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Abstract

We develop a sub-Riemannian calculus for hypersurfaces in graded nilpotent Lie groups. We introduce
an appropriate geometric framework, such as horizontal Levi-Civita connection, second fundamental form,
and horizontal Laplace–Beltrami operator. We analyze the relevant minimal surfaces and prove some basic
integration by parts formulas. Using the latter we establish general first and second variation formulas for the
horizontal perimeter in the Heisenberg group. Such formulas play a fundamental role in the sub-Riemannian
Bernstein problem.
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1. Introduction

The purpose of the present paper is to develop a sub-Riemannian calculus on smooth hyper-
surfaces in a class of nilpotent Lie groups which possess a rich geometry. Such groups arise as
tangent spaces of Gromov–Hausdorff limits of Riemannian manifolds [4,13,75], and since they
can be traced back to the foundational paper of Carathéodory [11] on Carnot thermodynamics,
they have been christened Carnot groups by Gromov, see [53,54]. Our main motivation is, in a
broad sense, the applications of the relevant calculus to the study of the non-characteristic Bern-
stein problem. We believe that, in perspective, our results will also prove useful to the study of
the regularity theory of hypersurfaces of constant mean curvature in such settings. Both these
problems have recently received increasing attention from several groups of mathematicians and
there exists nowadays a wide literature. The following is only a partial list of references [1–3,6,
14–16,26,28,43–45,48,49,56,74,84,85,90]. For an extensive bibliography we refer the reader to
the recent monographs [10,27] (see also the forthcoming book [47]), and to the papers [26,28].
Carnot groups play a pervasive role in analysis, geometry, and in various branches of the applied
sciences, ranging from problems in optimal control and robotics, crystallography, mathematical
finance, and neurophysiology of the brain. This latter aspect, in particular, has been recently
brought to light in some very interesting works of Petitot and Tondut [80–82], and of Citti and
Sarti [18,19], see also [20,21]. These latter works have shown that there exists a close link be-
tween the way in which the brain chooses to complete the missing visual data in the first layer
of the cerebral cortex, V1, and the minimal surfaces in a specific sub-Riemannian space, the so-
called roto-translation group, arising in the mathematical modeling of the visual cortex V1, see
also [57].

To describe the content of this paper we recall that during the past century the study of min-
imal surfaces has been one of the main driving forces in mathematics. Such development was
prompted by the study of the problems of Plateau and Bernstein which has led, as a by-product,
to the development of the Geometric Measure Theory, see [39,72,73]. Minimal surfaces also play
a central role in the positive mass theorem from relativity due to Schoen and Yau [89], see also
the lecture notes [88]. Given the substantial progress which has occurred during the past decade
in the theory of subelliptic equations, and in those closely connected aspects of geometric mea-
sure theory in sub-Riemannian spaces, it seems natural at this point to direct the attention to the
understanding of those tools which are necessary for the development of a rich theory of min-
imal surfaces. As we mentioned above, in this paper we solely discuss hypersurfaces. Minimal
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manifolds of higher codimension are also of interest and we hope to investigate them in future
studies.

In classical geometry a central notion is that of area of a (smooth) hypersurface. Such notion
was extended by De Giorgi [29,30], with the introduction of his variational theory of perimeters
which allowed to assign an “area” also to sets which are not a priori smooth. In a Carnot group G

there exists a corresponding variational notion of perimeter adapted to the horizontal bundle HG

(for a brief introduction to Carnot groups we refer the reader to Section 2). Given a distribution
of smooth left-invariant vector fields X = {X1, . . . ,Xm} which is an orthonormal basis of the
horizontal bundle (and therefore it is bracket-generating for T G), and an open set Ω ⊂ G, we let

F(Ω) =
{

ζ =
m∑

i=1

ζiXi ∈ C1
0(Ω,HG)

∣∣∣∣ |ζ |∞ = sup
Ω

|ζ | � 1

}
.

For a function u ∈ L1
loc(Ω), the H -variation of u with respect to Ω is defined by

VarH (u;Ω) = sup
ζ∈F(Ω)

∫
G

u

m∑
i=1

Xiζi dg.

A function u ∈ L1(Ω) is called of bounded H -variation in Ω if VarH (u;Ω) < ∞. The space
BVH (Ω) of functions with bounded H -variation in Ω , endowed with the norm

‖u‖BVH (Ω) = ‖u‖L1(Ω) + VarH (u;Ω),

is a Banach space. Similarly to the classical theory (for the latter, see for instance [52,97]), such
space constitutes the appropriate replacement of the horizontal Sobolev W

1,1
H (Ω) space in the

study of the relevant minimal surfaces, see [48]. Let now E ⊂ G be a measurable set, Ω ⊂ G be
an open set. The H -perimeter of E with respect to Ω is defined by the equation

PH (E;Ω) = VarH (χE;Ω), (1.1)

where χE denotes the indicator function of E, see [9]. When E possesses sufficient regularity,
e.g. when S = ∂E is a hypersurface of class C2, then one finds that

PH (E;Ω) =
∫

Ω∩∂E

dσH =
∫

Ω∩∂E

|NH |
|N | dHN−1, (1.2)

where we have denoted with NH the projection of the (non-unit) Riemannian normal to ∂E onto
the subbundle HG. It is interesting to note that, in this situation, a useful alternative understand-
ing of the H -perimeter (1.1) can be obtained by blowing-up the (suitably normalized) standard
surface measure associated with the Riemannian regularization of the sub-Riemannian metric,
see Theorem 8.5 below.

A “minimal surface” in Ω was defined in [48] as the boundary of a set of least H -perimeter,
among all those with the same boundaries outside Ω . The existence of such “surfaces” (a priori,
these are just sets of locally finite H -perimeter), and a measure theoretic solution of the Plateau
problem, were also established in [48] following the classical approach of De Giorgi [29–31].
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The natural question arises of whether such measure theoretic minimal surfaces have, at least
when they are sufficiently smooth, vanishing “mean curvature.” This prompts to investigate an
appropriate notion of mean curvature adapted to the horizontal bundle HG. For level sets such a
notion was proposed by one of us back in 1997, see [46]. For the Heisenberg group H

1, another
notion of mean curvature was introduced by Pauls in [79], who studied the solvability of the
Plateau problem by means of the Riemannian regularization of the sub-Riemannian metric. For
a surface in a three-dimensional CR manifold, yet another notion of mean curvature has been
recently proposed in [15]. For instance, if the ambient manifold is the Heisenberg group H

1,
then the mean curvature of a surface S ⊂ H1 is defined as the standard curvature of the curve
of intersection of S with the horizontal plane passing through the base point. We note that, for
surfaces in a Carnot group, this same notion of curvature was also already explicitly introduced
in [24]. In this paper, given a C2 hypersurface S in a Carnot group G, we introduce a second
fundamental form on S adapted to the horizontal subbundle HG, and a geometric notion of
mean curvature of S , and we show that the latter coincides with either one of those proposed in
[15,46,79], see Propositions 9.9, 9.13 and 9.14.

In a Carnot group G, with grading of the Lie algebra g = V1 ⊕ · · · ⊕ Vr , we define a smooth
left-invariant Riemannian metric 〈·,·〉 by imposing that the vector fields X1, . . . ,Xm, . . . ,Xr,mr ,
defined in (2.15), be orthonormal, see Section 5. We can thus consider the Riemannian connec-
tion ∇ on G induced by 〈·,·〉. We define the horizontal Levi-Civita connection ∇H on G by
projecting ∇ onto the horizontal bundle HG, see Section 5. We note explicitly that ∇H is, in
essence, Cartan’s non-holonomic connection introduced in his address at the Bologna Interna-
tional Congress of Mathematicians in 1928, see [12].

In Section 6, given an oriented C2 hypersurface S ⊂ G, with Riemannian normal N , we
define the horizontal normal NH to S as the projection of N onto the horizontal bundle, and the
horizontal Gauss map as νH = NH /|NH |. Note that |NH | �= 0 at every point which does not
belong to the characteristic set ΣS of S . We recall that the latter is the collection of all points
g ∈ S at which HgG ⊂ TgS . An important notion is that of horizontal tangent bundle HT S to S ,
whose fiber HTgS at each point g ∈ S \ ΣS is defined as the collection of all horizontal vectors
which are orthogonal to NH . It can be easily recognized that HTgS = TgS ∩ HgG. To obtain a
connection on HT S we then project the horizontal Levi-Civita connection ∇H on the horizontal
tangent bundle HT S . More explicitly, for every X,Y ∈ C1(S;HT S) we define

∇H,S
X Y = ∇H

X
Y − 〈∇H

X
Y ,νH

〉
νH ,

where X, Y are any two horizontal vector fields on G such that X = X, Y = Y on S (note that
the above definition does not depend on the choice of the extensions). Unlike its Riemannian
counterpart, the connection ∇H,S

X Y is not torsion free in general, and therefore it is not Levi-
Civita in general. This is due to the fact that, given X,Y ∈ C1(S;HT S), the projection [X,Y ]H
of [X,Y ] onto the horizontal bundle of HG does not in general belong to the horizontal tangent
space to S , HT S . We note in passing that an interesting situation in which ∇H,S

X Y is Levi-Civita
is that when G = H

1, the first Heisenberg group, or when G = E, the four-dimensional Engel
group, see Section 3.

Inspired by the Riemannian situation we next project ∇H along the horizontal Gauss map νH .
In this way we are able to introduce the following notion of horizontal second fundamental form
on S

IIH,S(X,Y ) = 〈∇H
X Y,νH

〉
νH , (1.3)
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where X,Y ∈ C1(S;HT S). Since [X,Y ]H is not in general in HT S , unlike its Riemannian
predecessor (1.3) is not symmetric. One has in fact,

IIH,S(X,Y ) − IIH,S(Y,X) = 〈[X,Y ]H ,νH
〉
νH �= 0.

At every point g0 /∈ ΣS , we define the horizontal mean curvature H (or H -mean curvature) of
S as the negative of the trace of the (symmetrized) second fundamental form. If {e1, . . . , em−1}
is an orthonormal basis of HT S , we thus have

H = −
m−1∑
i=1

〈∇H
ei

ei ,ν
H
〉
. (1.4)

If instead g0 ∈ ΣS , then we define H(g0) as the limg→g0, g /∈ΣS H(g), whenever such limit
exists. A C2 hypersurface S ⊂ G is said to have constant mean-curvature c ∈ R if H ≡ c as a
continuous function on S . We call S H -minimal if H ≡ 0 on S .

Having introduced the notion of H -mean curvature, and H -minimal surface, following the
steps of the classical developments on the Bernstein problem, it is natural to study questions
of stability, regularity, etc. It is well known that in the classical setting when S ⊂ R

n, with
the standard surface measure dσ , an essential role in this program is played by the following
integration by parts formula, see e.g. [52],∫

S

∇f dσ = (n − 1)

∫
S

f Hν dσ, (1.5)

where ∇ denotes the Levi-Civita connection on S, f ∈ C2
0(S), and H is the mean curvature of S .

For instance, the fundamental a priori gradient estimates for minimal surfaces are derived from
(1.5), see [5]. In Section 10 we establish an appropriate generalization of (1.5) to the case of
a hypersurface in a Carnot group. The interesting feature of such intrinsic integration by parts
formula is that the role of the surface measure is played by the H -perimeter. Furthermore, it links
the horizontal connection ∇H,S on S to the H -mean curvature of S . The relevant results states
that for every f ∈ C1

0(S \ ΣS),

∫
S

∇H,Sf dσH =
∫
S

f
{
HνH − cH,S}dσH , (1.6)

where cH,S is a vector field on S \ ΣS with values in the horizontal tangent space HT S , see
Theorem 10.1. This result plays a central role in the establishment of the fundamental first and
second variation formulas for the H -perimeter in Sections 14 and 15. Although (1.6) formally re-
sembles (1.5), and in fact it encompasses its Riemannian predecessor, the presence of the vector
field cH,S represents a new aspect which reflects the lack of torsion freeness of the connec-
tion ∇H,S , see also Proposition 5.1 below. In the Abelian case when G ∼= R

n, then cH,S ≡ 0 and
we recover (1.5). Another interesting situation in which cH,S ≡ 0 is when S is a vertical cylinder
on the horizontal layer, i.e., when S is locally described by a defining function which depends
only on the horizontal variables.

Using the connection ∇H,S we define two differential operators on S , see Definition 11.1.
The former, denoted by �H,S , is a sub-Riemannian version of the classical Laplace–Beltrami
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operator on a manifold. The latter, indicated by �̂H,S , contains an additional drift term, and is
motivated by the intrinsic integration by parts formula (1.6). Its main raison d’être, in fact, is
that a Stokes’ type theorem holds for it, see Corollary 11.3. Formula (1.6) implies the following
identity

∫
S

〈∇H,Su,∇H,Sζ
〉
dσH = −

∫
S

u�̂H,Sζ dσH

for every u ∈ C1(S), and every ζ ∈ C2
0(S \ ΣS). Using this identity, we introduce a notion of

sub-harmonicity on S , see Definitions 11.13, 11.14. It is an interesting open question to study the
properties of non-negative sub-harmonic functions on S . For instance, when S is H -minimal, do
such functions satisfy some kind of sub-mean value formula?

In Theorem 12.1 we connect the operator �H,S to the flow by horizontal mean curvature
recently introduced by Bonk and Capogna [6]. We show that, similarly to its Riemannian coun-
terpart, such flow satisfies the following interesting partial differential equation involving the
horizontal tangential Laplacian �H,S t on the hypersurfaces S t = F(S, t), images of S through
the flow F(·, t), see Theorem 12.1,

〈
∂F

∂t
,N

〉
= 〈�H,S t F,N〉.

Sections 13–15 are entirely devoted to a geometric study of C2 surfaces in the Heisenberg
group H

1. In this setting, given a C2 surface S with horizontal Gauss map νH , one easily recog-
nizes that HT S is spanned by the single vector field (νH )⊥. The triple {(νH )⊥,νH ,T } forms an
orthonormal moving frame on S . In Section 13 we establish various geometric identities which
connect horizontal covariant differentiation along such frame to geometric quantities such as the
H -mean curvature and its derivatives.

In Section 14 we use such identities, in combination with some notable integration by parts
formulas which follow from Theorem 10.1, see Lemma 14.8. This lemma plays a crucial role in
establishing the first and second variation formulas for the H -perimeter measure which constitute
the main results of the section, see Theorems 14.3 and 14.5. The former allows to give a positive
answer to the question raised above: is a C2 H -minimal surface a stationary point of the H -
perimeter? In Theorem 14.3 we show that for S ⊂ H

1, the first-variation of the H -perimeter for
a deformation of S along a vector field X ∈ C2

0(S \ ΣS ,H
1) is given by

VH
I (S;X ) =

∫
S

H 〈X ,ν〉
〈νH ,ν〉 dσH , (1.7)

where ν = N/|N | represents the Riemannian Gauss map on S . In particular, S is stationary if
and only if it is H -minimal (see also the less intrinsic first variation formula in Theorem 9.1 for
deformations along the normal N and valid for hypersurfaces in an arbitrary Carnot group).

The central result of Section 14 is Theorem 14.5, which provides a second variation formula
for the H -perimeter of S . The proof of such formula is considerably more complex than that of
(1.7), and obtaining it has required a substantial effort. Despite such effort we notice, however,
that Theorem 14.5 is in practice not as useful as one would hope since it contains several terms
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whose geometric content is not transparent, and which are very difficult to handle. For the appli-
cations of the second variation formula to the fundamental question of stability it is crucial to be
able to extract the geometry from Theorem 14.5. In order to do so one needs to eliminate in the in-
tegrals involved the various products of covariant derivatives of the projections of the testing vec-
tor field X along the moving frame {(νH )⊥,νH ,T }. In this endeavor one has to choose with ex-
treme care the terms to play one against the other, so to be able to exploit the delicate cancelations
deriving from the various Lagrangian quantities involved. Section 15 is devoted to this goal. In
Theorem 15.2 we have succeeded in deriving the following geometric second variation formula:

VH
II (S;X ) =

∫
S

{∣∣∇H,SF
∣∣2 + (2A− ω2)F 2}dσH , (1.8)

where S ⊂ H
1 is an H -minimal surface, X is as in (1.7), and we have set

F = 〈X ,ν〉
〈νH ,ν〉 .

The reader should compare (1.8) with the second variation formula in [8, p. 153]. The coeffi-
cient 2A−ω2 of F 2 in (1.8) is a geometric quantity which involves the projection of N along T ,
and its horizontal covariant derivative along the vector field (νH )⊥. With (1.8) in hands, one can
attack the fundamental question of the stability. A non-characteristic H -minimal surface S is
called stable if VH

II (S;X ) � 0 for any X ∈ C2
0(S,H1). In view of (1.8) we see that a surface S

is stable if and only if the following stability inequality holds on S∫
S

(
ω2 − 2A

)
F 2 dσH �

∫
S

∣∣∇H,SF
∣∣2 dσH . (1.9)

We emphasize that one can think of (1.9) as a Hardy type inequality on S . One should compare
(1.9) with its Riemannian counterpart, see e.g. inequality (1.105) in [22] for normal deformations.

We emphasize that the study of the stability is an important new aspect in the sub-Riemannian
Bernstein problem. To clarify this point we recall the well-known fact that in the classical Bern-
stein problem, stability does not apparently play any role. This is due to the fact that the area
functional for a graph xn+1 = u(x), x ∈ Ω ⊂ R

n,

A(u) =
∫
Ω

√
1 + |∇u|2 dx,

is convex. As a consequence, a critical point of A(u) is also a local minimizer, and therefore
stable. By contrast, the sub-Riemannian area functional, the H -perimeter (1.1), is not convex,
see [28], and the resulting Euler–Lagrange equation is not elliptic, but degenerate hyperbolic
(-elliptic). Using the stability inequality (1.9), it has been recently shown in [26] that, contrarily
to what was believed by several experts, the entire H -minimal graph x = yt in H

1, which has
empty characteristic locus, is in fact unstable. This discovery has underscored the role of the
stability in the sub-Riemannian Bernstein problem and opened the way to the solution of the
latter. Subsequently, in fact, this result has been generalized in [28], where it has been proved the
instability of every graph in H

1 of the type x = yG(t), with y ∈ R, t ∈ I ⊂ R, with G ∈ C2(I ),
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and such that G′ > 0 on some subinterval J ⊂ I . On the other hand, it has also been shown
in [28] that every entire H -minimal graph in H

1, with empty characteristic locus, and which
is not itself a vertical plane ax + by = γ , after possibly a left-translation and a rotation about
the t-axis, contains a graphical strip of the type x = yG(t), with G′ > 0 on some subinterval
J ⊂ R. Combining these two results, the authors have obtained a solution of the following sub-
Riemannian Bernstein problem: The only stable H -minimal entire graphs in H

1, with empty
characteristic locus, are the vertical planes. Some of the ideas in [26] have also been used in
the recent paper [3] to prove a similar Bernstein type theorem for the entire intrinsic graphs
introduced in [45].

In closing we mention some recent papers that are connected to the present one. In [56] Hladky
and Pauls have introduced a notion of mean curvature and derived the relevant minimal surface
equation, but not the first and second variation formulas, for hypersurfaces in a class of sub-
Riemannian spaces which encompasses that of Carnot groups. Similarly to ours, their results
hold for C2 hypersurfaces and away from the characteristic set. Their interesting approach can
be seen as a generalization of the Webster–Tanaka geometric framework for CR manifolds, and
systematically exploits the Lagrangian framework of Bryant, Griffiths and Grossmann [8]. Al-
though the second fundamental form proposed in [56] is different from the one introduced in
this paper, we notice that for Carnot groups their notion of mean curvature coincides with (1.4).
An approach similar to that in [56] has been independently taken in the interesting paper by
Montefalcone [74], who has also obtained some general first and second variation formulas sim-
ilar to ours. Simultaneously, in her PhD dissertation C. Selby [90] has obtained first and second
variation formulas with a completely different approach. Her study is based on a deep analysis
of the asymptotic behavior of the left-invariant Riemannian metric obtained by blowing-up the
non-horizontal directions.

2. Carnot groups

In this section we collect some of the basic geometric facts about Carnot groups. We par-
ticularly emphasize those properties which are useful in this paper. For more extensive sources
we refer the reader to [4,34–36,41,47,53,54,58,75,77,78,86,92,94,96]. A sub-Riemannian space
is a triple (M,HM,d) constituted by a connected Riemannian manifold M , with Riemannian
distance dR, a subbundle of the tangent bundle HM ⊂ T M , and the Carnot–Carathéodory (CC)
distance d generated by HM . Such distance is defined by minimizing only on those absolutely
continuous paths γ whose tangent vector γ ′(t) belongs to Hγ(t)M , see [4,76]. Riemannian mani-
folds are a special example of sub-Riemannian spaces. They correspond to the case HM = T M .
The tangent space of a sub-Riemannian space is itself a sub-Riemannian space (or a quotient
of such spaces), but of a special type. It is a graded Lie group whose Lie algebra is nilpotent.
These groups, which owe their name to the foundational paper of Carathéodory [11] on Carnot
thermodynamics, occupy a central position in the study of hypoelliptic partial differential equa-
tions, harmonic analysis, sub-Riemannian geometry, CR geometric function theory, but also in
the applied sciences such as mathematical finance, neurophysiology of the brain, mechanical
engineering. They are called Carnot groups.

A Carnot group of step r is a connected, simply connected Lie group G whose Lie alge-
bra g admits a stratification g = V1 ⊕ · · · ⊕ Vr which is r-nilpotent, i.e., [V1,Vj ] = Vj+1,

j = 1, . . . , r − 1, [Vj ,Vr ] = {0}, j = 1, . . . , r . We assume henceforth that g is endowed with
a scalar product 〈·,·〉g with respect to which the V ′

j s are mutually orthogonal. A trivial exam-
ple of (an Abelian) Carnot group is G = R

n, whose Lie algebra admits the trivial stratification
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g = V1 = R
n. The simplest non-Abelian example of a Carnot group of step r = 2 is the (2n+ 1)-

dimensional Heisenberg group H
n, which is described in Section 3. Given a Carnot group G, by

the above assumptions on the Lie algebra one immediately sees that any basis of the horizontal
layer V1 generates the whole g. We will respectively denote by

Lg(g
′) = gg′, Rg(g

′) = g′g, (2.1)

the operators of left- and right-translation by an element g ∈ G.
The exponential mapping exp :g → G defines an analytic diffeomorphism onto G. We recall

the important Baker–Campbell–Hausdorff formula, see, e.g., [95, Section 2.15],

exp(ξ) exp(η) = exp

(
ξ + η + 1

2
[ξ, η] + 1

12

{[
ξ, [ξ, η]]− [η, [ξ, η]]}+ · · ·

)
, (2.2)

where the dots indicate commutators of order four and higher. Each element of the layer Vj is
assigned the formal degree j . Accordingly, one defines dilations on g by the rule

�λξ = λξ1 + · · · + λrξr ,

provided that ξ = ξ1 + · · · + ξr ∈ g, with ξj ∈ Vj . Using the exponential mapping exp :g → G,
these anisotropic dilations are then transferred to the group G as follows

δλ(g) = exp ◦�λ ◦ exp−1 g.

