B are disjoint open sets in X, so by (b) they are separated.
(d) Let X be a connected metric space with at least two points. We want to show that X

can not be countable.
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For each t € (0,1), let r, = td(xy1,x2). We have that since X has at least two points, say
x1,T9 € X, then d(zq1,2z5) > 0, and r, > 0. For each ¢t € (0, 1) consider

Ay ={q e X|d(z1,9) <r}, By={qe X|d(xs,q) > r}.

We have that ©; € A and o € B, so A and B are nonempty open sets. So either X = A,UB,
or there exists x; € X such that d(zy,x;) = ry. Since X is connected, X # A, U By, and for
each t € (0, 1), there exists z; € X s.t. d(x1,24) = 7y, but this gives an injective correspon-
dence f : (0,1) — X, f(t) = x;. Since (0, 1) is uncountable, since we have this injective
correspondence f, X is also uncountable.

Q.E.D.

Chapter 2, problem 22. A metric space is called separable if it contains a countable
dense subset. Show that R is separable.

Solution.
Let QF be the set of points of R¥ which have only rational coordinates, ie,

Q' =Qx---xQ={(q1, . a) ER*|g; €Q,j =1,..,k}.

k times

Clearly Q* is countable since it is a finite product of countable sets.
We now want to show that Q* is dense in R¥, ie, for any z = (x1,...,2;) € RF and any
€ > 0, there exists ¢ € QF such that

lg — x| <e.

Since Q is dense in R, for each j =1, ..., k, there exists ¢; € Q such that
€ .
¢ —zj| < —, j=1,..,k.

/A

Let ¢ = (¢1,¢2, .-, qx). Then
€
‘q_$|2:(Q1_l'1>2++(Qk—$k)2<z+—|——:€ .
Hence QF is dense in R* and R is separable.

Chapter 2, problem 29. Prove that every open set in R is the union of an at most
countable collection of disjoint segments.

Solution.

Let O C R be open. Assume that O is nonempty.

For each ¢ € ONQ, let R, = {r > 0|(¢ — r,q +r) C O}. Since O is open, by what we
showed above R, # () and if ry € R,, then r € R, for every 0 < r < ry.

Note that if Ue,, (q—71,94+71r) =R, then O = R, otherwise

rq = sup R, < oo.
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So assume that sup R, < oo, and consider r, = sup R,. We see that
Iy =(q—rqq+ry) = UreRq(q_T>Q+r) CcO.
We claim that
O = UqGOﬁQIq'
Since O NQ C Q, then O NQ is countable, so the union above is also countable.
Clearly,
Ugeonoly C 0.

Now if z € O, there exists € > 0, such that (x — €,z + €) C O. By the density of Q in R,
there exists ¢ € OQ such that 0 < z — ¢ < €/2. We see that (¢ — €/2,q+ €¢/2) C O. Indeed,
if z € (¢ —€/2,q+ €¢/2), then

z—z| <|z—q|+]¢g—x| <€/2+¢€/2 =k,
ie, z € (r —e,x+¢€) C O. So ¢/2 < r, by the definition of r,, and we have that
re(g—¢/2,q+¢€/2) Clg—rgq+7y) = Iy
Since x € O is arbitrary, we have that
O C Ugeonolys

and hence O = Ugeongl,- Since O N Q is countable, say O N Q = {q1,¢2, ..., ¢n, ...} and
I,; = I;. Then
Let B, =1, \ U;:ll]j, n=2,3,..., By = I;. We have that

Note that by construction, each F, is either a segment, a finite disjoint union of segments
or empty, and E, N E,, = if n # m. Therefore the equility above proves that O is the union
of an at most countable collection of disjoint segments.

Chapter 3, problem 1. Prove that convergence of {s,} implies convergence of {|s,|}. Is
the converse true?

Solution.
Suppose that s, — s. We have

[lsn| = [s]] < [sn = s].

Since s, — s, given € > 0, there exists N such that |s, — s| < € for all n > N. By the
inequality above we see that ||s,| — |s|| < € for all n > N. Since € > 0 is arbitrary, we see
that |s,| — s.

The converse is not true. Indeed, consider s,, = (—1)". Then {s,} does NOT converge, but
|sn| =1 converge to 1.

