Chapter 2, problem 19.

(a) If A and B are disjoint closed sets in some metric space X, prove that they are separated.

(b) Prove the same for disjoint open set.

(c) Fix $p \in X$, $\delta > 0$, define A to be the set of all $q \in X$ for which $d(p, q) < \delta$, define B similarly, with $>$ in place of $<$. Prove that A and B are separated.

(d) Prove that every connected metric space with at least two points is uncountable. Hint: Use (c).

Solution.

(a) Let A and B are disjoint closed sets in some metric space X. We want to prove that they are separated. Since A and B are disjoint and closed, we have

$A \cap B = A \cap B = \emptyset, \quad A \cap \overline{B} = A \cap B = \emptyset.$

Hence by definition 2.45, A and B are separated.

(b) Let A and B are disjoint open sets in some metric space X. We want to prove that they are separated. Since A and B are open, the complements of A and B, say A^c and B^c are closed. Suppose that A and B are not separated, ie, either $A \cap B$ or $A \cap B^c$ is nonempty. Assume without loss of generality that $A \cap B \neq \emptyset$. Let $x \in A \cap B$. Then, since B is open, there exists a neighborhood N of x such that $N \subseteq B$. But since $x \in A$, $N \cap A \neq \emptyset$. Therefore, since $A \cap N \subseteq A \cap B$, $A \cap B \neq \emptyset$, a contradiction. Hence A and B are separated.

(c) Fix $p \in X$, $\delta > 0$, define

$A = \{q \in X : d(p, q) < \delta\}, \quad B = \{q \in X : d(p, q) > \delta\}.$

First it not hard to see that A and B are open. Indeed, if $q \in A$, then consider the neighborhood

$N_r(q) = \{z \in X : d(q, z) < r\}, \quad 0 < r < \delta - d(p, q).$

Then if $z \in N_r(q)$, we have

$d(p, z) \leq d(p, q) + d(z, q) < d(p, q) + \delta - d(p, q) = \delta.$

So $z \in A$, and since $z \in N_r(q)$ is arbitrary, $N_r(q) \subseteq A$ and A is open.

Similarly one can show that for any $q \in B$, $N_r(q) \subseteq B$ for any $0 < r < d(p, q) - \delta$, using that for any $z \in N_r(q)$

$d(p, z) \geq d(p, q) - d(q, z) > d(p, q) - d(p, q) + \delta = \delta.$

Clearly A and B are disjoint open sets in X, so by (b) they are separated.

(d) Let X be a connected metric space with at least two points. We want to show that X can not be countable.
For each \(t \in (0, 1) \), let \(r_t = td(x_1, x_2) \). We have that since \(X \) has at least two points, say \(x_1, x_2 \in X \), then \(d(x_1, x_2) > 0 \), and \(r_t > 0 \). For each \(t \in (0, 1) \) consider
\[
A_t = \{ q \in X | d(x_1, q) < r_t \}, \quad B_t = \{ q \in X | d(x_2, q) > r_t \}.
\]

We have that \(x_1 \in A \) and \(x_2 \in B \), so \(A \) and \(B \) are nonempty open sets. So either \(X = A_t \cup B_t \) or there exists \(x_t \in X \) such that \(d(x_1, x_t) = r_t \). Since \(X \) is connected, \(X \neq A_t \cup B_t \), and for each \(t \in (0, 1) \), there exists \(x_t \in X \) s.t. \(d(x_1, x_t) = r_t \), but this gives an injective correspondence \(f : (0, 1) \to X, f(t) = x_t \). Since \((0, 1) \) is uncountable, since we have this injective correspondence \(f \), \(X \) is also uncountable.

Q.E.D.

Chapter 2, problem 22. A metric space is called separable if it contains a countable dense subset. Show that \(\mathbb{R}^k \) is separable.