Throughout the paper we will indicate by dg the bi-invariant Haar measure on G obtained
by lifting via the exponential map exp the Lebesgue measure on g. We let mj = dimVj , j =
1, . . . , r , and denote by N = m1 + · · · + mr the topological dimension of G. One easily checks
that

(d ◦ δλ)(g) = λQ dg, where Q =
r∑

j=1

jmj .

The number Q, called the homogeneous dimension of G, plays an important role in the analy-
sis of Carnot groups. In the non-Abelian case r > 1, one clearly has Q > N .

We denote by d(g, g′) the CC distance on G associated with the system X. It is well known
that d(g, g′) is equivalent to the gauge pseudo-metric ρ(g,g′) on G, i.e., there exists a constant
C = C(G) > 0 such that

Cρ(g,g′) � d(g, g′) � C−1ρ(g,g′), g, g′ ∈ G, (2.3)

see [11,17,76,83,96]. The pseudo-distance ρ(g,g′) is defined as follows, see [41]. Let | · | denote
the Euclidean distance to the origin on g. For ξ = ξ1 + · · · + ξr ∈ g, ξj ∈ Vj , one lets

|ξ |g =
(

r∑
|ξj |2r!/j

)1/2r!
, |g|G = ∣∣exp−1 g

∣∣
g
, g ∈ G, (2.4)
j=1
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and defines

ρ(g,g′) = ∣∣g−1g′∣∣
G

. (2.5)

Both d and ρ are invariant under left-translations

d
(
Lg(g

′),Lg(g
′′)
)= d(g′, g′′), ρ

(
Lg(g

′),Lg(g
′′)
)= ρ(g′, g′′) (2.6)

and homogeneous of degree one

d
(
δλ(g

′), δλ(g
′′)
)= λd(g′, g′′), ρ

(
δλ(g

′), δλ(g
′′)
)= λρ(g′, g′′). (2.7)

Denoting respectively with

B(g,R) = {g′ ∈ G
∣∣ d(g′, g) < R

}
, Bρ(g,R) = {g′ ∈ G

∣∣ ρ(g′, g) < R
}
, (2.8)

the CC ball and the gauge pseudo-ball centered at g with radius R, one easily recognizes that
there exist ω = ω(G) > 0, and α = α(G) > 0 such that∣∣B(g,R)

∣∣= ωRQ,
∣∣Bρ(g,R)

∣∣= αRQ, g ∈ G, R > 0. (2.9)

Let πj :g → Vj denote the projection onto the j th layer of g. Since the exponential map
exp :g → G is a global analytic diffeomorphism, we can define analytic maps ξj :G → Vj ,
j = 1, . . . , r , by letting ξj = πj ◦exp−1. As a rule, we will use letters g, g′, g′′, g0 for points in G,
whereas we will reserve the letters ξ , ξ ′, ξ ′′, ξ0, η, for elements of the Lie algebra g. The notation
{ej,1, . . . , ej,mj

}, j = 1, . . . , r, will indicate a fixed orthonormal basis of the j th layer Vj . For
g ∈ G, the projection of the exponential coordinates of g onto the layer Vj , j = 1, . . . , r , are
defined as follows

xj,s(g) = 〈ξj (g), ej,s

〉
g
, s = 1, . . . ,mj . (2.10)

The vector ξj (g) ∈ Vj , j = 1, . . . , r , will be routinely identified with the point(
xj,1(g), . . . , xj,mj

(g)
) ∈ R

mj .

Since Carnot groups of step r = 2 often play a special role in analysis and geometry, it will
be convenient to have a simplified notation for objects in the horizontal layer V1, and in the first
vertical layer V2. For simplicity, we set m = m1, k = m2, and let

{e1, . . . , em} = {e1,1, . . . , e1,m1}, {ε1, . . . , εk} = {e2,1, . . . , e2,m1}. (2.11)

We indicate with

xi(g) = 〈ξ1(g), ei

〉
g
, i = 1, . . . ,m, ts(g) = 〈ξ2(g), εs

〉
g
, s = 1, . . . , k, (2.12)

the projections of the exponential coordinates of g onto V1 and V2, respectively. Whenever con-
venient, we will identify g ∈ G with its exponential coordinates

x(g)
def= (

x1(g), . . . , xm(g), t1(g), . . . , tk(g), . . . , xr,1(g), . . . , xr,mr (g)
) ∈ R

N, (2.13)
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and we will ordinarily drop in the latter the dependence on g, i.e., we will write g =
(x1, . . . , xr,mr ).

For later purposes it will be useful to introduce the horizontal group constants of G. By the
grading assumption on the Lie algebra, we have [V1,V1] = V2. Therefore, if ei, ej ∈ {e1, . . . , em},
we let

bs
ij

def= 〈[ei, ej ], εs

〉
g
, so that [ei, ej ] =

k∑
s=1

bs
ij εs, i, j = 1, . . . ,m. (2.14)

Consider the orthonormal basis {e1, . . . , em, ε1, . . . , εk, . . . , er,1, . . . , er,mr } of g. Using (2.1)
we define left-invariant vector fields on G by letting

Xj,s(g) = (Lg)∗(ej,s), j = 1, . . . , r, s = 1, . . . ,mj , (2.15)

where (Lg)∗ indicates the differential of Lg . As in (2.11) we use a special notation for the first
two layers, and let

Xi(g) = (Lg)∗(ei), i = 1, . . . ,m, Ts(g) = (Lg)∗(εs) s = 1, . . . , k, g ∈ G. (2.16)

Using the Baker–Campbell–Hausdorff formula (2.2) we can express (2.16) using the expo-
nential coordinates (2.13), obtaining the following lemma.

Lemma 2.1. For each i = 1, . . . ,m, and g = (x1, . . . , xr,mr ), we have

Xi = ∂

∂xi

+
r∑

j=2

mj∑
s=1

bs
j,i(x1, . . . , xj−1,m(j−1)

)
∂

∂xj,s

= ∂

∂xi

+
r∑

j=2

mj∑
s=1

bs
j,i(ξ1, . . . , ξj−1)

∂

∂xj,s

, (2.17)

where each bs
j,i is a homogeneous polynomial of weighted degree j − 1. In particular, if G has

step r = 2, then for every i = 1, . . . ,m, one has

Xi = ∂

∂xi

+ 1

2

k∑
s=1

〈[ξ1, ei], εs

〉
g

∂

∂ts
= ∂

∂xi

+ 1

2

k∑
s=1

m∑
�=1

bs
�ix�

∂

∂ts
, (2.18)

where bs
�i are the group constants defined by (2.14). We notice that an immediate consequence

of (2.17) is that

divE Xi = 0, i = 1, . . . ,m, (2.19)

where divE Xi indicates the Euclidean divergence of Xi with respect to the exponential coordi-
nates.
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By weighted degree in the statement of Lemma 2.1 we mean that, as previously mentioned,
the layer Vj , j = 1, . . . , r, in the stratification of g is assigned the formal degree j . Correspond-
ingly, each homogeneous monomial ξ

α1
1 ξ

α2
2 · · · ξαr

r , with multi-indices αj = (αj,1, . . . , αj,mj
),

j = 1, . . . , r, is said to have weighted degree k if

r∑
j=1

j

( mj∑
s=1

αj,s

)
= k.

3. Two basic models

In this section we describe two basic models of Carnot groups. The first example is the Heisen-
berg group H

n with step r = 2. Such group plays an ubiquitous role in analysis and geometry,
see e.g. [4,10,42,51,59–62,65–68,75,92]. From the standpoint of geometry H

n constitutes the
central prototype of a pseudoconvex CR manifold, with vanishing Webster–Tanaka curvature. In
fact, via the Caley transform it can be identified with the boundary of the Siegel upper half-space

D+ =
{

(z, zn+1) ∈ C
n+1

∣∣∣∣ Im zn+1 > 2
n∑

j=1

|zj |2
}

,

see [93, Chapter 12]. The second example is the cyclic, or Engel group E, of step r = 3, see
[23,75]. This is an interesting example to keep in mind since it represents the basic prototype
of a group of step r = 3, and thereby constitutes the next level of difficulty with respect to the
Heisenberg group. Some fundamental analytical and geometric properties are true for Carnot
groups of step r = 2, but fail for groups of step r � 3. In this respect, E is the simplest sub-
Riemannian model in which to test whether conjectures which are true in step two continue to be
valid in step three or higher.

3.1. The Heisenberg group H
n

The underlying manifold of this Lie group is simply R2n+1, with the non-commutative group
law

gg′ = (x, y, t)(x′, y′, t ′) =
(

x + x′, y + y′, t + t ′ + 1

2

(〈x, y′〉 − 〈x′, y〉)), (3.1)

where we have let x, x′, y, y′ ∈ R
n, t, t ′ ∈ R. Let (Lg)∗ be the differential of the left-translation

(3.1). A simple computation shows that

(Lg)∗
(

∂

∂xi

)
def= Xi = ∂

∂xi

− yi

2

∂

∂t
, i = 1, . . . , n,

(Lg)∗
(

∂

∂yi

)
def= Xn+i = ∂

∂yi

+ xi

2

∂

∂t
, i = 1, . . . , n,

(Lg)∗
(

∂
)

def= T = ∂
. (3.2)
∂t ∂t
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We note that the only non-trivial commutator is

[Xi,Xn+j ] = δij T , i, j = 1, . . . , n,

therefore the vector fields {X1, . . . ,X2n} generate the Lie algebra hn = R2n+1 = V1 ⊕ V2, where
V1 = R

2n ×{0}t , V2 = {0}(x,y) ×R. We notice that the sub-Laplacian (see (5.19)) associated with
the orthonormal basis { ∂

∂x1
, . . . , ∂

∂x1
, ∂

∂y1
, . . . , ∂

∂yn
} of V1 is

�H =
2n∑

j=1

X2
j = �x,y + 1

4

(|x|2 + |y|2) ∂2

∂t2
− ∂

∂t

n∑
j=1

{
yj

∂

∂xj

− xj

∂

∂yj

}
, (3.3)

which coincides with the real part of the complex Kohn–Spencer Laplacian, see [93]. The non-
isotropic group dilations are

δλ(g) = (λx,λy,λ2t
)
, (3.4)

with homogeneous dimension Q = 2n + 2. A convenient renormalization of the gauge (2.4) is
given by

N(g) = ((|x|2 + |y|2)2 + 16t2)1/4
. (3.5)

The importance of such function is connected with the discovery due to Folland [40] that the
fundamental solution of (3.3) is given by

Γ (g) = Γ (g, e) = CQ

N(g)Q−2
, (3.6)

where CQ < 0 is an explicit constant.
As a useful illustration, we compute the metric tensor gij dξi ⊗dξj associated with the smooth

Riemannian product on H
1 with respect to which {X1,X2, T } is an orthonormal basis. From (3.2)

we obtain

∂

∂x
= X1 + y

2
T ,

∂

∂y
= X2 − x

2
T ,

∂

∂t
= T , (3.7)

and therefore the metric coefficients are given by g11 = 〈 ∂
∂x

, ∂
∂x

〉 = 1 + y2

4 , g12 = 〈 ∂
∂x

, ∂
∂y

〉 =
− xy

4 , etc. One easily finds

(gij ) =
⎛
⎜⎝

1 + y2

4 − xy
4

y
2

− xy
4 1 + x2

4 − x
2

y x

⎞
⎟⎠ . (3.8)
2 − 2 1
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Notice that, since det(gij ) = 1, the volume form is given by the standard (Lebesgue) volume
form dx ∧ dy ∧ dt in R

3. The inverse (gij ) of the matrix (3.8) is given by

(
gij
)=

⎛
⎜⎝

1 0 − y
2

0 1 x
2

− y
2

x
2 1 + x2+y2

4

⎞
⎟⎠ . (3.9)

Recall now the expression of the Riemannian gradient in local coordinates, see for instance
[55, p. 387],

∇u =
N∑

i,j=1

gij ∂u

∂ξi

∂

∂ξj

, (3.10)

where we have denoted by N = dim(G). Keeping in mind (3.2), a simple calculation gives

(
gij
)(ux

uy

ut

)
=
⎛
⎝ X1u

X2u

xuy−yux

2 + (1 + x2+y2

4

)
ut

⎞
⎠=

⎛
⎝ X1u

X2u
x
2 X2u − y

2 X1u + T u

⎞
⎠ .

From this formula, and from (3.7), (3.9), we finally obtain

∇u =
〈(

gij
)(ux

uy

ut

)
,

⎛
⎜⎝

∂
∂x

∂
∂y

∂
∂t

⎞
⎟⎠
〉

R3

= X1uX1 + X2uX2 + T uT , (3.11)

which verifies (5.15). It is worth observing that the Laplace–Beltrami operator is given by

�u = X1X1u + X2X2u + T T u.

3.2. The four-dimensional Engel group

We next describe the four-dimensional cyclic or Engel group. This group is important in many
respects since it represents the next level of difficulty with respect to the Heisenberg group and
provides an ideal framework for testing whether results which are true in step 2 generalize to
step 3 or higher. The reader unfamiliar with the cyclic group can consult [23], or also [75]. The
Engel group E = K3, see [23, Example 1.1.3], is the Lie group whose underlying manifold can
be identified with R

4, and whose Lie algebra is given by the grading,

e = V1 ⊕ V2 ⊕ V3,

where V1 = span{e1, e2}, V2 = span{e3}, and V3 = span{e4}, so that m1 = 2 and m2 = m3 = 1.
We assign the bracket relations

[e1, e2] = e3, [e1, e3] = e4, (3.12)
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all other brackets being assumed trivial. For the corresponding left-invariant vector fields on
E given by Xi(g) = (Lg)∗(ei), i = 1,2, T (g) = (Lg)∗(e3), S(g) = (Lg)∗(e4), we obtain the
corresponding commutator relations

[X1,X2] = T , [X1, T ] = [X1, [X1,X2]
]= S, (3.13)

all other commutators being trivial. We observe that the homogeneous dimension of E is

Q = m1 + 2m2 + 3m3 = 7.

We will denote with (x, y), t and s respectively the variables in V1, V2 and V3, so that any
ξ ∈ e can be written as ξ = xe1 +ye2 + te3 + se4. If g = exp(ξ), we will identify g = (x, y, t, s).
The group law in E is given by the Baker–Campbell–Hausdorff formula (2.2). In exponential
coordinates, if g = exp(ξ), g′ = exp(ξ ′), we have

g ◦ g′ = ξ + ξ ′ + 1

2
[ξ, ξ ′] + 1

12

{[
ξ, [ξ, ξ ′]]− [ξ ′, [ξ, ξ ′]]}.

A computation based on (3.12) gives (see also [23, Example 1.2.5])

g ◦ g′ = (x + x′, y + y′, t + t ′ + P3, s + s′ + P4),

where

P3 = 1

2
(xy′ − yx′),

P4 = 1

2
(xt ′ − tx′) + 1

12

(
x2y′ − xx′(y + y′) + yx

′2).
Using the Baker–Campbell–Hausdorff formula we find the following expressions for the vec-

tor fields X1, . . . ,X4: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X1 = ∂
∂x

− y
2

∂
∂t

− ( t
2 + xy

12

)
∂
∂s

,

X2 = ∂
∂y

+ x
2

∂
∂t

+ x2

12
∂
∂s

,

T = ∂
∂t

+ x
2

∂
∂s

,

S = ∂
∂s

.

(3.14)

We note that the action of X1, X2, T on a function on E which is independent of the variable
s reduces to the action of the corresponding vector fields in H

1.

4. The subbundle of horizontal planes

Consider a Carnot group G, with Lie algebra g = V1 ⊕ · · · ⊕ Vr , with an orthonormal basis
{e1, . . . , em} of the horizontal layer V1, and corresponding system X = {X1, . . . ,Xm} of gen-
erators, where Xi(g) = (Lg)∗(ei), g ∈ G. Henceforth, the fiber HgG of the horizontal bundle
at a point g ∈ G will be denoted by Hg , so that HG = ⋃

g∈G Hg . We note explicitly that
Hg = g exp(V1), where exp :g → G denotes the exponential mapping. We will call Hg the
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horizontal plane through g. For example, when G is the Heisenberg group H
n, then a simple

computation shows that the horizontal plane through a point g0 = (x0, y0, t0) is given by the
hyperplane

Hg =
{
(x, y, t) ∈ H

n
∣∣∣ t = t0 + 1

2

(〈x0, y〉 − 〈y0, x〉)}. (4.1)

More in general, we have the following result which is [24, Proposition 4.3].

Proposition 4.1. Let G be a Carnot group of step 2, then for any given g0 ∈ G the horizontal
plane passing through g0 is the collection of all points g ∈ G whose exponential coordinates
(x, t) = (x(g), t (g)) verify the k linear equations

Ψs(g) = ts(g) − ts(g0) − 1

2

m∑
i,j=1

bs
ij xi(g0)xj (g) = 0, s = 1, . . . , k,

where bs
ij represent the horizontal group constants defined by (2.14).

Another interesting example is provided by the four-dimensional Engel group E described
in the previous section. Identifying E with R

4, with coordinates g = (x, y, t, s), given a point
g0 = (x0, y0, t0, s0) we have that Hg0 = span{X1(g0),X2(g0)}. A simple computation based on
(3.14) shows that Hg0 is described by the two equations

{
Ψ1(x, y, t, s) = t − t0 + xy0−x0y

2 = 0,

Ψ2(x, y, t, s) = s − s0 + x(6t0+x0y0)−x2
0y−6x0t0

12 = 0.
(4.2)

From (2.17) in Lemma 2.1 we see that for a Carnot group G of step r , with N = dim(G),
the horizontal plane Hg0 is described by a system of N − m linear equations for the exponential
variables, see (2.13),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1(g) = t1(g) − t1(g0) − B1(g) = 0,
...

Ψk(g) = tk(g) − tk(g0) − Bk(g) = 0,
...

Ψr,1(g) = xr,1(g) − xr,1(g0) − Br,1(g) = 0,
...

Ψr,mr (g) = xr,mr (g) − xr,mr (g0) − Br,mr (g) = 0,

(4.3)

with Bj (g0) = 0 for j = 1, . . . , k, . . . , Br,j (g0) = 0, j = 1, . . . ,mr .

Definition 4.2. We say that S ⊂ G is a Ck hypersurface if S is a co-dimension one immersed
manifold of class Ck . If, in addition, S is embedded, then we say that it is an embedded hyper-
surface.
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We note explicitly that, by the implicit function theorem, for every g0 ∈ S there exist an open
set O ⊂ G and a function φ ∈ Ck(O) such that: (i) |∇φ(g)| �= 0 for every g ∈ O; (ii) S ∩ O =
{g ∈ O | φ(g) = 0}. When we will need to use this local representation, we will always assume
that S is oriented in such a way that for every g0 ∈ S and φ as in (ii), one has N(g0) = ∇φ(g0),
where N denotes the non-unit Riemannian normal to S . The following notion plays a pervasive
role in sub-Riemannian geometry, as well as in the study of subelliptic equations.

Definition 4.3. Given a C1 hypersurface S ⊂ G, a point g0 ∈ S is called characteristic if one has
Hg0 ⊂ Tg0S . Notice that this is equivalent to saying that

Xj(g0) ∈ Tg0S, j = 1, . . . ,m. (4.4)

The characteristic locus of S , ΣS , is the collection of all characteristic points of S .

Although we will not use in this paper the following two results, we recall them because of
their interest. The first theorem is a special case of a result due to Derridj [32,33].

Theorem 4.4. Let S be a C∞ hypersurface in a sub-Riemannian space M of dimension N ,
then denoting with Hs the s-dimensional Hausdorff measure constructed with the Riemannian
distance one has

HN−1(ΣS) = 0.

For Carnot groups one has the following sharper result first proved in codimension one by
Balogh for the Heisenberg group [2], and subsequently extended to arbitrary Carnot groups and
codimension by Magnani [69,70].

Theorem 4.5. Let G be a Carnot group and denote by Hs the s-dimensional Hausdorff measure
constructed with the Carnot–Carathéodory distance. For any C1 manifold of codimension k one
has

HQ−k(ΣS) = 0.

In particular, the characteristic set of a C1 hypersurface has zero HQ−1-measure.

Since for a C2 hypersurface in a Carnot group G it was proved in [27] that the H -perimeter
measure PH (Ω; ·), introduced in Section 8 below, is mutually absolutely continuous with respect
to the Hausdorff measure HQ−1, we conclude from Theorem 4.5 that for such domains the H -
perimeter measure of the characteristic set is zero, i.e.,

σH (ΣS) = 0. (4.5)

Proposition 4.6. Let G be a Carnot group, and S ⊂ G be a Ck hypersurface. If g0 ∈ S \ ΣS ,
denote by S0 = S ∩ Hg0 . There exists a sufficiently small open neighborhood O of g0 such that
S0 ∩O is a Ck submersed manifold of G of dimension m − 1.
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Proof. According to Definition 4.2, there exists a neighborhood O of g0 such that S ∩ O =
{g ∈O | φ(g) = 0}. Using the exponential coordinates (2.13), we now introduce the Ck function
F : exp−1(O) ⊂ R

N → R
N−m+1 defined by

F
def= (φ,Ψ1, . . . ,Ψk, . . . ,Ψr,1, . . . ,Ψr,mr ),

where the N − m functions Ψj are as in (4.3). Clearly, we have F(g0) = 0 ∈ R
N−m+1. Denoting

by JF the Jacobian matrix of F , we now claim that the hypothesis

g0 ∈ S \ ΣS �⇒ rankJF (g0) = N − m + 1.

Taking the claim for granted, we see that the conclusion of Proposition 4.6 immediately fol-
lows from the implicit function theorem (of course, by possibly restricting the neighborhood O),
since the latter guarantees that, locally around g0, the set S0 is a submersed manifold of class Ck

of dimension N − (N − m + 1) = m − 1.
We now prove the claim in two special situations, namely that of a Carnot group of step r = 2,

and that of the Engel group E, leaving it to the interested reader to provide the (lengthy) details
for a general Carnot group. Suppose then that G has step r = 2. Since g0 /∈ Σ , we know that
∇H φ(g0) �= 0. Therefore, there exists i ∈ {1, . . . ,m} such that Xiφ(g0) �= 0. Without loss of
generality, let us assume that Xmφ(g0) �= 0. According to (2.18) we thus have

φxm(g0) + 1

2

k∑
s=1

m∑
j=1

bs
jmxj (g0)φts (g0) �= 0. (4.6)

The Jacobian matrix of F = (φ,Ψ1, . . . ,Ψk) at g0 is now given by

JF (g0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φx1 . . . φxm φt1 φt2 . . . φtk

− 1
2

∑m
i=1 b1

i1xi(g0) . . . − 1
2

∑m
i=1 b1

imxi(g0) 1 0 . . . 0

− 1
2

∑m
i=1 b2

i1xi(g0) . . . − 1
2

∑m
i=1 b2

imxi(g0) 0 1 . . . 0

. . . . . . . . . . .