Chapter 3, problem 2. Calculate lim (vVn?+n —n).

n—oo
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Solution.
We have
V2 +n— 2 2
ViZin—n=Y" tn n(\/n2+n—|—n) nnon 1 Vn > 0.

Vi tnin Vi tntn  Jetntn

Now note that
1

n
= —
\/TL2—|-7”L—|—7’L 1+%+1

as 1N — OQ.

N |

Therefore

1
lim (Vn?+n—n)= 5

n—oo

Chapter 3, problem 3. If s; = /2, and

Sni1 =\/2+ /S, (n=2,3,...),

prove that {s,} coverges, and that s, <2 forn=1,2,3, ....

Solution.
Let s € R be such that s = /24 +/s. We see that such s exists since the function

f(s) = s —1/2++/s is continuous and f(4) > 0, f(v/2) < 0, so there must be a s,

V2 < s < 4, such that f(s) =
We have that

/24 \/5n \/2+
[Sna1 = 8| = [/2+ Vs — 2+\/§|=| Vo~ |\/2+ Voén +1/2+Vs) =

24 /sp +

_ VS0 — V3| < VEn = V5l

V2t et \/2+f 2v2
The 1nequahty follows form the fact that s,s, > 0, so / 2—|— 2+ s > V2, so
2+ /sn+ >2\/_ and

< .
24 sn 2+ s 2\/§
We have now that
|v5n_\/§’:|\/3_n_\/§‘\/5n+\/§: |5n—5’
2v2 2V2 Vet Vs 2V2((/s0+ V5)

Now note that, by definition, s, > v/2 for all n, and s > /2, so

|sn — s| |sn — s |sn — s

2V2(\/5n +/5) T 2v/2(214 1 2t4) T 4

Therefore we showed
|3n - S|

|Sn+1 - S| S
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If we continue this process we have

|sn — 5] < |Sn—1 — s |Sn+1-k — 5|

|Sn1 — 5| < ST o S0 s ST k<n.
So for k = n, we have
|s1 — 8| V2 — s 4 1
|sps1 — 8| < o2 :|8n+1_5’§27§27n:22n_27 n > 2.

. 1
Since —— — 0, as n — o0, we have that s,, — s.
22n—2 ’ ’ n

Since \/r < z for any x > 1, and Vz'/2 < \/x < z,2 > 1. Clearly one has that sy =
V2 V212 < V2 +2 = 2. Now using induction, assuming s, < 2, S,11 = /2 + /S0 <
V2 + 2 = 2. Therefore s, <2 forn=1,2,3,... .

Problem A. Show that a sequence {p,} is converging to a point p if, and only if, ev-
ery subsequence of {pn} converges to p.
Solution.
Suppose that p, — p. Let {p,,} be a subsequence of {p,}. Since p, — p, for every ¢ > 0,
there exists N such that

lpn —p| <€, ¥n>N.
In particular

|pn, —p| <€, ¥n; > N.
Hence {pn,} coverges to p.
Now assume that {p,} does not converges to p. Then given € > 0, for every k € N there
exists ng > k such that |p,, —p| > €. Then {p,, } does not converge to p. Therefore if every
subsequence of {pn} converges to p, then {p,} is converging to a point p.

Problem B. Show that a sequence {p,} is Cauchy if, and only if, diam(Ey) — 0 as

N — oo (here, Exy = {pn,PN+1,--})-
Solution.

Let Ex = {pn,PN+1,---}. We have
diam(Ey) = sup{|pn — pm| : n,m > N}.

So if {p,} is Cauchy, then for every ¢ > 0 there exists M such that

|pn — Dm| <€, Vn,m > M.
This implies that diam(Ey) < ¢, for all N > M. Since € > 0 is arbitrary, we have that
diam(Ey) — 0 as N — oo.
Now if diam(Ey) — 0 as N — oo, then we have for every € > 0, there exists M such that

diam(Ey) = sup{|pn — pm| :n,m > N} <¢, VYN > M,

in particular

|Dn — pm| <€, ¥Yn,m > M,
ie, since € > 0 is arbitrary {p,} is Cauchy.