Solution.
Let \(Q^k \) be the set of points of \(R^k \) which have only rational coordinates, ie,
\[
Q^k = \mathbb{Q} \times \cdots \times \mathbb{Q} = \{ (q_1, \ldots, q_k) \in \mathbb{R}^k | q_j \in \mathbb{Q}, j = 1, \ldots, k \}.
\]
Clearly \(Q^k \) is countable since it is a finite product of countable sets.
We now want to show that \(Q^k \) is dense in \(\mathbb{R}^k \), ie, for any \(x = (x_1, \ldots, x_k) \in \mathbb{R}^k \) and any \(\epsilon > 0 \), there exists \(q \in Q^k \) such that
\[
|q - x| < \epsilon.
\]
Since \(\mathbb{Q} \) is dense in \(\mathbb{R} \), for each \(j = 1, \ldots, k \), there exists \(q_j \in \mathbb{Q} \) such that
\[
|q_j - x_j| < \frac{\epsilon}{\sqrt{k}}, \quad j = 1, \ldots, k.
\]
Let \(q = (q_1, q_2, \ldots, q_k) \). Then
\[
|q - x|^2 = (q_1 - x_1)^2 + \cdots + (q_k - x_k)^2 < \frac{\epsilon^2}{k} + \cdots + \frac{\epsilon^2}{k} = \epsilon^2.
\]
Hence \(Q^k \) is dense in \(\mathbb{R}^k \) and \(\mathbb{R}^k \) is separable.

Chapter 2, problem 29. Prove that every open set in \(\mathbb{R} \) is the union of an at most countable collection of disjoint segments.

Solution.
Let \(O \subset \mathbb{R} \) be open. Assume that \(O \) is nonempty.
For each \(q \in O \cap \mathbb{Q} \), let \(R_q = \{ r > 0 | (q - r, q + r) \subset O \} \). Since \(O \) is open, by what we showed above \(R_q \neq \emptyset \) and if \(r_0 \in R_q \), then \(r \in R_q \) for every \(0 < r \leq r_0 \).
Note that if \(\cup_{r \in R_q} (q - r, q + r) = \mathbb{R} \), then \(O = \mathbb{R} \), otherwise
\[
r_q = \sup R_q < \infty.
\]
So assume that \(\sup R_q < \infty \), and consider \(r_q = \sup R_q \). We see that
\[
I_q = (q - r_q, q + r_q) = \bigcup_{r \in R_q} (q - r, q + r) \subset O.
\]
We claim that
\[
O = \bigcup_{q \in \mathbb{Q} \cap O} I_q.
\]
Since \(O \cap \mathbb{Q} \subset \mathbb{Q} \), then \(O \cap \mathbb{Q} \) is countable, so the union above is also countable.

Clearly, \(\bigcup_{q \in \mathbb{Q} \cap O} I_q \subset O \).

Now if \(x \in O \), there exists \(\epsilon > 0 \), such that \((x - \epsilon, x + \epsilon) \subset O \). By the density of \(\mathbb{Q} \) in \(\mathbb{R} \), there exists \(q \in O \cap \mathbb{Q} \) such that \(0 < q - x < \epsilon/2 \). We see that \((q - \epsilon/2, q + \epsilon/2) \subset O \). Indeed, if \(z \in (q - \epsilon/2, q + \epsilon/2) \), then
\[
|z - x| \leq |z - q| + |q - x| < \epsilon/2 + \epsilon/2 = \epsilon,
\]
ie, \(z \in (x - \epsilon, x + \epsilon) \subset O \). So \(\epsilon/2 \leq r_q \) by the definition of \(r_q \), and we have that
\[
x \in (q - \epsilon/2, q + \epsilon/2) \subset (q - r_q, q + r_q) = I_q.
\]
Since \(x \in O \) is arbitrary, we have that
\[
O \subset \bigcup_{q \in \mathbb{Q} \cap O} I_q,
\]
and hence \(O = \bigcup_{q \in \mathbb{Q} \cap O} I_q \). Since \(O \cap \mathbb{Q} \) is countable, say \(O \cap \mathbb{Q} = \{ q_1, q_2, \ldots, q_n, \ldots \} \) and \(I_{q_j} = I_j \). Then
\[
O = \bigcup_{j=1}^{\infty} I_j.
\]
Let \(E_n = I_n \setminus \bigcup_{j=1}^{n-1} I_j \), \(n = 2, 3, \ldots, E_1 = I_1 \). We have that
\[
O = \bigcup_{j=1}^{\infty} I_j = \bigcup_{n=1}^{\infty} E_n.
\]
Note that by construction, each \(E_n \) is either a segment, a finite disjoint union of segments or empty, and \(E_n \cap E_m = \emptyset \) if \(n \neq m \). Therefore the equality above proves that \(O \) is the union of an at most countable collection of disjoint segments.