. . . . . . . . . . .

− 1
2

∑m
i=1 bk

i1xi(g0) . . . − 1
2

∑m
i=1 bk

imxi(g0) 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where all derivatives of φ are evaluated at g0. We consider the (k + 1) × (k + 1) minor

J̃F (g0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φxm φt1 φt2 . . . φtk

− 1
2

∑m
i=1 b1

imxi(g0) 1 0 . . . 0

− 1
2

∑m
i=1 b2

imxi(g0) 0 1 . . . 0

. . . . . . .

. . . . . . .
1 ∑m k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

− 2 i=1 bimxi(g0) 0 0 . . . 1
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of the matrix JF (g0). A careful examination of the special structure of the matrix J̃F (g0), and
the cofactor expansion of its determinant, allow to conclude that

det J̃F (g0) = φxm + 1

2

m∑
i=1

b1
imxi(g0)φt1 + · · · + 1

2

m∑
i=1

bk
imxi(g0)φtk �= 0,

where in the last equation we have used (4.6). This proves that rankJF (g0) = k+1 = N −m+1,
and therefore the claim follows for groups of step r = 2.

If instead S ⊂ G = E is a hypersurface in the Engel group, with g0 = (x0, y0, t0, s0) ∈ S \ Σ ,
then we can assume for instance that we have at g0

X2φ(g0) = φy(g0) + x0

2
φt (g0) + x2

0

12
φs(g0) �= 0. (4.7)

We consider the function F = (φ,Ψ1,Ψ2) : R4 → R
3, where Ψi , i = 1,2 are as in (4.2). Its

Jacobian matrix is given by

JF (g0) =
⎛
⎜⎝

φx φy φt φs

y0
2 − x0

2 1 0

6t0+x0y0
12 − x2

0
12 0 1

⎞
⎟⎠ .

One readily sees that the 3 × 3 minor

J̃F (g0) =
⎛
⎜⎝

φy φt φs

− x0
2 1 0

− x2
0

12 0 1

⎞
⎟⎠

has determinant given by X2φ(g0). From (4.7) we conclude that rank J̃F (g0) = 3 = N − m + 1,
and again the claim follows. �
5. Horizontal Levi-Civita connection

Let G be a Carnot group of step r . Henceforth in this paper we will assume that G is en-
dowed with a left-invariant Riemannian metric 〈u,v〉 = giju

ivj , where u,v ∈ T G, with respect
to which the left-invariant vector fields defined in (2.15)

{X1, . . . ,Xm,T1, . . . , Tk, . . . ,Xr,1, . . . ,Xr,mr }
constitute an orthonormal frame for T G. No other inner product will be used on T G, thereby
when we write 〈·,·〉 there will be no risk of confusion. We denote with by ∇ the corresponding
Levi-Civita connection on G. Recall that ∇ is torsion free,

∇XY − ∇Y X = [X,Y ], (5.1)

and that it is metric preserving, i.e., ∇g = 0 or, equivalently,

X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉. (5.2)
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Permuting cyclically the roles of X,Y,Z in (5.2), one obtains the basic Koszul identity, see
e.g. [87, (1.13), p. 28],

2〈∇XY,Z〉 = X〈Y,Z〉 + Y 〈X,Z〉 − Z〈X,Y 〉
− 〈Y, [X,Z]〉− 〈X, [Y,Z]〉+ 〈Z, [X,Y ]〉. (5.3)

Using (5.3) it is easy to check that

∇Xi
Xi = 0, i = 1, . . . ,m, . . . , ∇Xj,mj

Xj,mj
= 0, j = 1, . . . , r. (5.4)

In addition to (5.4), we can easily verify from (5.3) and the grading of the Lie algebra, that

〈∇Xi
Xj ,X�〉 = 0, i, j, l = 1, . . . ,m. (5.5)

The remaining covariant derivatives and the Christoffel symbols can be determined from the
group constants. For instance, we have the following proposition.

Proposition 5.1. Let G be a Carnot group of step r , then

∇Xi
Xj = 1

2

k∑
s=1

bs
ij Ts, i, j = 1, . . . ,m. (5.6)

∇TpTs = 0, p, s = 1, . . . , k. (5.7)

∇Xi
Ts = −1

2

m∑
j=1

bs
ijXj + 1

2

m3∑
p=1

〈[Xi,Ts],X3,p

〉
X3,p, i = 1, . . . ,m, s = 1, . . . , k. (5.8)

In particular, when G = H
n one has for i, j = 1, . . . , n,

∇Xi
Xn+j = δij

2
T , ∇Xi

T = ∇T Xi = −1

2
Xn+i , ∇Xn+i

T = ∇T Xn+i = 1

2
Xi.

Proof. Using (5.3), for any vector field

Z =
m∑

�=1

a�X� +
k∑

s=1

bsTs +
r∑

h=3

mh∑
p=1

cpXh,p,

we obtain

〈∇Xi
Xj ,Z〉 =

m∑
�=1

a�〈∇Xi
Xj ,X�〉 +

k∑
s=1

bs〈∇Xi
Xj ,Ts〉

+
r∑ mh∑

cp〈∇Xi
Xj ,Xh,p〉.
h=3 p=1
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Now (5.5) gives 〈∇Xi
Xj ,X�〉 = 0, whereas using (5.3) again, we find

2〈∇Xi
Xj ,Ts〉 = −〈Ts, [Xj ,Xi]

〉= k∑
p=1

b
p
ij δsp = bs

ij .

Similarly, for h ∈ {3, . . . , r} we have

2〈∇Xi
Xj ,Xh,p〉 =

k∑
s=1

bs
ij 〈Xh,p,Ts〉 = 0.

From these equations we obtain

〈∇Xi
Xj ,Z〉 =

〈
1

2

k∑
s=1

bs
ij Ts,Z

〉
.

From the arbitrariness of Z we conclude that (5.11) holds. In a similar way, one obtains (5.12),
and (5.13). We leave the details to the reader. �

Next, we want to introduce a connection on the horizontal bundle. We do this by projecting
onto HG the Levi-Civita connection ∇ .

Definition 5.2. If X is a vector field on G, and Y is a horizontal vector field on G, then we define
the (Levi-Civita) horizontal connection on HG as follows:

∇H
X Y

def=
m∑

i=1

〈∇XY,Xi〉Xi. (5.9)

Let us notice that ∇H satisfies the metric compatibility condition

X〈Y,Z〉 = 〈∇H
X Y,Z

〉+ 〈Y,∇H
X Z
〉
, (5.10)

for every triple of vector fields X,Y,Z on G, such that Y and Z are horizontal. This follows
from the corresponding compatibility condition (5.2) satisfied by the Levi-Civita connection ∇ ,
and from the definition of ∇H . From Proposition 5.1 and Definition 5.2 we obtain the following.

Proposition 5.3. Let G be a Carnot group of step r , then

∇H
Xi

Xj = 0, i, j = 1, . . . ,m, (5.11)

∇H
Tp

Ts = 0, p, s = 1, . . . , k, (5.12)

∇H
Xi

Ts = −1

2

m∑
j=1

bs
ijXj , i = 1, . . . ,m, s = 1, . . . , k. (5.13)



D. Danielli et al. / Advances in Mathematics 215 (2007) 292–378 313
Remark 5.4. We mention that the horizontal Levi-Civita connection ∇H
X Y is intimately con-

nected with the notion of non-holonomic connection introduced by Cartan in his address at the
1928 International Congress of Mathematicians in Bologna [12]. In this respect we refer the
reader to the interesting re-visitation of Cartan’s address by Koiller, Rodrigues and Pitanga,
see [63,64], where the authors generalize some of the ideas in [12] and also introduce a non-
holonomic connection (see their Definition 1.1 in [63]) which, for a Carnot group, gives precisely
our Definition 5.2. A general framework has been recently set forth by Hladky and Pauls in [56]
for what they call vertically rigid spaces. These are sub-Riemannian manifolds which include,
in particular, Carnot groups. When specialized to Carnot groups, the adapted connection in [56]
coincides with the horizontal connection in Definition 5.2.

Hereafter, for a given vector field X we indicate with XH =∑m
i=1〈X,Xi〉Xi the projection

of X on the horizontal bundle HG.

Proposition 5.5. Given horizontal vector fields X and Y , one has

∇H
X Y − ∇H

Y X = [X,Y ]H def=
m∑

i=1

〈[X,Y ],Xi

〉
Xi.

Proof. From Definition 5.2 and the torsion freeness (5.1) of the Levi-Civita connection we obtain

∇H
X Y − ∇H

Y X =
m∑

i=1

〈∇XY − ∇Y X,Xi〉Xi

=
m∑

i=1

〈[X,Y ],Xi

〉
Xi = [X,Y ]H . �

If we define the horizontal torsion as follows:

T H (X,Y ) = ∇H
X Y − ∇H

Y X − [X,Y ]H ,

then Proposition 5.5 asserts that the horizontal connection is torsion free, and this is why we call
it the horizontal Levi-Civita connection. Permuting cyclically the roles of X,Y,Z in (5.10), and
using Proposition 5.5, we obtain the following horizontal Koszul identity for ∇H .

Proposition 5.6. Let X,Y,Z be horizontal vector fields on G, then

2
〈∇H

X Y,Z
〉= X〈Y,Z〉 + Y 〈X,Z〉 − Z〈X,Y 〉

− 〈Y, [X,Z]H 〉− 〈X, [Y,Z]H 〉+ 〈Z, [X,Y ]H 〉. (5.14)

Proposition 5.6 shows in particular that ∇H is completely determined by the Riemannian inner
product in G and by the horizontal bundle HG. Given a function u ∈ C1(G), its Riemannian
gradient with respect to the inner product 〈·,·〉 is given by
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∇u = X1uX1 + · · · + XmuXm + T1uT1 + · · · + TkuTk + · · · + Xr,1uXr,1

+ · · · + Xr,mr uXr,mr . (5.15)

If we let G = det(gij ), then as a consequence of (2.19), and of the fact that G ≡ 1 (see [41],
or [23]), we obtain for the divergence of Xi (see [55, p. 387])

divXi = 1√
G

N∑
k=1

∂

∂ξk

(√
G(Xi)k

)= divE Xi +
N∑

k=1

(Xi)k
∂

∂ξk

(log
√

G) = 0, (5.16)

for every i = 1, . . . ,m. The horizontal gradient of u is obtained by projecting ∇u on the sub-
bundle HG (see Definition 5.2). The resulting horizontal vector field on G is nothing but the
horizontal connection acting on u

∇H u = 〈∇u,X1〉X1 + · · · + 〈∇u,Xm〉Xm = X1uX1 + · · · + XmuXm. (5.17)

If ζ = ζ1X1 + · · · + ζmXm ∈ C1(G,HG), then the horizontal divergence of ζ is given by

divH ζ = X1ζ1 + · · · + Xmζm. (5.18)

The horizontal Laplacian (also known as sub-Laplacian) of a function u ∈ C2(G) is given by

�H u = divH ∇H u =
m∑

i=1

X2
i . (5.19)

Except for the Abelian case when the step r = 1 and �H is just the standard Laplacian � =∑m
i=1 ∂2/∂x2

i , such operator fails to be elliptic at every point of G. We notice that �H u =
trace(∇2

H u), where we have denoted by ∇2
H u the m×m matrix-valued function on G defined by

∇2
H u = u,ij = XiXju + XjXiu

2
, i, j = 1, . . . ,m. (5.20)

The following proposition contains a useful property of Carnot groups.

Proposition 5.7. Let G be a Carnot group, then

Xixj = δij , �H xj = 0, i, j = 1, . . . ,m. (5.21)

As a consequence, we find

∣∣∇H
(|x|2)∣∣2 = 4|x|2. (5.22)

One also has

Xits = 1

2

〈[ξ1, ei], εs

〉= 1

2

m∑
j=1

xjb
s
ji , XjXits = 1

2
bs
ji . (5.23)

In particular, we obtain ∇2
H (ts) = 0, and therefore �H ts = 0, s = 1, . . . , k.
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6. Horizontal Gauss map and tangent space to a hypersurface

In this section we introduce two basic geometric concepts for an hypersurface in a Carnot
group G which are adapted to the horizontal subbundle of G. We consider the Riemannian
manifold M = G with the metric tensor with respect to which X1, . . . ,Xm, . . . ,Xr,mr is an
orthonormal basis, the corresponding Levi-Civita connection ∇ on G, and the horizontal Levi-
Civita connection ∇H introduced in Definition 5.2. Let S ⊂ G be a Ck oriented hypersurface,
with k � 2. We will denote by N the non-unit Riemannian normal to S , and will indicate with
ν = N/|N | the Riemannian Gauss map of S . It will be convenient to introduce the following
notation:

pj = 〈N,Xj 〉, i = j, . . . ,m, W =
√

p2
1 + · · · + p2

m. (6.1)

We now set

pj = pj

W
, so that p2

1 + · · · + p2
m ≡ 1 on S \ ΣS . (6.2)

We also define

ωs = 〈N , Ts〉, ωs = ωs

W
, s = 1, . . . , k,

ωj,s = 〈N,Xj,s〉, ωj,s = ωj,s

W
, j = 1, . . . , r, s = 1, . . . ,mj . (6.3)

If g0 ∈ S is characteristic, then we have pj (g0) = 0, j = 1, . . . ,m, and therefore we have the
alternative characterization of ΣS as the zero set of the continuous function W

ΣS = {g ∈ S
∣∣W(g) = 0

}
, (6.4)

which shows that ΣS is a closed subset of S . The next definition plays a basic role in the sequel.

Definition 6.1. We define the horizontal normal NH :S → HG by the formula

NH =
m∑

j=1

〈N ,Xj 〉Xj =
m∑

j=1

pjXj . (6.5)

The horizontal Gauss map νH is defined by

νH = NH

|NH | =
m∑

j=1

pjXj , on S \ ΣS . (6.6)

We note that NH is the projection of the Riemannian normal N on the horizontal subbundle
HG ⊂ T G. Such projection vanishes only at characteristic points, and this is why the horizontal
Gauss map is not defined on ΣS . A trivial consequence of the definition which, however, will be
important in the sequel is

∣∣νH
∣∣2 = p2

1 + · · · + p2
m ≡ 1, in S \ ΣS , (6.7)
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which is of course a re-formulation of the second equation in (6.2). One also has

〈
νH ,NH

〉= ∣∣NH
∣∣, NH − 〈NH ,νH

〉
νH = 0. (6.8)

We note explicitly that, with these quantities in place, the Riemannian (non-unit) normal to S
is given at every g ∈ S \ ΣS by

N = NH + ω1T1 + · · · + ωkTk + · · · + ωr,mr Xr,mr

= W {p1X1 + · · · + pmXm + ω1T1 + · · · + ωkTk + · · · + ωr,mr Xr,mr }
= W {νH + ω1T1 + · · · + ωkTk + · · · + ωr,mr Xr,mr }. (6.9)

Since 〈νH ,Ts〉 = 〈νH ,Xj,mj
〉 = 0 for s = 1, . . . , k, and j = 3, . . . , r , it is obvious from (6.9)

that

〈
N ,νH

〉= 〈NH ,νH
〉= W, hence cos

(
νH � N

)= W

|N | . (6.10)

Because of (6.10), the function W is also called the angle function.

Remark 6.2. To help the reader’s comprehension, we sometimes give proofs or examples in the
special case when G = H

1, the first Heisenberg group. Furthermore, Sections 13–15 are devoted
to this special setting. It will thus be convenient to simplify the notation introduced above as
follows. For surfaces S ⊂ H

1 we will let

p = p1, q = p2, ω = ω1, W =
√

p2 + q2,

p = p1, q = p2, ω = ω1. (6.11)

Consequently, in this setting the normal N and the horizontal Gauss map νH will always be
respectively written as

N = pX1 + qX2 + ωT = NH + ωT, νH = pX1 + qX2, (6.12)

so that (6.9) becomes

N = W
{
νH + ωT

}
.

The horizontal vector field defined on S \ ΣS by

(
νH
)⊥ = qX1 − pX2, (6.13)

is perpendicular to νH , but it is also orthogonal to the Riemannian normal N to S .

Definition 6.3. At a point g ∈ S \ ΣS the horizontal tangent space is defined as follows:

HTgS def= {
v ∈ Hg

∣∣ 〈v,νH
〉 = 0

}
.

g
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The horizontal tangent bundle of S is defined by

HT S =
⋃

g∈S\ΣS

HTgS.

One can check that HT S has the structure of a vector bundle. It is clear that, since dimHg = m,
then dimHTgS = m − 1, and one has in fact

Hg = HTgS ⊕ span
{
νH (g)

}
. (6.14)

For instance, when G = H
1, then if for a C2 surface S ⊂ H

1 we consider the unit vector field on
S given by (6.13), then it is clear that at every point g ∈ S \ Σ , one has

HTgS = span
{(

νH
)⊥

(g)
}
. (6.15)

If we consider Γ = S ∩Hg , then from Proposition 4.6 we know that Γ is submersed manifold
of dimension one (a curve). Its Riemannian tangent space in g can be identified in a canonical
way with HTg . We also observe that an orthonormal basis for the Riemannian tangent space TgS
of S at g is given by

TgS = span

{(
νH
)⊥

,
ω

|N |ν
H − W

|N |T
}
. (6.16)

Proposition 6.4. Let g ∈ S \ ΣS , then one has

HTgS = TgS ∩ Hg.

Proof. We begin by observing that, since by hypothesis g /∈ ΣS , then Hg �⊂ TgS , and therefore
NH �= 0. Now, from (6.9) and the fact that X1, . . . ,Xm,T1, . . . ,Xr,mr constitute an orthonormal
basis of TgS at every g ∈ G, one sees from (6.9) that N − NH ⊥ Hg . Therefore, if v ∈ HTgS ,
then we have

〈v,N〉 = 〈v,N − NH
〉+ 〈v,NH

〉= 0, (6.17)

which shows v ∈ TgS . We thus have the inclusion HTgS ⊂ TgS ∩ Hg . To establish the opposite
inclusion, let v ∈ TgS ∩ Hg . We thus have that the left-hand side of (6.17) is zero, and since
〈v,N − NH 〉 = 0 because of the fact that v ∈ Hg , we conclude that it must be 〈v,NH 〉 = 0,
hence v ∈ HTgS . �
7. Horizontal connection on a hypersurface

We recall the classical definition of the Levi-Civita connection of a n-dimensional immersed
submanifold N = Nn of an m-dimensional Riemannian manifold M = Mm. Denoting with
i :N ↪→ M the immersion, and having endowed N with the induced Riemannian metric i∗g,
let i∗ :T N → T M be the differential of i. We identify TpN with the subspace (i∗)p(TpN) of
TpM , and denote by TpN⊥ its orthogonal complement. T N⊥ =⋃p∈N TpN⊥ has the structure
of a (m − n)-dimensional vector bundle, traditionally referred to as the normal bundle of N .
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We can thus write T M | N ∼= T N ⊕ T N⊥, and for every u ∈ TpM , we indicate with u� its
TpN component, and with u⊥ its TpN⊥ component. Since p → (∇M

X Y)�(p) satisfies all the
assumptions of a Levi-Civita connection on N , by the uniqueness of the latter we obtain

∇N
X Y = (∇M

X Y
)�

. (7.1)

Before proceeding we need to say a few words concerning (7.1). First of all, since X, Y

are only initially defined on the submanifold N , we need to give a meaning to right-hand side.
Using a partition of unity argument, we can extend X,Y to smooth vector fields X, Y on M , and
therefore interpret the right-hand side as follows

(∇M
X Y
)� = (∇M

X
Y
)�

. (7.2)

This immediately raises the question of whether (7.2) is a good definition, in other words,
whether it is independent of the particular extensions of X,Y that we have picked. Since the
value of ∇M

X Y at p ∈ N depends only on Xp , it is clear that (7.2) is independent of the extension
of X. On the other hand, (∇M

X Y)p depends only on the values of Y along any curve on M

whose initial tangent vector is Xp . By picking a curve which lies entirely on N , we see that (7.2)
is also independent of the extension of Y . This fact, can be also recognized by the following
observations, which also establish the torsion freeness of the connection (∇M

X Y)�. Denoting
with i∗ the differential of the immersion, we have i∗(X) = X, i∗(Y ) = Y , and therefore, see
Theorem 7.9 in [7], i∗[X,Y ] = [X,Y ]. This implies, in particular, that [X,Y ] = [X,Y ]�. From
the torsion freeness of ∇M , we thus conclude that

(∇M

X
Y
)� − (∇M

Y
X
)� = [X,Y ]� = [X,Y ]. (7.3)

We notice that [X,Y ]p only depends on the values of X,Y in a neighborhood of p in N , and
therefore (7.3) shows at once that (7.2) is a good definition, and that (∇M

X Y)� is torsion free. The
remaining properties of a Levi-Civita connection are checked easily.

Inspired by the Riemannian situation we now introduce a notion of horizontal connection on a
hypersurface S ⊂ G by projecting the horizontal Levi-Civita connection ∇H in the ambient Lie
group G onto the horizontal tangent space HT S .

Definition 7.1. Let S ⊂ G be a non-characteristic, Ck hypersurface, k � 2, then we define the
horizontal connection on S as follows. Let ∇H denote the horizontal Levi-Civita connection
introduced in Definition 5.2. For every X,Y ∈ C1(S;HT S) we define

∇H,S
X Y = ∇H

X
Y − 〈∇H

X
Y ,νH

〉
νH ,

where X, Y are any two horizontal vector fields on G such that X = X, Y = Y on S .

Arguing as above one can check that Definition 7.1 is well posed, i.e., it is independent of the
extensions X,Y of the vector fields X,Y . From Proposition 5.5 we immediately obtain.

Proposition 7.2. For every X,Y ∈ C1(S;HT S) one has

∇H,S
X Y − ∇H,S

Y X = [X,Y ]H − 〈[X,Y ]H ,νH
〉
νH .
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It is clear from this proposition that the horizontal connection ∇H,S on S is not necessarily
torsion free. This depends on the fact that it is not true in general that, if X,Y ∈ C1(S;HT S),
then [X,Y ]H ∈ C1(S;HT S). In the special case of the first Heisenberg group this fact is true,
and we have the following result.

Proposition 7.3. Given a Ck non-characteristic surface S ⊂ H
1, k � 2, one has [X,Y ]H ∈ HT S

for every X,Y ∈ C1(S;HT S), and therefore the horizontal connection on S is torsion free.

Proof. According to (6.15), for every g ∈ S we have HTgS = span{e1(g)}, where e1 = (νH )⊥.
Therefore, if we take two vector fields X,Y ∈ C1(S;HT S), then we can write X = ae1, Y =
be1, for appropriate Ck−1 functions a and b. We thus have

[X,Y ] = [ae1, be1] = {ae1(b) − be1(a)
}
e1.

This shows that [X,Y ] ∈ C(S;HT S), and therefore Proposition 7.2 gives

∇H,S
X Y − ∇H,S

Y X = [X,Y ].

This gives the desired conclusion. �
Definition 7.4. Let S be as in Definition 7.1. Consider a function u ∈ C1(S). We define the
tangential horizontal gradient of u as follows

∇H,Su
def= ∇H u − 〈∇H u,νH

〉
νH ,

where u ∈ C1(G) is such that u = u on S .

We note that ∇H,Su =∑m
i=1 ∇H,S

i uXi , where

∇H,S
i u = Xiu − 〈∇H u,νH

〉
νH
i = Xiu − pipjXju.

Observe also that ∇H,Su ∈ HT S . One has in fact from (6.7) and Definition 7.4

〈∇H,Su,νH
〉≡ 0 in S \ Σ, (7.4)

and therefore

∣∣∇H,Su
∣∣2 = ∣∣∇H u

∣∣2 − 〈∇H u,νH
〉2

. (7.5)

8. Perimeter measure and horizontal first fundamental form

In a Carnot group G, given an open set Ω ⊂ G, we let

F(Ω) =
{

ζ =
m∑

ζiXi ∈ C1
0(Ω,HG)

∣∣∣ |ζ |∞ = sup
Ω

(
m∑

ζ 2
i

)1/2

� 1

}
.

i=1 i=1
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For a function u ∈ L1
loc(Ω), the H -variation of u with respect to Ω is defined by

VarH (u;Ω) = sup
ζ∈F(Ω)

∫
G

udivH ζ dg.

We say that u ∈ L1(Ω) has bounded H -variation in Ω if VarH (u;Ω) < ∞. The space BVH (Ω)

of functions with bounded H -variation in Ω , endowed with the norm

‖u‖BVH (Ω) = ‖u‖L1(Ω) + VarH (u;Ω),

is a Banach space.

Definition 8.1. Let E ⊂ G be a measurable set, Ω be an open set. The H -perimeter of E with
respect to Ω is defined by

PH (E;Ω) = VarH (χE;Ω),

where χE denotes the indicator function of E. We say that E is a H -Caccioppoli set if χE ∈
BVH (Ω) for every Ω � G.

The above definitions are taken from [9], see also [48]. Following classical arguments [38,97],
one obtains from the Riesz representation theorem.

Theorem 8.2. Given an open set Ω ⊂ G, let E ⊂ G be a H -Caccioppoli set in Ω . There exist a
Radon measure ‖∂H E‖ in Ω , and a ‖∂H E‖-measurable function νH

E :Ω → HG, such that

∣∣νH
E (g)

∣∣= 1 for
∥∥∂H E

∥∥-a.e. g ∈ Ω,

and for which one has for every ζ ∈ C1
0(Ω;HG)∫

E

divH ζ dg =
∫
Ω

〈
ζ,νH

E

〉
d
∥∥∂H E

∥∥=
∫
Ω

〈
ζ, d
[
∂H E

]〉
.

Let E ⊂ G be a C1 domain, with Riemannian outer unit normal ν. If ζ ∈ C1
0(Ω;HG), we

have

∫
E

divH ζ dg =
∫

∂E∩Ω

m∑
i=1

ζi〈Xi,ν〉dHN−1.

From this observation, and from Theorem 8.2, we conclude the following result.

Proposition 8.3. Let E ⊂ G be a C1 domain. For every open set Ω ⊂ G, and any ζ ∈
C1

0(Ω;HG), one has

∫ 〈
ζ,νH

E

〉
d
∥∥∂H E

∥∥=
∫ 〈

ζ,
NH

|N |
〉

dHN−1,
Ω ∂E∩Ω



D. Danielli et al. / Advances in Mathematics 215 (2007) 292–378 321
where NH is defined in (6.5). Moreover,

d
∥∥∂H E

∥∥= ∣∣NH
∣∣d(HN−1�∂E), (8.1)

and one has

∥∥∂H E
∥∥(Ω) = PH (E;Ω) =

∫
∂E∩Ω

|NH |
|N | dHN−1 =

∫
∂E∩Ω

W

|N | dHN−1, (8.2)

where W is the angle function defined in (6.1).

Definition 8.4. Given an oriented C2 hypersurface S ⊂ G, we will denote by

dσH = |NH |
|N | dHN−1�S = W

|N | dHN−1�S, (8.3)

the H -perimeter measure supported on S (see (8.2) and (6.10)).

For a detailed local study of such measure the reader should see [24,25,69,70]. An inter-
esting interpretation of the H -perimeter measure is that the latter is obtained by blowing-up
the Riemannian regularizations of the sub-Riemannian metric of the group G. In a different
context, this idea was first exploited systematically by Korányi [65] in his computations of the
sub-Riemannian geodesics in H

n. For simplicity, and to illustrate the main idea, we will state the
relevant result in the case when G = H

n.

Theorem 8.5. Consider in the Heisenberg group H
n the left-invariant Riemannian metric tensor

{gε
ij }i,j=1,...,2n+1 with respect to which {X1, . . . ,X2n,

√
εT } constitutes an orthonormal frame

of T H
n. Let S ⊂ H

n be a C2 hypersurface, with ΣS = ∅, and denote by ISε (·,·) the first fun-
damental form in the Riemannian metric on S induced by {gε

ij }i,j=1,...,2n+1. Denote by σ ε the
corresponding surface area on S , then for any bounded open chart U ⊂ S one has

σH (U) = lim
ε→0

σ ε(U)√
det(gε

ij )
.

Proof. For simplicity, we present the proof in the case n = 1. Let Tε = √
εT , and consider in H

1

the one-parameter family of left-invariant Riemannian metrics {(gε
ij )i,j=1,2,3}ε>0 with respect to

which {X1,X2, Tε} constitute an orthonormal basis of T H
1. Similarly to (3.8), we find

(
gε

ij

)=
⎛
⎜⎝

1 + y2

4ε
− xy

4ε
y
2ε

− xy
4ε

1 + x2

4ε
− x

2ε

y
2ε

− x
2ε

1
ε

⎞
⎟⎠ . (8.4)

One easily verifies that

Gε = det
(
gε

ij

)= ε−1,
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and that letting ((gε)ij ) = (gε
ij )

−1, then

((
gε
)ij )=

⎛
⎜⎝

1 0 − y
2

0 1 x
2

− y
2

x
2 ε + x2+y2

4

⎞
⎟⎠ . (8.5)

Let Ω ⊂ R
2 be a bounded open set such that U is represented by θ :Ω → U , with θ ∈ C2(Ω).

We have θ(u, v) = x(u, v)X1 + y(u, v)X2 + t (u, v)T , see (14.15). We now use some of the
computations from Section 14. We rewrite (14.17) as follows

⎧⎨
⎩

θu = xuX1 + yuX2 + 1√
ε

(
tu + yxu−xyu

2

)
Tε,

θv = xvX1 + yvX2 + 1√
ε

(
tv + yxv−xyv

2

)
Tε.

(8.6)

Denoting by ∧ε the wedge product with respect to the orthonormal frame {X1,X2, Tε}, simi-
larly to (14.19) we obtain for the non-unit Riemannian normal to S with respect to Iε(·,·)

Nε = θu ∧ε θv = 1√
ε

(
yutv − yvtu − y

2
(xuyv − xvyu)

)
X1

+ 1√
ε

(
xvtu − xutv + x

2
(xuyv − xvyu)

)
X2 + (xuyv − xvyu)Tε

= 1√
ε
pX1 + 1√

ε
qX2 + ωTε, (8.7)

where in the last equality we have used (14.20). From (8.7) we conclude that

σε(U)√
gε

= √
ε

∫
U

dσε = √
ε

∫
Ω

√
Iε

(
Nε,N ε

)
du ∧ dv =

∫
Ω

√
p2 + q2 + εω2 du ∧ dv. (8.8)

Letting ε → 0 in (8.8), we conclude

lim
ε→0

σ ε(U)√
gε

=
∫
Ω

W du ∧ dv =
∫
U

W

|N | dσ = σH (U),

where in the last equality we have used (8.3). This completes the proof. �
We close this section by collecting two basic properties of the H -perimeter. The former is a

trivial consequence of the left-invariance on the vector fields X1, . . . ,Xm, and of the definition
of H -perimeter.

Proposition 8.6. For any H -Caccioppoli set E in a Carnot group G, and any open set Ω ⊂ G,
one has

PH

(
Lg0(E);Lg0(Ω)

)= PH (E;Ω), g0 ∈ G, (8.9)
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where Lg0g = g0g is the left-translation on the group. In particular,

PH

(
Lg0(E);G)= PH (E;G), g0 ∈ G. (8.10)

Proposition 8.7. In a Carnot group G one has for every H -Caccioppoli set E ⊂ G, any open set
Ω ⊂ G, and every λ > 0

PH (δλE; δλΩ) = λQ−1PH (E;Ω). (8.11)

In particular,

PH (δλE;G) = λQ−1PH (E;Ω). (8.12)

Proof. We observe that if ζ ∈ C1
0(G,HG), then ζ ◦ δ1/λ ∈ C1

0(δλΩ;HG). Furthermore, ζ ∈
F(Ω) if and only if ζ ◦ δ1/λ ∈F(δΩ). The divergence theorem, and a rescaling now give

∫
E

divH ζ dg =
∫
E

m∑
j=1

Xjζj dg = λ−Q

∫
δλE

m∑
j=1

Xjζj (δ1/λg) dg. (8.13)

Since

Xj(ζj ◦ δ1/λ) = λ−1(Xj ζj ) ◦ δ1/λ,

we conclude from (8.13)

∫
E

divH ζ dg = λ−(Q−1)

∫
δλE

m∑
j=1

Xj(ζj ◦ δ1/λ) dg.

Taking the supremum on all ζ ∈ F(Ω) in the latter equation, we reach the desired conclu-
sion. �

Combining Propositions 8.6 and 8.7 we obtain the following result.

Corollary 8.8. Let S ⊂ G be a C2 hypersurface with finite H -perimeter, then for every g0 ∈ G,
and every λ > 0, one has

σH

(
Lg0(S)

)= σH (S),

σH (δλS) = λQ−1σH (S).

9. Horizontal second fundamental form and mean curvature

We open this section by computing the first variation of the H -perimeter for deformations of
a hypersurface S along the Riemannian normal N to S . This will provide a first motivation for
the introduction of the notion of H -mean curvature.
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Theorem 9.1. Let U ⊂ G be a bounded open set and consider φ ∈ C2(U) with |∇φ| � α > 0
in U , and for small λ ∈ [−λ0, λ0] consider the one-parameter family of Sλ = ∂Uλ, where we
have let Uλ = {g ∈ U | φ(g) < λ}. Assume that each of the Sλ be a C2 non-characteristic hyper-
surface. Let S = S0 and define a function H :S → R by letting

H def=
m∑

i=1

Xipi, (9.1)

where the pi are the components of the horizontal Gauss map introduced in (6.2). We then have

d

dλ
PH

(
Sλ
)|λ=0

def= d

dλ
PH (Uλ;G)|λ=0 =

∫
S

H
|N | dHN−1.

In particular, S is a critical point of the H -perimeter with respect to the deformations S → Sλ

if and only of H ≡ 0.

Proof. Using Federer’s coarea formula [39] we can write

∫
Uλ

∣∣∇H φ
∣∣dg =

λ∫
−∞

∫
∂Uτ

W

|N | dHN−1 dτ =
λ∫

−∞
PH (Uτ ;G) dτ, (9.2)

where the second equality is a consequence of (8.2). The identity (9.2) gives

PH (Uλ;G) = d

dλ

∫
Uλ

∣∣∇H φ
∣∣dg. (9.3)

Using the summation convention over repeated indices, and integration by parts, we now
compute:

∫
Uλ

∣∣∇H φ
∣∣dg =

∫
Uλ

XiφνH
i dg

=
∫

∂Uλ

φ〈Xi,ν〉νH
i dHN−1 −

∫
Uλ

φXiν
H
i dg

=
∫

∂Uλ

φ
∣∣NH

∣∣dHN−1 −
∫
Uλ

φXiν
H
i dg

= λPH (Uλ;G) −
∫

φXiν
H
i dg, (9.4)
Uλ
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where we have used (8.2). From (9.3), (9.4), and the coarea formula again, we find

PH (Uλ;G) = d

dλ

{
λPH (Uλ;G)

}− λ

∫
∂Uλ

Xipi

|N | dHN−1. (9.5)

Equation (9.5) easily implies the desired conclusion. �
Remark 9.2. As we will see in this section, the critical points of the H -perimeter are precisely
the so-called H -minimal hypersurfaces. We will return to this question in Section 14, where we
will develop more precise intrinsic first and second variation formulas of the H -perimeter in the
setting of the Heisenberg group.

We are now ready to introduce the central notions of sub-Riemannian, or horizontal sec-
ond fundamental form, and of H -mean curvature. According to Theorem 9.1, hypersurfaces for
which the function H in (9.1) vanishes identically on S are critical points of the H -perimeter
functional with respect to deformations of the surface in the direction of the Riemannian normal
N to S . This suggests a notion of horizontal mean curvature of S based on Eq. (9.1). Such no-
tion was proposed by one of us back in 1997, see [46], and it produces precisely the function
in (9.1). We will in fact introduce a more intrinsic notion which is based on that of horizon-
tal second fundamental form, and then recognize that such definition coincides with (9.1). This
closely parallels the classical development of the subject. We recall the classical definition of
the mean curvature H of a n-dimensional immersed submanifold N = Nn of an m-dimensional
Riemannian manifold M = Mm. Denoting with i :N ↪→ M the immersion, we recall that the
Levi-Civita connection of N is given by Eq. (7.1). The second fundamental form of N is defined
by

IIN(X,Y ) = (∇M
X Y
)⊥

,

where ∇M is the Levi-Civita connection of M . Since for vector fields on N one has

IIN(X,Y ) − IIN(Y,X) = (∇M
X Y − ∇M

Y X
)⊥ = [X,Y ]⊥ = 0,

IIN defines a symmetric tensor field on N of type (0,2), which takes values in T N⊥. The mean
curvature of N at a point p ∈ N is defined by

H = −1

n
trace(IIN) = −1

n

n∑
i=1

IIN(ei , ei ),

where {e1, . . . , en} is an orthonormal basis of TpN .
We now consider the Riemannian manifold M = G with the metric tensor with respect

to which X1, . . . ,Xm, . . . ,Xr,mr is an orthonormal basis, and the corresponding Levi-Civita
connection ∇ on G. Let ∇H denote the horizontal Levi-Civita connection introduced in Defi-
nition 5.2. Let S ⊂ G be a C2 hypersurface. Inspired by the Riemannian situation we introduce
a notion of horizontal second fundamental on S as follows.
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Definition 9.3. Let S ⊂ G be a C2 hypersurface, with ΣS = ∅, then we define a tensor field of
type (0,2) on HT S , as follows: for every X,Y ∈ C1(S;HT S)

IIH,S(X,Y ) = 〈∇H
X Y,νH

〉
νH . (9.6)

We call IIH,S(·,·) the horizontal second fundamental form of S . We also define AH,S :HT S →
HT S by letting for every g ∈ S and u,v ∈ HTg

〈
AH,Su,v

〉= −〈IIH,S(u,v),νH
〉= −〈∇H

X Y,νH
〉
, (9.7)

where X,Y ∈ C1(S,HT S) are such that Xg = u, Yg = v. We call the endomorphism
AH,S :HTgS → HTgS the horizontal shape operator. If e1, . . . , em−1 denotes a local ortho-
normal frame for HT S , then the matrix of the horizontal shape operator with respect to the basis
e1, . . . , em−1 is given by the (m − 1) × (m − 1) matrix [−〈∇H

ei
ej ,ν

H 〉]i,j=1,...,m−1.

Using the horizontal Koszul identity (5.14), one easily verifies that

〈∇H
ei

ej ,ν
H
〉= −〈∇H

ei
νH , ej

〉
.

Using Proposition 5.5 in Definition 9.3 we immediately recognize that

IIH,S(X,Y ) − IIH,S(Y,X) = 〈[X,Y ]H ,νH
〉
νH , (9.8)

and therefore, unlike its Riemannian counterpart, the horizontal second fundamental form of
S is not necessarily symmetric. This depends on the fact, already observed, that if X,Y ∈
C1(S;HT S), then it is not necessarily true that [X,Y ]H ∈ C(S;HT S). The next proposition
gives a necessary and sufficient condition for the symmetry of IIH,S .

Proposition 9.4. The horizontal second fundamental form IIH,S(·,·) is a (0,2) symmetric tensor
field on HT S if and only if for any local orthonormal basis e1, . . . , em−1 of HT S , one has

[ei , ej ]H ∈ HT S, i, j = 1, . . . ,m − 1.

Proof. Let X =∑m−1
i=1 aiei , Y =∑m−1

j=1 bjej , then

[X,Y ] =
m−1∑
j=1

{
m−1∑
i=1

(
aiei (bj ) − biei (aj )

)}
ej +

m−1∑
i,j=1

aibj [ei , ej ].

This identity gives

〈[X,Y ]H ,νH
〉= m−1∑

i,j=1

[
aiei (bj ) − biei (aj )

]〈
ej ,ν

H
〉+ m−1∑

i,j=1

aibj

〈[ei , ej ]H ,νH
〉

=
m−1∑

aibj

〈[ei , ej ]H ,νH
〉= 0,
i,j=1
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provided that [ei , ej ]H ∈ HT S . Therefore, under the assumption [ei , ej ]H ∈ HT S , we finally
obtain from Definition 9.3

IIH,S(X,Y ) − IIH,S(Y,X) = 〈∇H
X Y − ∇H

Y X,νH
〉
νH = 〈[X,Y ]H ,νH

〉
νH = 0,

which proves the symmetry of IIH,S . Vice-versa, suppose that IIH,S be symmetric, then applying
the latter identity with X = ei , Y = ej , we reach the conclusion that 〈[ei , ej ]H ,νH 〉 = 0. �
Corollary 9.5. The horizontal second fundamental form of a C2 non-characteristic surface
S ⊂ H

1 is symmetric.

Proof. In this situation the assumption of Proposition 9.4 is trivially satisfied since a basis of
HT S is given by the single vector field e1 = (νH )⊥, and therefore [e1, e1]H = 0 ∈ HT S , see
also Proposition 7.3. �

Another situation in which the assumption of Proposition 9.4 is fulfilled is that when S is a
cylindrical hypersurface over the first layer of the Lie algebra.

Proposition 9.6. Suppose that the hypersurface S is a vertical cylinder, i.e., it can be represented
in the form

S = {g ∈ G
∣∣ h(x1(g), . . . , xm(g)

)= 0
}
, (9.9)

where h ∈ C2(Rm), and there exist an open set ω ⊂ R
m and α > 0 such that |∇h| � α in ω. Under

these assumptions, we have ΣS = ∅, and the horizontal second fundamental form is symmetric.

Proof. The function φ(g) = h(x1(g), . . . , xm(g)) is a defining function of S . Using the global
exponential coordinates, we obtain from Lemma 2.1

Xiφ(g) = ∂h

∂xi

,

hence ∇H φ = ∇xh, which proves in particular that ΣS = ∅, and that νH = ∇h

|∇h| = ν. We next

observe that for every g0 ∈ G, the left-translated surface S̃ = Lg0(S) is again a vertical cylin-
der, with defining function h̃(x) = h(x(g0) + x(g)) = 0. As a consequence of this observation,
if g0 ∈ S , then by left-translation we can assume without restriction that g0 = e. We thus imme-
diately see that the horizontal plane He = exp(V1) is given by t1 = · · · = tk = · · · = xr,mr = 0.
Furthermore, by an orthogonal transformation in the horizontal layer of the Lie algebra, we can
assume that the tangent space of S in e be given by the hyperplane xm = 0. Since thanks to Propo-
sition 6.4 the horizontal tangent space at e is given by He ∩ TeS , from the previous considera-
tions we see that HTeS = span{e1, . . . , em−1}, where ei = (∂/∂xi)e . Since [∂/∂xi, ∂/∂xj ] = 0,
i, j = 1, . . . ,m − 1, we conclude that [ei , ej ]H = 0. In view of Proposition 9.4 we conclude that
IIH,S is symmetric, thus completing the proof. �

From the proof of Proposition 9.6 one easily obtains the following corollary.
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Corollary 9.7. Let S be a vertical cylinder as in (9.9), then the H -mean curvature at g ∈ S is
given by the formula

H(g) = (m − 1)H
(
x(g)

)
, (9.10)

where H(x(g)) represents the Riemannian mean curvature of the projection πV1(S) of S onto
the horizontal layer V1. In particular, S is H -minimal if and only if πV1(S) is a classical minimal
surface in V1 � R

m.

Definition 9.8. We define the horizontal principal curvatures as the real eigenvalues κ1, . . . , κm−1
of the symmetrized operator

AH,S
sym = 1

2

{
AH,S + (AH,S)t}.

The H -mean curvature of S at a non-characteristic point g0 ∈ S is defined as

H = −traceAH,S
sym =

m−1∑
i=1

κi =
m−1∑
i=1

〈∇H
ei

ei ,ν
H
〉
.

If g0 is characteristic, then we let

H(g0) = lim
g→g0, g∈S\ΣS

H(g),

provided that such limit exists, finite or infinite. We do not define the H -mean curvature at
those points g0 ∈ ΣS at which the limit does not exist. Finally, we call �H = HνH the H -mean
curvature vector.

Proposition 9.9. The H -mean curvature in Definition 9.8 coincides with the function defined
in (9.1). In fact, the following intrinsic identity holds:

H =
m∑

i=1

∇H,S
i

〈
νH ,Xi

〉= m∑
i=1

∇H,S
i pi . (9.11)

Proof. In what follows to simplify the exposition we continue to indicate with p1, . . . , pm an
m-tuple of C1 extensions to the whole of G of the coefficients of the horizontal Gauss map
with respect to the basis X1, . . . ,Xm. We begin by observing that using the horizontal Koszul
identity (5.14), one easily recognizes that

〈∇H
ei

ej ,ν
H
〉= −〈ei ,

[
ei ,ν

H
]H 〉

.