Chapter 3, problem 1. Prove that convergence of \(\{ n \} \) implies convergence of \(\{ |s_n| \} \). Is the converse true?

Solution.
Suppose that \(s_n \rightarrow s \). We have
\[
||s_n| - |s|| \leq |s_n - s|.
\]
Since \(s_n \rightarrow s \), given \(\epsilon > 0 \), there exists \(N \) such that \(|s_n - s| < \epsilon \) for all \(n \geq N \). By the inequality above we see that \(||s_n| - |s|| < \epsilon \) for all \(n \geq N \). Since \(\epsilon > 0 \) is arbitrary, we see that \(|s_n| \rightarrow s \).

The converse is not true. Indeed, consider \(s_n = (-1)^n \). Then \(\{ s_n \} \) does NOT converge, but \(|s_n| = 1 \) converge to 1.

Chapter 3, problem 2. Calculate \(\lim_{n \to \infty} (\sqrt{n^2 + n} - n) \).
Solution.
We have
\[
\sqrt{n^2 + n} - n = \frac{\sqrt{n^2 + n} - n}{\sqrt{n^2 + n} + n} (\sqrt{n^2 + n} + n) = \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n} = \frac{n}{\sqrt{n^2 + n} + n}, \quad \forall n > 0.
\]
Now note that
\[
\frac{n}{\sqrt{n^2 + n} + n} = \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} \to \frac{1}{2} \quad \text{as} \quad n \to \infty.
\]
Therefore
\[
\lim_{n \to \infty} (\sqrt{n^2 + n} - n) = \frac{1}{2}.
\]

Chapter 3, problem 3. If \(s_1 = \sqrt{2}, \) and
\[
s_{n+1} = \sqrt{2 + \sqrt{s_n}}, \quad (n = 2, 3, \ldots),
\]
prove that \(\{s_n\} \) converges, and that \(s_n < 2 \) for \(n = 1, 2, 3, \ldots. \)

Solution.
Let \(s \in \mathbb{R} \) be such that \(s = \sqrt{2 + \sqrt{s}}. \) We see that such \(s \) exists since the function
\[
f(s) = s - \sqrt{2 + \sqrt{s}}
\]
is continuous and \(f(4) > 0, \) \(f(\sqrt{2}) < 0, \) so there must be a \(s, \sqrt{2} < s < 4, \) such that \(f(s) = 0. \)
We have that
\[
|s_{n+1} - s| = |\sqrt{2 + \sqrt{s_n}} - \sqrt{2 + \sqrt{s}}| = \frac{|\sqrt{2 + \sqrt{s_n}} - \sqrt{2 + \sqrt{s}}|}{\sqrt{2 + \sqrt{s_n}} + \sqrt{2 + \sqrt{s}}} (\sqrt{2 + \sqrt{s_n}} + \sqrt{2 + \sqrt{s}}) =
\]
\[
\frac{|\sqrt{s_n} - \sqrt{s}|}{\sqrt{2 + \sqrt{s_n}} + \sqrt{2 + \sqrt{s}}} \leq \frac{|\sqrt{s_n} - \sqrt{s}|}{2\sqrt{2}},
\]
The inequality follows form the fact that \(s, s_n > 0, \) so \(\sqrt{2 + \sqrt{s_n}, \sqrt{2 + \sqrt{s}} > \sqrt{2}, \) so \(\sqrt{2 + \sqrt{s_n}} + \sqrt{2 + \sqrt{s}} > 2\sqrt{2} \) and \(\frac{1}{\sqrt{2 + \sqrt{s_n}} + \sqrt{2 + \sqrt{s}}} < \frac{1}{2\sqrt{2}}. \)
We have now that
\[
\frac{|\sqrt{s_n} - \sqrt{s}|}{2\sqrt{2}} = \frac{|\sqrt{s_n} - \sqrt{s}|}{2\sqrt{2}} \frac{\sqrt{s_n} + \sqrt{s}}{\sqrt{s_n} + \sqrt{s}} = \frac{|s_n - s|}{2\sqrt{s_n + \sqrt{s}}(\sqrt{s_n} + \sqrt{s})}.
\]
Now note that, by definition, \(s_n \geq \sqrt{2} \) for all \(n, \) and \(s > \sqrt{2}, \) so
\[
\frac{|s_n - s|}{2\sqrt{2}(\sqrt{s_n} + \sqrt{s})} \leq \frac{|s_n - s|}{2\sqrt{2}(2^{1/4} + 2^{1/4})} \leq \frac{|s_n - s|}{4}.
\]
Therefore we showed
\[
|s_{n+1} - s| \leq \frac{|s_n - s|}{4}.
\]
If we continue this process we have
\[|s_{n+1} - s| \leq \frac{|s_n - s|}{4} \leq \frac{|s_{n-1} - s|}{2^4} \leq \ldots \leq \frac{|s_{n+k} - s|}{2^{2k}}, \quad k \leq n.\]