From Definition 9.8 we thus obtain

H = −
m−1∑〈∇H

ei
ei ,ν

H
〉= m−1∑〈

ei ,
[
ei ,ν

H
]H 〉

. (9.12)

i=1 i=1
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Recalling (6.6), we find

[
ei ,ν

H
]= m∑

j=1

ei (pj )Xj +
m∑

j=1

[ei ,Xj ].

To proceed in the calculations, we write

ei =
m∑

�=1

a�
i X�, i = 1, . . . ,m − 1,

with {a�
i } satisfying the orthogonality conditions

m∑
�=1

a�
i p� = 0,

m∑
�=1

a�
i a

�
j = δij , i, j = 1, . . . ,m − 1. (9.13)

We thus obtain

[
ei ,ν

H
]= m∑

j=1

ei (pj )Xj −
m∑

�=1

m∑
j=1

Xj(a
�
i )X� +

k∑
s=1

(
m∑

�=1

m∑
j=1

a�
i b

s
�j

)
Ts.

The latter identity gives

[
ei ,ν

H
]H =

m∑
j=1

ei (pj )Xj −
m∑

�=1

m∑
j=1

Xj

(
a�
i

)
X�,

and therefore,

m−1∑
i=1

〈[
ei ,ν

H
]H

, ei

〉= m∑
j=1

m−1∑
i=1

ei (pj )a
j
i −

m∑
�,j=1

m−1∑
i=1

a�
i Xj

(
a�
i

)

=
m∑

j=1

m−1∑
i=1

ei (pj )a
j
i

=
m∑

�,j=1

X�(pj )

m−1∑
i=1

a�
i a

j
i , (9.14)

where in the second to the last equality we have used (9.13). We now observe that, since
{e1, . . . , em−1,ν

H } is an orthonormal basis of HgT S , we have

m−1∑
i=1

a�
i a

j
i =

m−1∑
i=1

〈X�, ei〉〈Xj , ej 〉

= 〈X�,Xj 〉 − 〈X�,ν
H
〉〈
Xj ,ν

H
〉= δ�j − p�pj .
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Substituting this identity in (9.14), and recalling (9.12), we finally have

H =
m−1∑
i=1

〈[
ei ,ν

H
]H

, ei

〉= m∑
j=1

Xj(pj ) −
m∑

�,j=1

pjX�(pj ) =
m∑

j=1

Xj(pj ).

This concludes the proof. �
It is clear from Definition 9.8 that H ∈ C(S \ Σ).

Definition 9.10. An oriented Ck hypersurface S ⊂ G, k � 2, is said to have constant H -mean
curvature if H ≡ const on S . We say that S is H -minimal if its H -mean curvature H vanishes
everywhere as a continuous function on S .

Remark 9.11. Consider the product group Ĝ = G × R with the canonical group law (g, s) ◦
(g′, s′) = (gg′, s + s′), induced by the one on G. The stratification of the Lie algebra for Ĝ is
then given by V̂1 ⊕· · ·⊕ V̂r where V̂1 = V1 ×R, V̂j = Vj ×{0} for j = 2,3, . . . , r . If {e1, . . . , em}
is a basis for V1, we let êj = (ej ,0) for j = 1, . . . ,m, êm+1 = (0, . . . ,0,1). A basis for V̂1 is then
given by {ê1, . . . , êm+1}. This identifies a subbundle H Ĝ. We can naturally identify G with the
hypersurface S = G × {0} ⊂ Ĝ with global defining function φ(g, s) = s. Now observe that
∇H,S

i φ = Xiφ, i = 1, . . . ,m and ∇H,S
m+1φ = 1 and therefore, νH = êm+1. As a consequence, we

have ∇H,S
i νH

i = 0 for i = 1, . . . ,m+1. In view of Proposition 9.9 we conclude that the H -mean

curvature of G in Ĝ is zero.

To state the next proposition we consider for a function u :G → R the symmetrized horizontal
Hessian of u at g ∈ G. This is the m × m matrix with entries

u,ij
def= 1

2
{XiXju + XjXiu}, i, j = 1, . . . ,m. (9.15)

Setting ∇2
H u = [u,ij ], the mapping g → ∇2

H u(g) defines a 2-covariant tensor on the subbun-
dle HG. We recall that the horizontal Laplacian associated with the basis {e1, . . . , em} of V1 is
given by �H u = tr∇2

H u. We also consider the following nonlinear operator:

�H,∞u
def=

m∑
i,j=1

u,ijXiuXju = 1

2

〈∇H
(∣∣∇H u

∣∣2),∇H u
〉
, (9.16)

which, by analogy with its by now classical Euclidean ancestor, we call the horizontal ∞-
Laplacian. The reason for introducing the operator �H,∞ is in the following result which is
often useful in computing the H -mean curvature. We consider a C2 hypersurface S ⊂ G, and
for a given g0 ∈ S \ ΣS , suppose that there exist a neighborhood U of g0, and φ ∈ C2(U), such
that S ∩ U = S ∩ ∂{g ∈ U | φ(g) < 0}. We observe that the hypothesis that g0 /∈ ΣS implies
that ∇H φ(g0) �= 0, and therefore, by possibly restricting U we can assume that ∇H φ(g) �= 0 for
every g ∈ S ∩ U . We thus have

NH (g) = ∇H φ(g), for every g ∈ S ∩ U, (9.17)
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and therefore

νH = ∇H φ

|∇H φ| for every g ∈ S ∩ U . (9.18)

Proposition 9.12. At every point of S ∩ U one has

|∇H φ|3H = {|∇H φ|2�H φ − �H,∞φ
}
.

Proof. We use the summation convention over repeated indices. Invoking Proposition 9.9 and
(9.18), we obtain at every point in S \ Σ

H = ∇H,S
i pi = Xi(νH,i) = Xi

(
Xiφ

|∇H φ|
)

= �H φ

|∇H φ| − �H,∞φ

|∇H φ|3 . �
It is interesting to consider a nonlinear operator which interpolates in an appropriate sense

between the H -mean curvature operator in Definition 9.8, and the operator �H,∞. Consider the
one-parameter family of quasilinear operators defined by

�H,pu = divH

(∣∣∇H u
∣∣p−2∇H u

)= 0, 1 < p < ∞. (9.19)

Supposing that |∇H u| �= 0, we formally rewrite in the more suggestive fashion

�H,pu = (p − 2)
∣∣∇H u

∣∣p−4
{

1

p − 2

∣∣∇H u
∣∣2�H u + �H,∞u

}
. (9.20)

If up is a solution to �H,pup = 0, then Eq. (9.20) gives

1

p − 2

∣∣∇H up

∣∣2�H up + �H,∞up = 0.

If we assume that up → u∞ as p → ∞, and that |∇H up|2�H up is bounded independently of
p large, then by letting p → ∞ we formally find that u∞ must be a solution to �H,∞u∞ = 0.
On the other hand, if we know instead that up → u1 as p → 1, then we discover from (9.20) and
Proposition 9.12 that

�H,pup −→
p→1

−H(u1),

where H(u1) is the H -mean curvature of the level sets of u1! This suggests that one should study
the behavior as p → 1 of the one-parameter family of quasilinear operators �H,p .

9.1. Comparison with S. Pauls’ notion of horizontal mean curvature

In the first Heisenberg group H
1 another notion of horizontal mean curvature was introduced

by S. Pauls in [79]. Such notion is based on the procedure of Riemannian ε-regularization defined
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in the proof of Theorem 8.5. Using (8.5) one sees that, given a function φ ∈ C1(Hn), its gradient
with respect to the metric (gε

ij ) is given by

∇εφ = X1φX1 + X2φX2 + TεφTε. (9.21)

Let us note in passing that (9.21) gives

|∇εφ|2 = |∇H φ|2 + ε(T φ)2, and �εφ = �H φ + εT 2φ, (9.22)

where we have denoted by �ε the Laplace–Beltrami operator with respect to the metric (gε
ij ).

In [79] the author defined the horizontal mean curvature of S at a point g0 ∈ S \ΣS as follows:

HP (g0)
def= lim

ε→0
Hε
R(g0), (9.23)

where Hε
R indicates the mean curvature of S in the Riemannian metric (8.4). We now recognize

that such notion coincides with the one introduced in Definition 9.8.

Proposition 9.13. The horizontal mean curvature defined by (9.23) coincides with the one in
Definition 9.8.

Proof. Let S ⊂ H
1 be a C2 surface. The Riemannian Gauss map of S with respect to the metric

(8.4) is given by νε = Nε

|Nε |ε , where we have denoted by |Nε |ε the length of N ε in such metric.

Let us notice that |Nε |ε = 1√
ε

√
W 2 + εω2. Recalling (8.7) we see that

νε = αε{pX1 + qX2 + √
ε ωTε}, (9.24)

where we have let αε = W/
√

W 2 + εω2. From (9.24) and (13.2) below, we recognize that the
expression of the Gauss map in the Cartesian coordinates (x, y, t) is given by

νε =
(

αεp,αεq, εαεω + αε

2
(xq − yp)

)
.

Using Proposition 9.9, (5.16), and the fact that det(gε
ij ) = ε−1, we then see that at any g0 ∈ S

Hε
R(g0) = divε νε = ∂x

(
αεp

)+ ∂y

(
αεq

)+ ∂t

(
εαεω + αε

2
(xq − yp)

)

= X1
(
αεp

)+ X2
(
αεq

)+ εT
(
αεω

)
= αεH+ pX1

(
αε
)+ qX2

(
αε
)+ ε

(
αεT ω + ωT

(
αε
))

,

where we have used the fact that H = X1p + X2q , see Definition 9.8 and Proposition 9.9. We
now claim that at any g0 ∈ S \ Σ we have αε → 1 as ε → 0, and that furthermore the following
cancelation relations hold:

X1
(
αε
)→ 0, X1

(
αε
)→ 0, T

(
αε
)→ 0, as ε → 0. (9.25)
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We only prove the first relation of (9.25), leaving the analogous details of the remaining two
to the reader. We have

X1α
ε = (W 2 + εω2)X1W − W(WX1W + εωX1ω)

(W 2 + εω2)3/2

= εω
ωX1W − WX1ω

(W 2 + εω2)3/2
→ 0.

From (9.25) we conclude that HP (g0) = limε→0 Hε
R(g0) = H(g0), at every g0 ∈ S \ Σ . �

9.2. Comparison with the notion of pseudo-hermitian mean curvature of Cheng, Hwang,
Malchiodi and Yang

In [15] the authors have introduced the following notion of pseudo-Hermitian curvature for a
surface S ⊂ M , where (M,J,Θ) is a three-dimensional oriented CR manifold, with CR struc-
ture J , and global contact form Θ . At every point g ∈ S \ΣS , they consider the one-dimensional
space HTgS . They fix a unit vector field e1 ∈ HT S with respect to the metric G = 1

2dΘ(·, J ·)
associated with the Levi form, and then define e2 = J (e1). They call e2 the Legendrian normal
or Gauss map. They denote by ∇p.h. the pseudo-Hermitian connection associated with (J,Θ).
There exists a function H p.h. such that

∇p.h.
e1 e1 = H p.h.e2. (9.26)

Such function Hp.h. is called the pseudo-Hermitian mean curvature of S , see (2.1) in [15].

Proposition 9.14. Let M be the Heisenberg group H
1, then the function H p.h. coincides (up to a

choice of the orientation) with the horizontal H -mean curvature in Definition 9.8.

Proof. One can check that in the Heisenberg group the pseudo-Hermitian connection ∇p.h. is
nothing but the horizontal Levi-Civita connection ∇H introduced in Section 5. Since a basis
for HT S is given by e1 = (νH )⊥, see Corollary 9.5, and we clearly have e2 = νH , from the
horizontal Koszul identity (5.14) we obtain for every vector field X = ae1 + be2 + cT

2
〈∇H

e1
e1,X

〉= 2e1〈e1,X〉 − X〈e1, e1〉 − 2
〈
e1, [e1,X]H 〉+ 〈X, [e1, e1]H

〉
= 2e1(a) − 2

〈
e1, [e1,X]H 〉. (9.27)

We now have

[e1,X] = e1(a)e1 + e1(b)e2 + b[e1, e2] + e1(c)T + c[e1, T ].
The commutators in the right-hand side of the latter equation have been computed in Sec-

tion 13 below, where the vector fields e1, and e2 are respectively denoted by Z and Y . From
Lemmas 13.8 and 13.9 we find

[e1,X] = e1(a)e1 + e1(b)e2 + b
{
T +He1 + (qe2(p) − pe2(q)

)
e2
}

+ e1(c)T + c(qT p − pT q)e2.
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From the latter expression we obtain

[e1,X]H = e1(a)e1 + e1(b)e2 + b
{
He1 + (qe2(p) − pe2(q)

)
e2
}+ c(qT p − pT q)e2,

and therefore (9.27) gives〈∇H
e1

e1,X
〉= e1(a) − e1(a) − bH = 〈−He2,X〉.

From the arbitrariness of X we conclude

∇H
e1

e1 = −He2. (9.28)

This proves the proposition. �
10. Sub-Riemannian calculus on hypersurfaces

In this section we establish some basic integration by parts formulas involving the tangen-
tial horizontal gradient on a hypersurface, and the horizontal mean curvature of the latter. Such
formulas are reminiscent of the classical one, and in fact they encompass the latter. However,
an important difference is that the ordinary volume form on the hypersurface S is replaced by
the H -perimeter measure dσH . Furthermore, they contain additional terms which are due to
the non-trivial commutation relations, which is reflected in the lack of torsion freeness of the
horizontal connection on S . Such term prevents the corresponding horizontal Laplace–Beltrami
operator from being formally self-adjoint in L2(S, dσH ) in general. Since the framework we
work in does not lend itself to a preferred choice of coordinates, for ease of computation we have
developed an approach, based on Federer’s co-area formula, which is coordinate-free. In fact,
our proof slightly simplifies several of the classical formulas for hypersurfaces in R

n which are
derived by writing S as a graph, see e.g. [52,71].

Theorem 10.1 (First sub-Riemannian integration by parts formula). Consider a C2 oriented
hypersurface in a Carnot group S ⊂ G. If u ∈ C1

0(S \ ΣS), then we have

∫
S

∇H,S
i u dσH =

∫
S

u
{
HνH

i − cH,S
i

}
dσH , i = 1, . . . ,m, (10.1)

where the C1 functions cH,S
i on S \ Σ are defined by

cH,S
i =

k∑
s=1

(
m∑

j=1

bs
ijpj

)
ωs, (10.2)

with bs
ij denoting the horizontal group constants defined in (2.14). Moreover, the horizontal vec-

tor field cH,S =∑m
i=1 cH,S

i Xi is perpendicular to the horizontal Gauss map νH , i.e., one has

〈
cH,S ,νH

〉= 0. (10.3)

As a consequence, we have cH,S ∈ C1(S \ ΣS ,HT S).
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Proof. Since the question is local, to prove the theorem we will assume, without loss of gener-
ality, that S is the level set of a C2 defining function φ, and that S is oriented in such a way that
N = ∇φ. Furthermore, thanks to the assumption of the support of u, we can also assume that S
be non-characteristic. Using a partition of unity we can always reduce ourselves to this situation.
For every ρ ∈ R, we define Uρ = {g ∈ G | φ(g) < ρ}. By the non-characteristic assumption on S
we can assume that, if S = ∂Uρ0 , then for every ρ sufficiently close to ρ0 the characteristic locus
of ∂Uρ is empty. Federer’s coarea formula gives, see [39],

∫
Uρ

∇H,S
i uW dg =

ρ∫
−∞

∫
∂Uτ

∇H,S
i u

W

|N | dHN−1 dτ =
ρ∫

−∞

∫
∂Uτ

∇H,S
i u dσH dρ. (10.4)

Recalling (8.3) and (9.17), we obtain from (10.4)

∫
∂Uρ

∇H,S
i u dσH = d

dρ

∫
Uρ

∇H,S
i uW dg. (10.5)

This crucial observation allows us to reduce the computation of the surface integral to that of an
integral over the solid region Uρ . Recalling Definition 7.4, we have

∫
Uρ

∇H,S
i uW dg =

∫
Uρ

XiuW dg −
∫
Uρ

XjupjpiW dg, (10.6)

where we have adopted the summation convention over repeated indices. Integrating by parts in
the first integral in the right-hand side of (10.6) we find

∫
Uρ

XiuW dg =
∫

∂Uρ

u〈N ,Xi〉 W

|N | dHN−1 −
∫
Uρ

uXiW dg

=
∫

∂Uρ

upiW dσH −
∫
Uρ

u
pjXipj

W
W dg, (10.7)

where we have used divXi = 0, see (5.16). We next integrate by parts in the second integral in
the right-hand side of (10.6), obtaining as in (10.7)

∫
Uρ

XjupjpiW dg =
∫

∂Uρ

upjpjpiW dσH −
∫
Uρ

uXj (pjpiW)dg

=
∫

∂U

upiW dσH −
∫
U

u(Xjpj )piW dg −
∫
U

u
pjXjpi

W
W dg. (10.8)
ρ ρ ρ
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Inserting (10.7), (10.8) into (10.6), we see that the boundary integrals disappear and we finally
obtain ∫

Uρ

∇H,S
i uW dg =

∫
Uρ

uXj (pj )piW dg −
∫
Uρ

ucSi W dg, (10.9)

where we have let

cSi = pj

W
{Xipj − Xjpi}.

Formula (10.9) is the crucial point in the proof. Proceeding now as in (10.4), and applying
(10.5), we conclude for every ρ ∈ R in a sufficiently small neighborhood of a given ρ0 ∈ R

∫
∂Uρ

∇H,S
i u dσH =

∫
∂Uρ

uXj (pj )pi dσH −
∫

∂Uρ

ucSi dσH . (10.10)

We now have

cSi = pj

W
{XiXjφ − XjXiφ} =

k∑
s=1

(
m∑

j=1

bs
ijpj

)
ωs.

Recalling (9.11) in Proposition 9.9, we conclude that (10.1) holds. Finally, (10.3) follows from
the skew-symmetry of the matrix {bs

ij }i,j=1,...,m defined by (2.14) which gives
∑m

j=1 bs
ijpipj = 0

for every s = 1, . . . , k. Hence,

〈
cH,S ,νH

〉= k∑
s=1

(
m∑

j=1

bs
ijpipj

)
ωs = 0.

This completes the proof. �
Remark 10.2. We emphasize that in the Abelian case G = R

m, we have Xi = ∂/∂xi , i =
1, . . . ,m, and so [Xi,Xj ] = 0 and thereby cSi ≡ 0. In this case formula (10.15) recaptures the
classical integration by parts formula on a hypersurface, see for instance [71,91].

Remark 10.3. We note explicitly that when G = H
n, the Heisenberg group, then the horizontal

vector field cH,S is given by

cH,S = ωJ
(
νH
)
, (10.11)

where J :HHn → HHn is the symplectic transformation which, in the orthonormal basis
{X1, . . . ,X2n} of HH

n, is represented by the block matrix

J =
(

0 I

−I 0

)
.
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We thus obtain from (10.11)

cH,S = ω
(
νH
)⊥ = ω(pn+1X1 + · · · + p2nXn − p1Xn+1 − · · · − pnX2n). (10.12)

Therefore, for H
n formula (10.1) reads∫

S

∇H,SudσH =
∫
S

u
{
HνH − ω

(
νH
)⊥}

dσH . (10.13)

In particular, when n = 1 then in the notation of Section 13, see also Remark 6.2, we have
cH,S = ωZ, and we can write (10.13) as follows:∫

S

∇H,SudσH =
∫
S

u{HY − ωZ}dσH . (10.14)

We have the following notable consequences of Theorem 10.1.

Theorem 10.4. Let S ⊂ G be a C2 oriented hypersurface, with characteristic set ΣS . If ζ ∈
C1

0(S \ ΣS ,HT S), then we have

∫
S

{
divH,S ζ + 〈cS , ζ

〉}
dσH =

∫
S

H
〈
ζ,νH

〉
dσH , (10.15)

where we have let

divH,S ζ =
m∑

i=1

∇H,S
i ζi .

Theorem 10.5. In a Carnot group G suppose that the hypersurface S is a vertical cylinder as in
Proposition 9.6. If u ∈ C1

0(S) we have

∫
S

∇H,S
i u dσH =

∫
S

uHνH
i dσH . (10.16)

Proof. First of all we notice that the assumption on S guarantees that the characteristic set
ΣS is empty, see Proposition 9.6. It is thereby legitimate to assume u ∈ C1

0(S), instead of
u ∈ C1

0(S \ ΣS). Next, we observe that since the defining function of S depends only on the
horizontal variables, then the normal has no component along V2, and therefore ωs = 0 for
s = 1, . . . , k. This implies cH,S ≡ 0, see (10.2). The conclusion thus follows from (10.15). �

We next establish another integration by parts formula which involves differentiation along a
special combination of the vector fields νH and Ts , s = 1, . . . , k, where Ts constitute the ortho-
normal basis of the first vertical layer defined in (2.16). Such result plays a central role in the last
two sections of this paper.
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Theorem 10.6 (Second sub-Riemannian integration by parts formula). Let S be a C2 oriented
hypersurface in a Carnot group G. For every f, ζ ∈ C1

0(U \ ΣS), where U ⊂ G is an open
neighborhood of S , then one has for s = 1, . . . , k

∫
S

f
(
Tsζ − ωs

〈∇ζ,νH
〉)

dσH

= −
∫
S

ζ
(
Tsf − ωs

〈∇f,νH
〉)

dσH +
∫
S

f ζ

{
ωsH+

m3∑
�=1

m∑
i=1

b�
ispiω3,�

}
dσH , (10.17)

where ωs are defined in (6.3), and for i = 1, . . . ,m, s = 1, . . . , k and � = 1, . . . ,m3, we have
let b�

is = 〈[ei, εs], e3,�〉. In particular, for a hypersurface S ⊂ H
n, we have k = 1, and therefore

letting ω1 = ω and setting Yf
def= 〈∇f,νH 〉, see also Section 13, we obtain,∫

S

f (T − ωY)ζ dσH = −
∫
S

ζ(T − ωY)f dσH +
∫
S

f ζωHdσH . (10.18)

Proof. We use the same idea of the proof of Theorem 10.1, except that this time we consider

∫
Uρ

[
Tsf − 〈∇(ωsf ),νH

〉]
W dg

=
∫

∂Uρ

〈Ts,N〉f W

|N | dσ −
∫
Uρ

f div(WTs) dg

−
∫

∂Uρ

〈
νH ,N

〉
ωsf

W

|N | dσ +
∫
Uρ

ωsf div
(
WνH

)
dg

=
∫

∂Uρ

ωsf dσH −
∫
Uρ

f
TsW

W
W dg −

∫
∂Uρ

Wωsf dσH

+
∫
Uρ

ωsf W div
(
νH
)
dg +

∫
Uρ

ωsf
〈∇W,νH 〉

W
W dg,

where we have used the identity 〈νH ,N〉 = W , see (6.10). Since ωsW = ωs , the two boundary
terms drop and we are left with

∫
Uρ

[
Tsf − 〈∇(ωsf ),νH

〉]
W dg

= −
∫
U

f
TsW

W
W dg +

∫
U

ωsf W div
(
νH
)
dg +

∫
U

ωsf
〈∇W,νH 〉

W
W dg.
ρ ρ ρ



D. Danielli et al. / Advances in Mathematics 215 (2007) 292–378 339
Using the coarea formula as in the proof of Theorem 10.1, and differentiating the resulting
integrals, we obtain from the latter identity

∫
S

[
Tsf − 〈∇(ωsf ),νH

〉]
dσH

= −
∫
S

f
TsW

W
dσH +

∫
S

ωsf div
(
νH
)
dσH +

∫
S

ωsf
〈∇W,νH 〉

W
dσH . (10.19)

Since Definition 9.8 and Proposition 9.9 give

H = divH,S
(
νH
)= m∑

i=1

Xipi = divH

(
νH
)
,

we can re-write (10.19) as follows:

∫
S

[
Tsf − ωs

〈∇f,νH
〉]

dσH

=
∫
S

f
〈∇ωs,ν

H
〉
dσH +

∫
S

ωsfHdσH −
∫
S

f

(
TsW

W
− ωs

〈∇W,νH 〉
W

)
dσH . (10.20)

We now observe that (6.3) gives

〈∇ωs,ν
H
〉= 〈∇ωs,ν

H 〉
W

− ωs

〈∇W,νH 〉
W

. (10.21)

On the other hand, we have

〈∇ωs,ν
H 〉

W
= TsW

W
+

m3∑
�=1

m∑
i=1

b�
ispiω3,�. (10.22)

To prove (10.22), suppose, as we may, that S is locally described as the zero set of a C2 function
φ, and that N = ∇φ =∑m

i=1 piXi +∑k
s=1 ωsTs +∑r

j=3
∑mj

�=1 ωj,�Xj,�. We thus have

〈∇ωs,ν
H
〉= 〈∇(Tsφ),νH

〉= m∑
i=1

piXi(Tsφ)

=
m∑

i=1

piTs(Xiφ) + W

m∑
i=1

m3∑
�=1

b�
ispiω3,�

=
m∑

piTs(piW) + W

m3∑ m∑
b�
ispiω3,�
i=1 �=1 i=1
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=
(

m∑
i=1

p2
i

)
TsW +

(
m∑

i=1

piTspi

)
W + W

m3∑
�=1

m∑
i=1

b�
ispiω3,�

= TsW + W

m3∑
�=1

m∑
i=1

b�
ispiω3,�,

where we have used the commutation relations [Xi,Ts] =∑m3
�=1 b�

isX3,�. This proves (10.22).
Inserting (10.22) in (10.21), and the resulting equation in (10.20), we reach the conclusion

∫
S

(
Tsf − ωs

〈∇f,νH
〉)

dσH =
∫
S

f ωsHdσH +
∫
S

f

m3∑
�=1

m∑
i=1

b�
ispiω3,� dσH .

If we replace f by f ζ in the latter integral identity we obtain the sought for integration by
parts formula. �
11. Tangential horizontal Laplacian

In this section we introduce a tangential partial differential operator, �H,S (and a modified
version of the latter), which constitutes the sub-Riemannian counterpart of the classical Laplace–
Beltrami operator on a hypersurface. In fact, as we will see, it reduces to the latter when the group
G is Abelian. It has however one aspect which distinguishes it from its classical predecessor, and
this is lack of self-adjointness in L2(S, dσH ). This phenomenon is caused by the presence of the
“drift” term cH,S in the integration by parts formula in Theorem 10.1. In the next section we
will show that the horizontal mean curvature flow recently proposed by Bonk and Capogna [6]
satisfies a nonlinear pde which involves the operator �H,S , see Theorem 12.1.

Definition 11.1. Given a function u ∈ C2(S), the tangential horizontal Laplacian of u on S is
defined as follows at points of S \ ΣS

�H,Su
def=

m∑
i=1

∇H,S
i ∇H,S

i u. (11.1)

We also introduce the modified tangential horizontal Laplacian on S

�̂H,Su
def= �H,Su + 〈cS ,∇H,Su

〉
, (11.2)

where cH,S is given by (10.2).

Remark 11.2. One should keep in mind that when S is a vertical cylinder given by (9.9), then
the operators �H,S and �̂H,S coincide

�̂H,S = �H,S .

In such case it is easy to show from Theorem 10.1 that �H,S is formally self-adjoint in
L2(S, dσH ).
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One basic raison d’être for the operator �̂H,S is in the following sub-Riemannian Stokes’
theorem which follows from Theorem 10.1.

Corollary 11.3. Let u ∈ C2
0(S \ ΣS), then we have

∫
S

�̂H,SudσH = 0. (11.3)

Proof. It suffices to take ∇H,S
i u instead of u in Theorem 10.1, and then add the resulting iden-

tities in i = 1, . . . ,m. Keeping in mind the definition (11.2), formula (10.15) gives,∫
S

�̂H,SudσH =
∫
S

H
〈∇H,Su,νH

〉
dσH = 0,

since by (9.6) one has 〈∇H,Su,νH 〉 = 0 on S \ ΣS . �
Corollary 11.4. Let u ∈ C1(S), then for every ζ ∈ C2

0(S \ ΣS) we have

∫
S

〈∇H,Su,∇H,Sζ
〉
dσH = −

∫
S

u�̂H,Sζ dσH . (11.4)

Proof. We take u∇H,S
i ζ , instead of u, in Theorem 10.1. �

Remark 11.5. In connection with Remark 9.11 we see that for the product group Ĝ = G × R

one has �̂H,S = �H,S = �H on S = G × {0}.

The following formulas are verified by direct computation from the definition.

Lemma 11.6. Let u,v ∈ C2(O), F ∈ C2(R), then we have on O \ Σ

�̂H,S(uv) = u�̂H,Sv + v�̂H,Su + 2
〈∇H,Su,∇H,Sv

〉
, (11.5)

�̂H,S(F ◦ u) = (F ′′ ◦ u)
∣∣∇H,Su

∣∣2 + (F ′ ◦ u)�̂H,Su. (11.6)

The next result provides a useful mean for computing the operators �H,S and �̂H,S on S ,
using the vector fields X1, . . . ,Xm in the ambient group G.

Proposition 11.7. Let u ∈ C2(S), then we have on S \ Σ

�H,Su = �H u − 〈∇2
H uνH ,νH

〉− 〈∇H u,νH
〉
H, (11.7)

�̂H,Su = �H u + 〈cH,S ,∇H u
〉− 〈∇2

H uνH ,νH
〉− 〈∇H u,νH

〉
H, (11.8)

where u denotes any extension of u. In the above formulas, the notation ∇2
H u indicates the

horizontal Hessian of u introduced in (9.15).
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Proof. We begin with Definition 7.4 which gives

∇H,Su = ∇H u − 〈∇H u,νH
〉
νH ,

where u is any extension of u. Applying (11.1), and using the summation convention over re-
peated indices, we find

∇H,S
i ∇H,S

i u = ∇H,S
i (Xiu) − ∇H,S

i

(〈∇H u,νH
〉)
νH
i − 〈∇H u,νH

〉∇H,S
i νH

i . (11.9)

We now compute the terms in the right-hand side of (11.9).

∇H,S
i (Xiu) = XiXiu − 〈∇H (Xiu),νH

〉
νH
i

= �H u − XjXiuνH
i νH

j

= �H u − 〈∇2
H uνH ,νH

〉
. (11.10)

Next, Eq. (6.7) gives

∇H,S
i

(〈∇H u,νH
〉)
νH
i = Xi

(
XjuνH

j

)
νH
i − 〈∇H

(〈∇H u,νH
〉)
,νH

〉
νH
i νH

i

= 0. (11.11)

Finally, we find from Proposition 9.9

〈∇H u,νH
〉∇H,S

i νH
i = 〈∇H u,νH

〉
H. (11.12)

We now substitute (11.10)–(11.12) in (11.9). To reach the desired conclusion we only need to
observe that thanks to (10.2) one has

〈
cH,S ,∇H,Su

〉= 〈cH,S ,∇H u
〉− 〈∇H u,νH

〉〈
cH,S ,νH

〉= 〈cH,S ,∇H u
〉
. �

The first elementary example of solutions of the tangential operators �H,S and �̂H,S is pro-
vided by the following consequence of Proposition 11.7.

Proposition 11.8. If the function u is constant on S , then

�H,Su = �̂H,Su = 0.

Proof. First of all, let us notice that, since �H,Su and �̂H,Su only depend on the values of u

on S , we can without restriction assume that u ≡ 1 in G. Under such hypothesis the conclusion
now follows trivially from Proposition 11.7. �

Another interesting consequence of Proposition 11.7 and of the grading structure of a Carnot
group is the following.
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Proposition 11.9. Let S ⊂ G be a H -minimal hypersurface, then if x(g) = (x1(g), . . . , xm(g))

denote the projection onto the horizontal layer of the exponential coordinates of g ∈ G (see
(2.12)), one has

�H,S(xi) = 0, i = 1, . . . ,m.

Proof. From Proposition 5.7 we have �H (xi) = 0, and also ∇2
H (xi) = 0. The desired conclusion

thus follows immediately from (11.7). �
We next analyze a situation of special interest, namely when G is a Carnot group of step r = 2,

and one has a hypersurface S given as a graph over the first layer of the Lie algebra. In such case,
identifying via the exponential map g = exp ξ(g) with ξ(g) ∼= (x(g), t (g)), we can find an open
set Ω ⊂ V1, and a C2 function h :Ω → R, such that for some s ∈ {1, . . . , k}, S can be written as

S = {(x(g), t (g)
) ∈ G

∣∣ x(g) ∈ Ω, ts(g) = h
(
x(g)

)}
. (11.13)

For instance, in the special case of the Heisenberg group H
n we would be considering a graph

over R2n, i.e., S = {(x, y, t) ∈ Hn | (z, y) ∈ Ω ⊂ R2n, t = h(x, y)}.

Theorem 11.10. Let G be a Carnot group of step r = 2, and S ⊂ G be a H -minimal hyper-
surface of the type (11.13), then outside the characteristic set ΣS the coordinate functions
x1, . . . , xm, t1, . . . , tk are solutions of the tangential sub-Laplacian on S .

Proof. For the horizontal coordinates x1, . . . , xm the conclusion follows from Proposition 11.9.
We now recall (5.23) in Proposition 5.7

Xits = 1

2

〈[ξ1, ei], εs

〉
, �H ts = 0, i = 1, . . . ,m, s = 1, . . . , k. (11.14)

The first equation in (11.14) can be written

Xits = 1

2

m∑
j=1

xj

〈[ej , ei], εs

〉
.

Thanks to (5.21) this gives

XjXits = 1

2

〈[ej , ei], εs

〉= −1

2

〈[ei, ej ], εs

〉= −XiXj ts,

and therefore for every s = 1, . . . , k, one has

∇2
H (ts) = 0. (11.15)

Now Proposition 11.7 gives for any l ∈ {1, . . . , k}, with l �= s

�H,S tl = �H tl − 〈∇2
H (tl)ν

H ,νH
〉− 〈∇H h,νH

〉
H = 0,
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when S is H -minimal, thanks to (11.14) and (11.15). We are left with proving that, if S is
H -minimal then �H,S(ts) = 0. Since on S we have ts = h(x), we need to show that �H,Sh = 0
on S . With this objective in mind we begin by expressing the H -mean curvature of S in terms
of the function h. We consider the function φ(g) = ts − h(x) defining S . According to Proposi-
tion 9.12, one has on S \ ΣS ,

H = 1

|∇H φ|3
{∣∣∇H φ

∣∣2�H φ − �H,∞φ
}
. (11.16)

On the other hand, we have from Proposition 11.7

�H,Sh = �H h − 〈∇2
H hνH ,νH

〉− 〈∇H h,νH
〉
H

= 1

|∇H φ|2
{∣∣∇H φ

∣∣2�H h − 〈∇2
H h∇H φ,∇H φ

〉}− 〈∇H h,νH
〉
H

= 1

|∇H φ|2
{∣∣∇H φ

∣∣2�H (h − ts) + �H ts − 〈∇2
H (h − ts)∇H φ,∇H φ

〉
− 〈∇2

H (ts)∇H φ,∇H φ
〉}− 〈∇H h,νH

〉
H. (11.17)

If in (11.17) we use (11.15) and the second equation in (11.14), we obtain

�H,Sh = − 1

|∇H φ|2
{∣∣∇H φ

∣∣2�H φ − �H,∞φ
}− 〈∇H h,νH

〉
H. (11.18)

We now compare (11.18) with (11.16) to reach the following interesting conclusion:

�H,Sh = −{∣∣∇H φ
∣∣+ 〈∇H h, νH

〉}
H. (11.19)

It is now clear from (11.19) that if H ≡ 0, then �H,Sh = 0, and this completes the proof. �
Corollary 11.11. In the Heisenberg group let

S = {(x, y, t) ∈ H
n
∣∣ (x, y) ∈ Ω, t = h(x, y)

}
,

where Ω ⊂ R
2n is an open set, and h ∈ C2(Ω). Is S is H -minimal, then the coordinate functions

x1, . . . , xn, y1, . . . , yn, t are solutions of �H,S on S .

Corollary 11.12. Let G be a Carnot group, and consider the exponential horizontal coordinates
x1(g), . . . , xm(g) in G, then

�H,S(xi) = −〈νH ,Xi

〉
H = −piH, i = 1, . . . ,m.

Consider the exponential coordinates t1(g), . . . , tk(g) in the first vertical layer V2, then

�H,S(ts) = −1

2

m∑
bs
ij xipjH, s = 1, . . . , k.
i,j=1
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In particular, when G = H
1, then

�H,S(t) = −1

2
(xp + yq).

We close this section with introducing the notions of p-Dirichlet integral and of p-harmonic
function on an hypersurface. Such notions play a central role in the development of geometric
subelliptic pde’s on hypersurfaces in Carnot groups.

Definition 11.13. Suppose that S ⊂ G be a C2 hypersurface, with ΣS = ∅. Given 1 < p < ∞
we define the p-Dirichlet integral of a function u ∈ C1

0(S) as

EH,S(u) = 1

p

∫
S

∣∣∇H,Su
∣∣p dσH .

Suppose that u ∈ Lp(S, dσH ), and that moreover ∇H,S
i u ∈ Lp(S, dσH ), for i = 1, . . . ,m. We

say that u is p-subharmonic (-superharmonic) in S if for every ζ ∈ C1
0(S), ζ � 0, one has

∫
S

∣∣∇H,Su
∣∣p−2〈∇H,Su,∇H,Sζ

〉
dσH � 0 (� 0).

We say that u is p-harmonic in S if u is simultaneously p-subharmonic and p-superharmonic.
When p = 2 we simply say that u is subharmonic, superharmonic or harmonic in S .

According to Corollary 11.4 we can adopt the following alternative notion of subharmonicity.

Definition 11.14. A function u ∈ L1
loc(S, dσH ) is called subharmonic in S if

0 �
∫
S

u�̂H,Sζ dσH , for every ζ ∈ C2
0(S), ζ � 0. (11.20)

12. Flow by horizontal mean curvature

In connection with Proposition 11.7, we recall the Riemannian counterpart of (11.7):

�Mu = �u − 〈∇2uν,ν
〉− (n − 1)〈∇Mu,ν〉H, (12.1)

where �M and ∇M respectively represent the Laplace–Beltrami operator and the intrinsic gra-
dient on an (n − 1)-dimensional Riemannian manifold M . Formula (12.1) plays a crucial role,
for instance, in the derivation of the equation for flow by mean curvature, see for instance [37].
If one considers a family of smooth embeddings F(·, t) :M → R

n, then with Mt = F(M, t), the
equation of flow by mean curvature is given by

∂F
(p, t) = −(n − 1)Hν. (12.2)
∂t
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If we write x = F(p, t), then using (12.1) and (12.2) we obtain the nonlinear partial differential
equation

∂x

∂t
= �Mt x, (12.3)

which is satisfied by the components (x1, . . . , xn) of x. This can be readily recognized as follows.
Equation (12.1) gives for each component xi

�Mt (xi) = �(xi) − 〈∇2(xi)ν,ν
〉− (n − 1)

〈∇(xi),ν
〉
H

= −(n − 1)〈ei,ν〉H = −(n − 1)νiH.

In other words, we have �Mt x = −(n − 1)Hν. This equation, combined with (12.2), proves
(12.7).

We next want to prove a sub-Riemannian analogue of (12.3) for the mean curvature flow in
the Heisenberg group recently proposed by Bonk and Capogna in [6]. We consider a smooth
hypersurface in a Carnot group S ⊂ G, and a family of smooth embeddings F :S × (0, T ) → G.
We will denote by Sλ = F(S, λ). The reader should note that we are using the unconventional
parameter λ ∈ (0, T ) to indicate time. The reason is due to the fact that, to keep a homogeneous
notation with the Heisenberg group, we have already reserved the letter t = (t1, . . . , tk) to indicate
the exponential coordinates in the first vertical layer V2 of the Lie algebra of G, see (2.12). In [6]
the authors have introduced the following definition of horizontal mean curvature flow when the
group G is H

n. At any point F(g,λ) ∈ Sλ \ Σλ (Σλ denotes the characteristic set of Sλ), they
require that

〈
∂F

∂λ
,N

〉
= −H

〈
νH ,N

〉
. (12.4)

We notice that it is important to project the flow along the normal direction since the vector
equation ∂F

∂λ
= −HνH is meaningless: the right-hand side evolves in the horizontal bundle HG,

whereas the left-hand side has components which move outside of it. Also, as noted in [6], “any
tangential component of the velocity field only gives rise to a re-parametrization of the surface
with no effect on the geometric evolution.” At characteristic points the equation (12.4) is not
defined and the way the authors circumvent this obstacle is by restricting to S the Riemannian
ε-regularization of the sub-Riemannian metric of S introduced in (8.4). We refer the reader to
[6] for the relevant details. We want to next prove the following result which underscores the
interest of the operator �H,S introduced in the previous section. It should be thought of as the
sub-Riemannian analogue of (12.3).

Theorem 12.1. Let F :S × (0, T ) → G be a C2 solution of the horizontal mean curvature flow
(12.4), then at any non-characteristic point F(g,λ) ∈ Sλ one has

〈
∂F

∂λ
,N

〉
= 〈�H,SλF,N〉, (12.5)

where the latter equation must be interpreted component-wise.
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Proof. To make our proof as transparent as possible we discuss in detail the case of the first
Heisenberg group H

1. The details of the more general case, as well as some applications of
(12.5), will appear elsewhere. We consider F(g,λ) = (x(g,λ), y(g,λ), t (g,λ)) and notice that
we have from (13.2) below,

�H,SλF = (�H,Sλ(x),�H,Sλ(y),�H,Sλ(t)
)

= �H,Sλ(x)X1 + �H,Sλ(y)X2 +
(

�H,Sλ(t) + y�H,Sλ(x) − x�H,Sλ(y)

2

)
T . (12.6)

At this point we use (12.6) and the fact that

N =
(

pX1 + qX2 + 〈N , T 〉
W

T

)
W,

to discover that

〈�H,SλF,N〉 = W

{
p�H,Sλ(x) + q�H,Sλ(y)

+ 〈N , T 〉
W

(
�H,Sλ(t) + y�H,Sλ(x) − x�H,Sλ(y)

2

)}
. (12.7)

We now use Corollary 11.12, which in the present situation gives,

�H,Sλ(x) = −pH, �H,Sλ(y) = −qH, �H,Sλ(t) = −xq − yp

2
H. (12.8)

Substituting (12.8) in (12.7) we obtain the remarkable conclusion

〈�H,SλF,N〉 = W

{
−p2H− q2H+ 〈N , T 〉

W

(
−xq − yp

2
H+ xq − yp

2
H
)}

= −WH. (12.9)

On the other hand, (6.10) gives

〈
νH ,N

〉
H = WH.

Combining the latter equation with (12.9) we reach the conclusion

〈�H,SλF,N〉 = −H
〈
νH ,N

〉
. (12.10)

Finally, from (12.10) and (12.4) we obtain (12.5). �



348 D. Danielli et al. / Advances in Mathematics 215 (2007) 292–378
13. Some geometric identities in the Heisenberg group

In this section we collect several geometric identities in the Heisenberg group H
1 which,

besides their intrinsic interest, play an important role in the development of the first and second
variation formulas in Section 14. We note preliminarily that

X1 ∧ X2 = T , X2 ∧ T = X1, X1 ∧ T = −X2, (13.1)

where the wedge products are computed with respect to the left-invariant Riemannian metric with
respect to which {X1,X2, T } constitute an orthonormal basis. We also observe that the passage
from the orthonormal basis {X1,X2, T } to the standard rectangular coordinates of R

3 is given by
the formula

aX1 + bX2 + cT =
(

a, b, c + bx − ay

2

)
. (13.2)

Throughout this section S ⊂ H
1 denotes an oriented C2 surface, with non-unit normal N , and

Riemannian Gauss map ν, we consider the functions p1,p2 and W on S defined in (6.1). As we
have mentioned in Remark 6.2, for computational ease it will be convenient to adopt in this and
the next two sections the slightly different notation p = p1, q = p2, i.e.,

p = 〈N,X1〉, q = 〈N ,X2〉, W =
√

p2 + q2. (13.3)

The horizontal Gauss map defined in (6.6) is now given on S \ ΣS by

νH = pX1 + qX2, (13.4)

where we have let

p = p

W
, q = q

W
, so that p2 + q2 ≡ 1 on S \ ΣS . (13.5)

We also introduce the notation

ω = 〈N , T 〉, ω = ω

W
. (13.6)

We notice explicitly that if S ∈ Ck , k � 2, then p,q,ω,p, q,ω ∈ Ck−1(S \ ΣS). We also note
that, thanks to Proposition 9.9, the H -mean curvature of S is presently given by the formula

H = X1p + X2q. (13.7)

Along with the horizontal Gauss map νH we consider the vector field

(νH )⊥ =
(

0 1
−1 0

)
νH = qX1 − pX2, (13.8)

which, as already noticed in Section 9, constitutes a basis of HT S . It will be convenient to keep
a different notation for the action of the vector fields νH , (νH )⊥ on a function ζ ∈ C1(S \ ΣS).
0
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We thus set

Yζ
def= 〈∇ζ,νH

〉= pX1ζ + qX2ζ, (13.9)

Zζ
def= 〈∇ζ,

(
νH
)⊥〉= qX1ζ − pX2ζ. (13.10)

We mention that in the right-hand sides of (13.9), (13.10) the vector fields X1, X2 act on
an extension ζ of ζ . However, for the sake of simplifying the notation we have used, and will
continue to do so below, the same notation for both functions. It is worth observing that {Z,Y,T }
constitutes an orthonormal frame on S . One has in fact

Z ∧ Y = T , Y ∧ T = Z, T ∧ Z = Y. (13.11)

Moreover, the (Riemannian) divergence in H1 of these vector fields is given by

divY = X1p + X2q = H, divZ = X1q − X2p. (13.12)

Using Cramer’s rule one easily obtains from (13.9) and (13.10),

X1 = pY + qZ, X2 = qY − pZ. (13.13)

One also has

∇H,S
1 = qZ, ∇H,S

2 = −pZ. (13.14)

To prove (13.14) we proceed as follows:

∇H,S
1 ζ = X1ζ − 〈∇H ζ,νH

〉
νH

1 = X1ζ − (pX1ζ + qX2ζ )p

= X1ζ − p2X1ζ − pqX2ζ = q2X1ζ − pqX2ζ = q(qX1ζ − pX2ζ )

= qZζ,

∇H,S
2 ζ = X2ζ − 〈∇H ζ,νH

〉
νH

2 = X2ζ − (pX1ζ + qX2ζ )q

= X2ζ − pqX1ζ − q2X2ζ = p2X2ζ − pqX1ζ = −p(qX1ζ − pX2ζ )

= −pZζ.