So for \(k = n \), we have
\[|s_{n+1} - s| \leq \frac{|s_1 - s|}{2^{2n}} = |s_n - s| \leq \frac{\sqrt{2} - s}{2^{2n}} \leq \frac{4}{2^{2n}} = \frac{1}{2^{2n-2}}, \quad n \geq 2.\]

Since \(\frac{1}{2^{2n-2}} \to 0 \), as \(n \to \infty \), we have that \(s_n \to s \).

Since \(\sqrt{x} \leq x \) for any \(x \geq 1 \), and \(\sqrt{x^{1/2}} \leq \sqrt{x} \leq x, x \geq 1 \). Clearly one has that \(s_2 = \sqrt{2 + \sqrt{2}} < \sqrt{2 + 2} = 2 \). Now using induction, assuming \(s_n < 2 \), \(s_{n+1} = \sqrt{2 + \sqrt{s_n}} < \sqrt{2 + 2} = 2 \). Therefore \(s_n < 2 \) for \(n = 1, 2, 3, \ldots \).

Problem A. Show that a sequence \(\{p_n\} \) is converging to a point \(p \) if, and only if, every subsequence of \(\{pn\} \) converges to \(p \).

Solution.

Suppose that \(p_n \to p \). Let \(\{p_{n_j}\} \) be a subsequence of \(\{p_n\} \). Since \(p_n \to p \), for every \(\epsilon > 0 \), there exists \(N \) such that
\[|p_n - p| < \epsilon, \quad \forall n \geq N.\]

In particular
\[|p_{n_j} - p| < \epsilon, \quad \forall n_j \geq N.\]

Hence \(\{p_{n_j}\} \) converges to \(p \).

Now assume that \(\{p_n\} \) does not converges to \(p \). Then given \(\epsilon > 0 \), for every \(k \in \mathbb{N} \) there exists \(n_k \geq k \) such that \(|p_{n_k} - p| \geq \epsilon \). Then \(\{p_{n_k}\} \) does not converge to \(p \). Therefore if every subsequence of \(\{pn\} \) converges to \(p \), then \(\{p_n\} \) is converging to a point \(p \).

Problem B. Show that a sequence \(\{p_n\} \) is Cauchy if, and only if, \(\text{diam}(E_N) \to 0 \) as \(N \to \infty \) (here, \(E_N = \{p_N, p_{N+1}, \ldots\} \).

Solution.

Let \(E_N = \{p_N, p_{N+1}, \ldots\} \). We have
\[\text{diam}(E_N) = \sup\{|p_n - p_m| : n, m \geq N\}.\]

So if \(\{p_n\} \) is Cauchy, then for every \(\epsilon > 0 \) there exists \(M \) such that
\[|p_n - p_m| < \epsilon, \quad \forall n, m \geq M.\]

This implies that \(\text{diam}(E_N) \leq \epsilon \), for all \(N \geq M \). Since \(\epsilon > 0 \) is arbitrary, we have that \(\text{diam}(E_N) \to 0 \) as \(N \to \infty \).

Now if \(\text{diam}(E_N) \to 0 \) as \(N \to \infty \), then we have for every \(\epsilon > 0 \), there exists \(M \) such that
\[\text{diam}(E_N) = \sup\{|p_n - p_m| : n, m \geq N\} < \epsilon, \quad \forall N \geq M,\]

in particular
\[|p_n - p_m| < \epsilon, \quad \forall n, m \geq M,\]

ie, since \(\epsilon > 0 \) is arbitrary \(\{p_n\} \) is Cauchy.