These formulas give

∇H,Sζ = qZζX1 − pZζX2. (13.15)

From (13.15) and (13.5) we obtain

∣∣∇H,Sζ
∣∣2 = (Zζ )2 = (qX1ζ − pX2ζ )2. (13.16)

We next establish some identities that will be used times and again in Sections 14 and 15.
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Lemma 13.1. One has on S \ ΣS

pZp + qZq = pYp + qYq = pT p + qT q = 0, (13.17)

pZ2p + qZ2q = −(Zp)2 − (Zq)2. (13.18)

It is useful to note the following alternative expression of the first two identities in (13.17):

pqX1p − p2X2p + q2X1q − pqX2q = 0, (13.19)

p2X1p + pqX2p + pqX1q + q2X2q = 0. (13.20)

Proof. The proof of (13.17) follows trivially by differentiating the identity p2 +q2 ≡ 1, whereas
(13.18) follows by differentiating pZp + qZq = 0 with respect to Z. One has from (13.17) and
(13.10)

0 = pZp + qZq = p(qX1p − pX2p) + q(qX1q − pX2q),

which proves (13.19). Similarly,

0 = pYp + qYq = p(pX1p + qX2p) + q(pX1q + qX2q),

which implies (13.20). �
Lemma 13.2. One has on S \ ΣS

〈Z,N〉 = 0, 〈Y,N〉 = W, (13.21)

Yω = T W, (13.22)

qYp − pYq = X2p − X1q, (13.23)

ZW

W
= qYp − pYq + ω, (13.24)

and

Zω

W
= q T p − p T q. (13.25)

Proof. The first identity in (13.21) is obvious, while the second one is simply a reformulation
of (6.10). The identity (13.22) is just a special case of (10.22). To prove (13.23), it suffices to use
(13.13) and (13.17) to find

X2p − X1q = qYp − pYq − (pYp + qYq) = qYp − pYq.

As for (13.24) we have

ω = T φ = X1X2φ − X2X1φ = X1(qW) − X2(pW) = −(X2p − X1q)W + ZW,

from which the desired conclusion follows immediately.
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Finally, we turn to the proof of (13.25). Applying T to both sides of (13.21) we obtain

0 = T (Zφ) = T (qX1φ − pX2φ) = T qX1φ + q T X1φ − T pX2φ − pT X2φ

= T q X1φ − T p X2φ + qX1T φ − pX2T φ = pT q − qT p + Z(T φ).

It follows that

Zω

W
= Z(T φ)

W
= qT p − pT q. �

Corollary 13.3. One has on S \ ΣS

A def= −Zω = (pT q − qT p) + ω(qYp − pYq) + ω2

= p(T q − ωYq) − q(T p − ωYp) + ω2.

Proof. We have

Zω = Zω

W
− ω

ZW

W
,

so the desired result follows immediately from (13.24), (13.25). �
The next lemma expresses a useful orthogonality property which enters several times in the

computations of Section 14.

Lemma 13.4. Let X , Y be smooth vector fields on S , then on the set S \ ΣS one has

XqYp −XpYq = 0.

In particular, letting X = Y or T , and Y = Z or Y , we find

YqZp − YpZq = 0,

T qZp − T pZq = 0,

T qYp − T pYq = 0.

Proof. To prove the lemma we note that

XW = pXp + qXq, YW = pYp + qYq,

and proceed as follows:

XqYp −XpYq

= X
(
qW−1)Y(pW−1)−X

(
pW−1)Y(qW−1)

= 1
2

{
(Xq − qXW)(Yp − pYW) − (Xp − pXW)(Yq − qYW)

}

W
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= −p2XqYp − pqXqYq − pqXpYp − q2XqYp + pqXpYp + q2XpYq + p2XpYq

W 4

+ pqXqYq

W 4
+ XqYp −XpYq

W 2

= q2XqYp − p2XpYq − q2XqYp + p2XpYq

W 4
= 0. �

In the following lemma we collect some geometric identities involving the H -mean curvature
of S which play an essential role in the sequel.

Lemma 13.5. One has on the set S \ ΣS

q2X1p − pq(X2p + X1q) + p2X2q = H, (13.26)

qZp − pZq = H, (13.27)

Zp = qH, Zq = −pH. (13.28)

The following formula is dual to (13.26), (13.27),

pqX1p + q2X2p − p2X1q − pqX2q = X2p − X1q. (13.29)

We also have the following expressions for the derivatives of the H -mean curvature along Y

and T :

qY (Zp) − pY(Zq) = YH, (13.30)

qT (Zp) − pT (Zq) = TH. (13.31)

Proof. In view of (13.7) one has that (13.26) is equivalent to

p2X2q + q2X1p − pq(X2p + X1q) = X1p + X2q,

which is in turn equivalent to

q2X2q + p2X1p + pq(X2p + X1q) = 0,

and this is nothing but (13.20). We now use (13.26) to prove (13.27) as follows:

qZp − pZq = q2X1p − pqX2p − pqX1q + p2X2q = H.

The proof of (13.28) immediately follows from the equation pZp + qZq = 0, from (13.27),
and from Cramer’s rule. Next, it is easy to recognize that (13.29) is equivalent to (13.19). The
proof of (13.30) follows from differentiating (13.27) with respect to Y , upon using Leibniz rule
and Lemma 13.4. Similarly, we establish (13.31) by differentiating (13.27) with respect to T and
then using Lemma 13.4. �
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We now establish a result which says that one of the two horizontal principal curvatures is
zero. We stress that this phenomenon, whose Riemannian counterpart is obviously not true, re-
flects the fact that H -minimal surfaces are ruled surfaces, see [15,49].

Proposition 13.6. One has on S \ ΣS

∣∣∇H,S
1 νH

1

∣∣2 + ∣∣∇H,S
2 νH

2

∣∣2 = (Zp)2 + (Zq)2 ≡ H2.

In particular, if S is H -minimal, we have

∣∣∇H,S
1 νH

1

∣∣2 = ∣∣∇H,S
2 νH

2

∣∣2 = 0.

Proof. According to (13.16), (13.27) and (13.28), we have

H2 − ∣∣∇H,S
1 νH

1

∣∣2 − ∣∣∇H,S
2 νH

2

∣∣2
= (qZp − pZq)2 − (Zp)2 − (Zq)2

= q2(Zp)2 + p2(Zq)2 − 2pqZpZq − (Zp)2 − (Zq)2

= −(p2(Zp)2 + q2(Zq)2 + 2pqZpZq
)= −(pZp + qZq)2 = 0,

where the last equation follows from Lemma 13.1. �
Lemma 13.7. One has on S \ ΣS

ZpX1 + ZqX2 = HZ, ZqX1 − ZpX2 = −HY.

Proof. One easily obtains from Eqs. (13.13)

ZpX1 + ZqX2 = (pZp + qZq)Y + (qZp − pZq)Z

= (qZp − pZq)Z = HZ,

where in the second to the last equality we have used (13.17), and in the last one we have used
(13.27). The proof of the second identity is similar. �

The next commutator formulas will be useful in the sequel.

Lemma 13.8. One has on S \ ΣS

[Z,Y ] = T +HZ + (qYp − pYq)Y.
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Proof. To compute the commutator between Z and Y we use Eqs. (13.9) and (13.10) to find

[Z,Y ] = Z(Y ) − Y(Z)

= qX1(pX1 + qX2) − pX2(pX1 + qX2) − pX1(qX1 − pX2) − qX2(qX1 − pX2)

= X1X2 − X2X1 + (qX1p − pX1q)X1 + (qX2p − pX2q)X2

= T + (Zp + p(X2p − X1q)
)
X1 + (Zq + q(X2p − X1q)

)
X2

= T + ZpX1 + ZqX2 + (X2p − X1q)Y,

where we have repeatedly used (13.17) along with the identity p2 + q2 = 1. We now appeal to
Lemma 13.7 and to (13.29) to reach the desired conclusion. �
Lemma 13.9. On S \ ΣS , one has

[Z,T ] = (qT p − pT q)Y.

Proof. Using the trivial commutation relations [Xi,T ] = 0, i = 1,2 we obtain

T (Z) = T qX1 − T pX2 + Z(T ).

From this identity, and from (13.13), we obtain

[Z,T ] = T pX2 − T qX1 = T p(qY − pZ) − T q(qZ + pY)

= (qT p − pT q)Y − (pT p + qT q)Z = (qT p − pT q)Y,

where in the last equality we have used Lemma 13.1. �
Corollary 13.10. One has on S \ ΣS

[T − ωY,Z] = ω
{
(T − ωY) +HZ

}
.

In particular, if S is H -minimal, then

[T − ωY,Z] = ω(T − ωY).

Proof. One has from Lemmas 13.8 and 13.9

[T − ωY,Z] = [T ,Z] − ω[Y,Z] + ZωY

− (qT p − pT q)Y + ω
(
T + (qYp − pYq)

)
Y −AY

= ωT + (ω(qYp − pYq) − (qT p − pT q) −A
)
Y,

where we have used the hypothesis that S be H -minimal. Using Corollary 13.3 we reach the
desired conclusion. �
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Corollary 13.11. If S is H -minimal, one has

ZA = ω
(
ω2 − 3A

)
.

For an arbitrary C2 surface we have instead on S \ ΣS

ZA = ω
{(

ω2 − 3A
)+H2}.

Proof. From the assumption of H -minimality of S , (13.28) and from Corollary 13.3 we obtain

ZA = pZ(T q − ωYq) − qZ(T p − ωYp) + 2ωZω

= p[Z,T − ωY ]q − q[Z,T − ωY ]p − 2ωA
= −ω

[
p(T q − ωYq) − q(T p − ωYp) + 2A

]= ω
(
ω2 − 3A

)
.

The proof of the second part of the corollary is based on a longer computation which, in
addition, exploits also Corollary 13.10, (13.17), (13.27) and (13.28). We leave the details to the
interested reader. �
Corollary 13.12. One has on S \ ΣS

[Z,Y ]p = T p + ZpH+ (qYp − pYq)Yp,

[Z,Y ]q = T q + ZqH+ (qYp − pYq)Yq,

[Z,T ]p = (qT p − pT q)Yp, [Z,T ]q = (qT p − pT q)Yq.

Lemma 13.13. On S \ ΣS one has

Z(qYp − pYq) − (qYp − pYq)2 − (qT p − pT q) = YH+H2.

Proof. Thanks to Lemma 13.4 we have

Z(qYp − pYq)

= qZ(Yp) − pZ(Yq)

= qY (Zp) − pY(Zq) + q[Z,Y ]p − p[Z,Y ]q
= YH+ q

{
T p + ZpH+ (qYp − pYq)Yp

}− p
{
T q + ZqH+ (qYp − pYq)Yq

}
= YH+ (qT p − pT q) + (qZp − pZq)H+ (qYp − pYq)2

= YH+H2 + (qT p − pT q) + (qYp − pYq)2,

where we have used (13.30) and Corollary 13.12 in the third equality, and (13.27) in the second
to the last equality. �
Lemma 13.14. One has on the set S \ ΣS

Z(qT p − pT q) = TH+ (qT p − pT q)(qYp − pYq).
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Proof. Using Lemma 13.4 we obtain

Z(qT p − pT q) = qZ(T p) − pZ(T q)

= qT (Zp) − pT (Zq) + q[Z,T ]p − p[Z,T ]q.

Now using Lemma 7.4 again we obtain from (13.27)

TH = qT (Zp) − pT (Zq),

which, substituted in the above equation gives, along with Corollary 13.12, the desired result. �
14. First and second variation of the H -perimeter in the Heisenberg group

A fundamental tool in Riemannian geometry are the first and second variation formulas for the
area functional. Consider a C2 oriented hypersurface S ⊂ R

n, with Gauss map ν :S → S
n−1, and

denote by Sλ = Gλ(S) the hypersurface obtained by deforming S in the normal direction with
the one-parameter family of local diffeomorphisms Gλ(x) = x + λζ(x)ν(x), where ζ ∈ C∞

0 (S),
and λ ∈ R is small. One has the following theorem, see for instance (10.12), (10.13) in [52], or
also [8,22,71,91].

Theorem 14.1. The first variation of the area of S is given by the formula

d

dλ
Hn−1

(
Gλ(S)

)∣∣
λ=0 =

∫
S

Hζ dHn−1, (14.1)

where H = κ1 + · · · + κn−1 indicates the sum of the principal curvatures of S . The second
variation is given by

d2

dλ2
Hn−1

(
Gλ(S)

)∣∣
λ=0 =

∫
S

{
|∇ζ |2 + ζ 2

(
H 2 −

n∑
i=1

|∇νi |2
)}

dHn−1, (14.2)

where ∇ denotes the Levi-Civita connection on S , and it can be shown that
∑n

i=1 |∇νi |2 is the
sum of the squares of the principal curvatures of S .

In this section we consider an oriented surface in the Heisenberg group H
1, with non-unit Rie-

mannian normal N , and horizontal Gauss map νH , and compute the first and second variation for
general deformations of S . We observe that, in view of applications to the fundamental question
of stability of H -minimal surfaces, it is important to be able to treat general deformations, versus
deformations along a specific direction. More precisely, we consider deformations of S given by
S → Sλ = Jλ(S), where

Jλ(S) = S + λX = S + λ(aX1 + bX2 + kT ), (14.3)

a, b, k ∈ C1
0(S \ΣS), and λ ∈ R is a small parameter. Throughout this section, and the following

one, we will continue to use the notations of Section 13. We recall that H
1 is endowed with a
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left-invariant Riemannian metric with respect to which {X1,X2, T } constitute an orthonormal
basis with inner product 〈·,·〉. Since no other inner product will be used, there will not be any
confusion, for instance, with the standard Euclidean inner product of R

3.

Definition 14.2. Let S ⊂ H
1 be an oriented C2 surface, consider the family of vector fields

X = aX1 + bX2 + kT , with a, b, k ∈ C2
0(S \ ΣS), and the family of surfaces Sλ. We define the

first variation of the H -perimeter with respect to the deformation (14.3) as

VH
I (S;X ) = d

dλ
PH

(
Sλ
)∣∣

λ=0.

If ΣS = ∅, then we say that S is stationary if VH
I (S;X ) = 0, for every X .

Classical minimal surfaces are stationary points of the perimeter (the area functional for
graphs). It is natural to ask what is the connection between the notion of H -minimal surface
and that of H -perimeter. The answer to this question is contained in the following result. To
simplify the formulas we introduce the following notation

F
def= pa + qb + ωk = 〈X ,N〉

〈νH ,N〉 . (14.4)

Theorem 14.3. Let S ⊂ H
1 be an oriented C2 surface, then

VH
I (S;X ) =

∫
S

HF dσH . (14.5)

In particular, S is stationary if and only if it is H -minimal.

Versions of Theorem 14.3 have also been obtained independently by other people. An ap-
proach based on motion by H -mean curvature can be found in [6]. When X = aνH + kT , then
a proof based on CR-geometry can be found in [15], and [84,85]. We mention that Hladky and
Pauls have recently proved in [56] (with a different approach which does not directly use the first
variation) that, for a wide class of sub-Riemannian spaces, a non-characteristic C2 hypersurface
is a critical point of the H -perimeter if and only if it is H -minimal.

Definition 14.4. Given an oriented C2 surface S ⊂ H
1, we define the second variation of the

H -perimeter with respect to the deformation (14.3) as

VH
II (S;X ) = d2

dλ2
PH

(
Sλ
)∣∣

λ=0.

Our main result in this section is the following theorem.

Theorem 14.5. The second variation of the H -perimeter with respect to the deformation of S
given by (14.3) is expressed by the formula
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VH
II (S;X ) =

∫
S

{
2(qZa − pZb)(T k − ωYk)

+ (T a − ωYa)
[−2qZk − q(ap + bq) − p(aq − bp)

]
+ (T b − ωYb)

[
2pZk + p(ap + bq) − q(aq − bp)

]
+ 2(aq − bp)(qZa − pZb)ω + (Za + pωZk)2 + (Zb + qωZk)2

+ (a2 + b2)ω2 + 2ω(aZa + bZb) + 2ω2(ap + bq)Zk

− (qZa − pZb + (aq − bp)ω
)2}

dσH . (14.6)

In order to prove Theorems 14.3 and 14.5 we develop some preliminary material which
constitutes the necessary geometric backbone. We begin by deriving from Theorem 10.1 two
integration by parts formulas which play a fundamental role in this section and in the following
one.

Lemma 14.6. Let ζ ∈ C1
0(S \ ΣS), then

∫
S

Zζ dσH = −
∫
S

ζω dσH .

Proof. We begin by noting that, thanks to (13.14), (13.9) and (13.10), we can rewrite the two
identities in (10.14) in the form

∫
S

{qZu + quω}dσH =
∫
S

puHdσH , (14.7)

∫
S

{pZu + puω}dσH = −
∫
S

quHdσH . (14.8)

Choosing u = qζ in (14.7), and u = pζ in (14.8), and adding the resulting equations, we obtain

∫
S

{
(pZp + qZq)ζ + (p2 + q2)Zζ

}
dσH +

∫
S

(
p2 + q2)ζω dσH = 0.

From the latter equation, and from (13.5), (13.17), we immediately reach the conclusion. �
Remark 14.7. We have above derived Lemma 14.6 from Theorem 10.1 specialized to H

1. The
two results are in fact equivalent. To see this suppose that the identity in Lemma 14.6 hold.
Applying it twice, once with the choice ζ = qu, and the other with ζ = pu, with u ∈ C1

0(S \ Σ),
we obtain (14.7) and (14.8) if we use the identities Zp = qH, Zq = −pH, in (13.28).

Another crucial integration by parts formula which we will need is (10.18) in Theorem 10.6.
For the reader’s convenience we combine this formula and Lemma 14.6 into a single statement.
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Lemma 14.8. Let f ∈ C1(S), ζ ∈ C1
0(S \ ΣS), then

∫
S

f Zζ dσH = −
∫
S

ζZf dσH −
∫
S

f ζωdσH ,

∫
S

f (T ζ − ωYζ)dσH = −
∫
S

ζ(Tf − ωYf )dσH +
∫
S

f ζωHdσH .

In particular, if S is H -minimal, we find∫
S

f (T ζ − ωYζ)dσH = −
∫
S

ζ(Tf − ωYf )dσH .

After these preliminaries we turn to the proofs of the main results in this section. We first
recall the representation formula for the H -perimeter of S given in (8.3) of Definition 8.4

σH (S) =
∫
S

W

|N | dσ =
∫
S

√
p2 + q2

|N | dσ, (14.9)

where dσ represents the standard surface measure on S . Next, we establish a simple lemma
which provides the general expression for the first and second variation of the H -perimeter. We
consider, for small values of λ ∈ R, a deformation of S of the type Sλ = Jλ(S) = S +λX , where
X ∈ C1

0(S \ ΣS ;H
1). We denote by Nλ the non-unit Riemannian normal on Sλ. Letting

Xλ
1 (g) = X1

(
Jλ(g)

)
, Xλ

2 (g) = X2
(
Jλ(g)

)
, g ∈ S,

we consider the functions

pλ = 〈Nλ,Xλ
1

〉
, qλ = 〈Nλ,Xλ

2

〉
, Wλ =

√(
pλ
)2 + (qλ

)2
. (14.10)

We stress that we are assuming that X is compactly supported away from the characteristic
set of S , so that the angle function W for S never vanishes on the support of X , see (6.4).

Lemma 14.9. The first variation of the H -perimeter along the deformation Jλ(S) = S + λX is
given by the formula

VH
I (S;X ) =

∫
S

dWλ

dλ

Wλ

∣∣∣∣
λ=0

dσH =
∫
S

(pλ dpλ

dλ
+ qλ dqλ

dλ
)|λ=0

W 2
dσH . (14.11)

The second variation is given by

VH
II (S;X ) =

∫
S

(pλ d2pλ

dλ2 + qλ d2qλ

dλ2 )|λ=0

W 2
dσH +

∫
S

((
dpλ

dλ
)2 + (

dqλ

dλ
)2)|λ=0

W 2
dσH

−
∫

(pλ dpλ

dλ
+ qλ dqλ

dλ
)2|λ=0

W 4
dσH . (14.12)
S
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Proof. Because of the assumptions on X , the integrals in the right-hand sides of (14.11), (14.12)
are performed on a compact set which does not intersect ΣS . By a partition of unity we can thus
reduce the analysis to a set S∩O, where O ⊂ H1 is an open neighborhood of a point g0 ∈ S \ΣS .
We can thus assume that there exist an open set Ω ⊂ R2

u,v and a parametrization θ :Ω → H1 such
that S ∩O = θ(Ω). We suppose that the orientation of S is given by N = θu ∧ θv . Recalling that
dσ = |θu ∧ θv|du ∧ dv, we can, after projecting S onto Ω , rewrite (14.9) as follows:

σH (S ∩O) =
∫
Ω

W dσ =
∫
Ω

√
p2 + q2 du ∧ dv. (14.13)

According to (14.13) we have

σH

(
Sλ ∩O

)= ∫
Ω

Wλ du ∧ dv.

Observing that

dWλ

dλ
= pλ dpλ

dλ
+ qλ dqλ

dλ

Wλ
,

and that Wλ|λ=0 = W , we find

VH
I (S;X ) =

∫
Ω

(pλ dpλ

dλ
+ qλ dqλ

dλ
)|λ=0

W
du ∧ dv =

∫
S

(pλ dpλ

dλ
+ qλ dqλ

dλ
)|λ=0

W 2
dσH ,

which gives (14.11). To obtain (14.12) we proceed analogously, observing that

d2Wλ

dλ2
= pλ d2pλ

dλ2 + qλ d2qλ

dλ2

Wλ
+ (

dpλ

dλ
)2 + (

dqλ

dλ
)2

Wλ
− (pλ dpλ

dλ
+ qλ dqλ

dλ
)2

(Wλ)3
. �

We now turn to the proof of the main results. Given an open set Ω ⊂ R
2, we denote by

θ :Ω → H1 a C2 parametrization of an oriented surface

S = {θ(u, v) = (x(u, v), y(u, v), t (u, v)
) ∈ H

1
∣∣ (u, v) ∈ Ω

}
. (14.14)

We assume throughout that the orientation of S is given by the non-unit normal N = θu ∧ θv .
Using (13.2) we see that

θ(u, v) = x(u, v)X1
(
θ(u, v)

)+ y(u, v)X2
(
θ(u, v)

)+ t (u, v)T . (14.15)

From this equation we find

θu = xuX1 + yuX2 + tuT + xX1,u + yX2,u,
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with a similar expression for θv . Keeping in mind that

{
X1,u = − yu

2 T , X2,u = xu

2 T ,

X1,v = − yv

2 T , X2,v = xv

2 T ,
(14.16)

we obtain {
θu = xuX1 + yuX2 + (tu + yxu−xyu

2

)
T ,

θv = xvX1 + yvX2 + (tv + yxv−xyv

2

)
T .

(14.17)

From (13.1) and (14.16) we find

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θu ∧ X1 = (tu + yxu−xyu

2

)
X2 − yuT ,

θu ∧ X2 = −(tu + yxu−xyu

2

)
X1 + xuT ,

θu ∧ T = yuX1 − xuX2,

θv ∧ X1 = (tv + yxv−xyv

2

)
X2 − yvT ,

θv ∧ X2 = −(tv + yxv−xyv

2

)
X1 + xvT ,

θv ∧ T = yvX1 − xvX2.

(14.18)

The non-unit outer Riemannian normal to S is thus given by

N = θu ∧ θv =
{
yu

(
tv + yxv − xyv

2

)
− yv

(
tu + yxu − xyu

2

)}
X1

+
{
xv

(
tu + yxu − xyu

2

)
− xu

(
tv + yxv − xyv

2

)}
X2 + {xuyv − xvyu}T

=
(

yutv − yvtu − y

2
(xuyv − xvyu)

)
X1 +

(
xvtu − xutv + x

2
(xuyv − xvyu)

)
X2

+ (xuyv − xvyu)T . (14.19)

We denote by ν = N/|N | the Riemannian Gauss map of S . Keeping in mind (13.3), we see
from (14.19) that

⎧⎪⎨
⎪⎩

p = yutv − yvtu − y
2 (xuyv − xvyu),

q = xvtu − xutv + x
2 (xuyv − xvyu),

ω = xuyv − xvyu.

(14.20)

We note at this moment that, given the assumption θ ∈ C2(Ω), the functions p,q,ω,W are
of class C1(Ω), and that moreover p,q , ω are of class C1(S \ ΣS). In what follows, given a
function ζ defined in a neighborhood of S , we will by abuse of notation denote with ζ(u, v) =
ζ ◦ θ(u, v) = ζ(x(u, v), y(u, v), t (u, v)). The chain rule gives

ζu = xuζx + yuζy + tuζt , ζv = xvζx + yvζy + tvζt . (14.21)



362 D. Danielli et al. / Advances in Mathematics 215 (2007) 292–378
Using (3.2), we obtain from (14.21)

{
ζu = xuX1ζ + yuX2ζ + (tu + yxu−xyu

2

)
T ζ,

ζv = xvX1ζ + yvX2ζ + (tv + yxv−xyv

2

)
T ζ.

(14.22)

In the sequel, it will be convenient to also have the expression of ζu, ζv with respect to the or-
thonormal frame {Z,Y,T }, where Y and Z are like in (13.9), (13.10). From (14.22) and (13.13),
we have {

ζu = (xup + yuq)Y ζ + (xuq − yup)Zζ + (tu + yxu−xyu

2

)
T ζ,

ζv = (xvp + yvq)Y ζ + (xvq − yvp)Zζ + (tv + yxv−xyv

2

)
T ζ.

(14.23)

We now fix functions a, b, k ∈ C∞
0 (S \ ΣS), and consider the vector field

X = aX1 + bX2 + kT . (14.24)

For small values of λ ∈ R, we let Sλ be the surface obtained by deforming S through the map
Jλ = Id + λX , so that

Jλ(g) = g + λ(aX1 + bX2 + kT ), g ∈ S. (14.25)

The parametric representation of Sλ is given by

θλ = θ + λX , (14.26)

so that

θλ
u = θu + λXu, θλ

v = θv + λXv, (14.27)

and therefore the non-unit Riemannian normal to the surface Sλ = Jλ(S) is given by

Nλ = θλ
u ∧ θλ

v = N + λ(θu ∧Xv − θv ∧Xu) + λ2Xu ∧Xv. (14.28)

From (14.28) we obtain

dNλ

dλ

∣∣∣∣
λ=0

= θu ∧Xv − θv ∧Xu,
d2Nλ

dλ2

∣∣∣∣
λ=0

= 2Xu ∧Xv. (14.29)

Using (14.16) we find

Xu = auX1 + buX2 +
(

ku + bxu − ayu

2

)
T , (14.30)

Xv = avX1 + bvX2 +
(

kv + bxv − ayv

2

)
T . (14.31)

From (14.29)–(14.31) and (14.18) one has
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dNλ

dλ

∣∣∣∣
λ=0

=
{(

tv + yxv − xyv

2

)
bu −

(
tu + yxu − xyu

2

)
bv + (yukv − yvku) − b

2
(xuyv − xvyu)

}
X1

+
{(

tu + yxu − xyu

2

)
av −

(
tv + yxv − xyv

2

)
au + (xvku −xukv)+ a

2
(xuyv −xvyu)

}
X2

+ {(yvau − yuav) + (xubv − xvbu)
}
T . (14.32)

Equations (14.29)–(14.31) also give

d2Nλ

dλ2

∣∣∣∣
λ=0

= 2

{[
bu

(
kv + bxv − ayv

2

)
− bv

(
ku + bxu − ayu

2

)]
X1

+
[
av

(
ku + bxu − ayu

2

)
− au

(
kv + bxv − ayv

2

)]
X2

+ (aubv − avbu)T

}
. (14.33)

We now let

{
Xλ

1 = X1(θ
λ) = X1 − λb

2T ,

Xλ
2 = X2(θ

λ) = X2 + λa
2 T ,

(14.34)

for which we clearly have

dXλ
1

dλ
= −b

2
T ,

dXλ
2

dλ
= a

2
T ,

d2Xλ
1

dλ2
= 0,

d2Xλ
2

dλ2
= 0. (14.35)

Consider the quantities in (14.10). From (14.35) we find

dpλ

dλ

∣∣∣∣
λ=0

=
〈
dNλ

dλ

∣∣∣∣
λ=0

,X1

〉
− b

2
〈N , T 〉, (14.36)

d2pλ

dλ2

∣∣∣∣
λ=0

=
〈
d2Nλ

dλ2
|λ=0,X1

〉
− b

〈
dNλ

dλ

∣∣∣∣
λ=0

, T

〉
. (14.37)

Similarly, we find

dqλ

dλ

∣∣∣∣
λ=0

=
〈
dNλ

dλ

∣∣∣∣
λ=0

,X2

〉
+ a

2
〈N , T 〉, (14.38)

d2qλ

dλ2

∣∣∣∣
λ=0

=
〈
d2Nλ

dλ2

∣∣∣∣
λ=0

,X2

〉
+ a

〈
dNλ

dλ

∣∣∣∣
λ=0

, T

〉
. (14.39)
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Lemma 14.10. Let pλ and qλ relative to the surface Sλ = Jλ(S), where Jλ is defined by (14.25),
then

dpλ

dλ

∣∣∣∣
λ=0

= W
{−(Zb + bω) − qωZk + p(T k − ωYk)

}
,

dqλ

dλ

∣∣∣∣
λ=0

= W
{
(Za + aω) + pωZk + q(T k − ωYk)

}
.

Proof. Using (14.32), (14.36) and the third equation in (14.20), we obtain

dpλ

dλ

∣∣∣∣
λ=0

=
(

tv + yxv − xyv

2

)
bu −

(
tu + yxu − xyu

2

)
bv + (yukv − yvku) − bω. (14.40)

We now use the equations (14.22) to express the derivatives bu, bv , ku, kv in terms of deriva-
tives Zb, Yb, T b with respect to the orthonormal frame {Z,Y,T }. Ordering terms one finds:

dpλ

dλ

∣∣∣∣
λ=0

=
[(

tv + yxv − xyv

2

)
(xup + yuq) −

(
tu + yxu − xyu

2

)
(xvp + yvq)

]
Yb

+
[(

tv + yxv − xyv

2

)
(xuq − yup) −

(
tu + yxu − xyu

2

)
(xvq − yvp)

]
Zb

+ [yu(xvp + yvq) − yv(xup + yuq)
]
Yk + [yu(xvq − yvp) − yv(xuq − yup)

]
Zk

+
[
yutv − yvtu − y

2
(xuyv − xvyu)

]
T k − bω.

Simplifying in the latter equation, gives

dpλ

dλ

∣∣∣∣
λ=0

=
[
−
(

xvtu − xutv + x

2
(xuyv − xvyu)

)
p +

(
yutv − yvtu − y

2
(xuyv − xvyu)

)
q

]
Yb

+
[
−
(

xvtu −xutv + x

2
(xuyv −xvyu)

)
q −

(
yutv −yvtu − y

2
(xuyv −xvyu)

)
p

]
Zb

− (xuyv − xvyu)pYk − (xuyv − xvyu)qZk + pWT k − bω,

where we have used (14.20). At this point we notice that, in view of (14.20) again, the coefficient
of Yb vanishes, and we obtain from the remaining terms the following expression:

dpλ

dλ

∣∣∣∣
λ=0

= W
{−Zb − bω + pT k − ω(pYk + qZk)

}
,

which gives the first equation in the thesis of the lemma. In a similar fashion, we obtain the

desired expression of dqλ

dλ
|λ=0. �

From Lemma 14.10 we immediately obtain the following crucial result.
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Lemma 14.11. In the situation of Lemma 14.10 we have

(
pλ dpλ

dλ
+ qλ dqλ

dλ

)∣∣∣∣
λ=0

= W 2{(T k − ωYk) + (qZa − pZb) + (qa − pb)ω
}
.

With Lemma 14.11 in hands we are ready to give the proof of Theorem 14.3.

Proof of Theorem 14.3. Substituting the equation in Lemma 14.11 in (14.11) of Lemma 14.9,
we obtain

VH
I (S;X ) =

∫
S

{T k − ωYk}dσH +
∫
S

{
(qZa − pZb) + (qa − pb)ω

}
dσH . (14.41)

In order to extract the geometry from (14.41) we need to convert the two integrals in the
right-hand side into ones which involve only the functions a, b and k, and not their covariant
derivatives along the orthonormal frame {Z,Y,T }. This is where we use Lemma 14.8 for the
first time. Applying (14.7), (14.8) we find

∫
S

{qZa + qωa}dσH =
∫
S

paHdσH ,

∫
S

{pZb + pωb}dσH = −
∫
S

qbHdσH . (14.42)

Furthermore, Lemma 14.8 gives∫
S

{T k − ωYk}dσH =
∫
S

ωkHdσH . (14.43)

Combining (14.42), (14.43) with (14.41) we obtain

VH
I (S;X ) =

∫
S

H{pa + qb + ωk}dσH . (14.44)

Recalling the definition (14.4) of F , we reach the desired conclusion. �
With Lemma 14.10 and some elementary computations, we obtain the following result which

is useful in the proof of Theorem 14.5 since it provides the integrand of the second addend in the
right-hand side of (14.12).

Lemma 14.12. In the situation of Lemma 14.10 we have

(
dpλ

dλ
)2|λ=0 + (

dqλ

dλ
)2|λ=0

W 2
= (Za + pωZk)2 + (Zb + qωZk)2 + (T k − ωYk)2 + (a2 + b2)ω2

+ 2(T k − ωYk)
(
qZa − pZb + ω(aq − bp)

)
+ 2ω(aZa + bZb) + 2ω2(ap + bq)Zk. (14.45)
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We finally turn to the computation of the first addend in the right-hand side of (14.12), i.e.,

(pλ d2pλ

dλ2 + qλ d2qλ

dλ2 )|λ=0. From (14.37) and from (14.32), (14.33) we obtain

(
pλ d2pλ

dλ2
+ qλ d2qλ

dλ2

)∣∣∣∣
λ=0

= W

{〈
d2Nλ

dλ2

∣∣∣∣
λ=0

,νH

〉
+ (aq − bp)

〈
dNλ

dλ

∣∣∣∣
λ=0

, T

〉}

= W
{[

2kv(pbu − qau) + 2ku(qav − pbv)
]

+ [(bxv − ayv)(pbu − qau) + (bxu − ayu)(qav − pbv)
]

+ (aq − bp)
[
(yvau − yuav) + (xubv − xvbu)

]}
. (14.46)

Now we compute the three expressions in square brackets in the right-hand side of (14.46).
Using (14.23) we obtain

(pbu − qau) = (xup + yuq)(pYb − qYa) + (xuq − yup)(pZb − qZa)

+
(

tu + yxu − xyu

2

)
(pT b − qT a), (14.47)

(qav − pbv) = −(xvp + yvq)(pYb − qYa) − (xvq − yvp)(pZb − qZa)

−
(

tv + yxv − xyv

2

)
(pT b − qT a). (14.48)

These formulas, combined with (14.20), give

(bxv − ayv)(pbu − qau) + (bxu − ayu)(qav − pbv)

= W
{
p(ap + bq)(T b − ωYb) − q(ap + bq)(T a − ωYa)

+ (bp − aq)(pZb − qZa)ω
}
. (14.49)

Again from (14.23) and (14.20), we obtain

yvau − yuav = [−p(T a − ωYa) + qωZa
]
W, (14.50)

and

xubv − xvbu = [−q(T b − ωYb) − pωZb
]
W. (14.51)

Formulas (14.50), (14.51) give

(aq − bp)
[
(yvau − yuav) + (xubv − xvbu)

]
= (aq − bp)

[−p(T a − ωYa) − q(T b − ωYb) + (qZa − pZb)ω
]
W. (14.52)

Finally, a (long) computation, based on (14.23), (14.20), (14.47), (14.48), and the identity
p2 + q2 = 1, give
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2kv(pbu − qau) + 2ku(qav − pbv)

= 2W
{−(pZb − qZa)(T k − ωYk) + Zk

[
p(T b − ωYb) − q(T a − ωYa)

]}
. (14.53)

From (14.46), (14.49), (14.52) and (14.53) we finally conclude

(pλ d2pλ

dλ2 + qλ d2qλ

dλ2 )|λ=0

W 2

= −2(pZb − qZa)(T k − ωYk) + 2Zk
[
p(T b − ωYb) − q(T a − ωYa)

]
+ p(ap + bq)(T b − ωYb) − q(ap + bq)(T a − ωYa) + (bp − aq)(pZb − qZa)ω

+ (aq − bp)
[−p(T a − ωYa) − q(T b − ωYb) + (qZa − pZb)ω

]
. (14.54)

We have thus proved the following lemma.

Lemma 14.13. In the situation of Lemma 14.10 we have

(pλ d2pλ

dλ2 + qλ d2qλ

dλ2 )|λ=0

W 2

= −2(pZb − qZa)(T k − ωYk) + (T a − ωYa)
[−2qZk − q(ap + bq) − p(aq − bp)

]
+ (T b − ωYb)

[
2pZk + p(ap + bq) − q(aq − bp)

]
+ 2(aq − bp)(qZa − pZb)ω. (14.55)

We can finally give the proof of Theorem 14.5.

Proof of Theorem 14.5. Combining (14.12) in Lemma 14.9 with Lemmas 14.11, 14.12
and 14.13, we obtain the desired conclusion. �
15. The stability of H -minimal surfaces

Unfortunately, in its present form Theorem 14.5 is not as useful as one would wish. A com-
pletely analogous situation occurs in the Riemannian case, where one still needs to carefully use
intrinsic integration by parts to extract the geometry, see [8]. The main objective of this section is
to give a geometric meaning to the second variation formula of Theorem 14.5. We stress that for
the sake of simplicity, and because of its relevance in the applications to stability, we state it for
stationary points of the H -perimeter functional (H -minimal surfaces), but a more general for-
mula containing the H -mean curvature H , along with its covariant derivatives, can be obtained
with some additional work if we use the full form of the geometric identities in Section 13. We
begin with the relevant definition.

Definition 15.1. Given an oriented C2 surface S ⊂ H
1, with ΣS = ∅, we say that S is stable if

it is stationary (i.e., H -minimal), and if

VH
II (S;X ) � 0, for every X ∈ C2

0

(
S,H

1).
If there exists X �= 0 such that VH

II (S;X ) < 0, then we say that S is unstable.
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Our main result concerning the stability is contained in the following theorem.

Theorem 15.2. Let S ⊂ H
1 be H -minimal, then

VH
II (S;X ) =

∫
S

{∣∣∇H,SF
∣∣2 + (2A− ω2)F 2}dσH ,

where F is as in (14.4). As a consequence, S is stable if and only if the following stability
inequality of Hardy type holds on S :

∫
S

(
ω2 − 2A

)
F 2 dσH �

∫
S

∣∣∇H,SF
∣∣2 dσH .

Corollary 15.3. Every vertical plane S = {(x, y, t) ∈ H1 | αx + βy = γ }, with α2 + β2 �= 0, is
stable.

Proof. Consider the defining function φ(x, y, t) = αx + βy − γ . One has ω = T φ ≡ 0, and
therefore ω = A ≡ 0. Since every plane in H

1 is H -minimal, we can apply Theorem 15.2, to find
for every vector field X = aX1 + bX2 + kT ∈ C2

0(S,H
1)

VH
II (S;X ) =

∫
S

∣∣∇H,SF
∣∣2 dσH � 0.

This proves the stability of S . We note explicitly that in the present situation

F = αa + βb√
α2 + β2

. �

Another interesting consequence of Theorem 15.2 is the following stability inequality for
intrinsic graphs. We recall that a C2 surface S ⊂ H

1 is called an intrinsic X1-graph according to
[45] provided that there exist an open set Ω ⊂ R

2
(u,v) and a function φ ∈ C2(Ω) such that S can

be described by (x, y, t) = (0, u, v) ◦ φ(u, v)e1 = (0, u, v) ◦ (φ(u, v),0,0). This means that S
admits the parametrization

θ(u, v) =
(

φ(u, v),u, v − u

2
φ(u, v)

)
, (u, v) ∈ Ω.

If instead S can be parametrized by

θ(u, v) =
(

u,φ(u, v), v + u

2
φ(u, v)

)
, (u, v) ∈ Ω,

then we say that S is an intrinsic X2-graph. We only discuss the case of an intrinsic X1-graph,
leaving to the reader to provide the trivial changes necessary to treat the case of X2-graphs.
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Given a function F denote by Bφ(F ) = Fu + φFv the linear transport equation, so that
Bφ(φ) = φu + φφv indicates the nonlinear inviscid Burger operator acting on φ. Since from
(14.20) we obtain

p = 1, q = −Bφ(φ), ω = −φv, W =
√

1 +Bφ(φ)2, (15.1)

we see that the Riemannian normal to an intrinsic X1-graph is given by

N = X1 −Bφ(φ)X2 − φvT . (15.2)

As a consequence of the first equality in (15.1) we deduce that an intrinsic X1-graph always
has empty characteristic locus. Furthermore, again from (15.1), and from (15.2), we see that if
Ω is bounded then the H -perimeter of S is expressed by the functional

σH (S) = P(φ) =
∫
Ω

√
1 +Bφ(φ)2 dudv,

so that

dσH =
√

1 +Bφ(φ)2 dudv,

see also [1].

Corollary 15.4. Let S be a C2 H -minimal, intrinsic X1-graph, then S is stable if and only if

∫
Ω

φ2
v + 2Bφ(φv)√
1 +Bφ(φ)2

F 2 dudv �
∫
Ω

Bφ(F )2√
1 +Bφ(φ)2

dudv,

where F is as in (14.4).

Proof. We begin by observing that, thanks to (15.1) we have⎧⎪⎨
⎪⎩

Y = νH = 1√
1+Bφ(φ)2

X1 − Bφ(φ)√
1+Bφ(φ)2

X2,

Z = (νH )⊥ = − Bφ(φ)√
1+Bφ(φ)2

X1 − 1√
1+Bφ(φ)2

X2.
(15.3)

Given a function f on S , by abuse of notation we continue to indicate with the same letter the
function f (u, v) = f (θ(u, v)). A simple use of the chain rule as in (14.21) gives

fu = φuX1f + X2f − φTf, fv = φvX1f + Tf,

where in the right-hand sides of the latter equations we have written X1f for X1f ◦ θ , and
similarly for X2f , Tf . Using the latter two equations and the second equation in (15.3), we
obtain

Zf = − Bφ(f )√
1 +Bφ(φ)2

. (15.4)
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We now use (15.4) to compute A = −Zω. From the latter two equations in (15.1), one has

A = Z

(
φv√

1 +Bφ(φ)2

)

= Z(φv)√
1 +Bφ(φ)2

− φv

Z(

√
1 +Bφ(φ)2)

1 +Bφ(φ)2

= − Bφ(φv)

1 +Bφ(φ)2
+ φv

Bφ(φ)Bφ(Bφ(φ))

(1 +Bφ(φ)2)2
.

One can now recognize that the H -mean curvature of S is given by

Bφ

( Bφ(φ)√
1 +Bφ(φ)2

)
= −H, (15.5)

see [50], and also [3]. Using (15.5), after some simple computations, we obtain that the condition
that S be H -minimal is expressed by

Bφ

(
Bφ(φ)

)= 0.

Substituting this equation in the above formula for A we conclude that

A = − Bφ(φv)

1 +Bφ(φ)2
.

Again from (15.1) we finally obtain

ω2 − 2A = φ2
v + 2Bφ(φv)

1 +Bφ(φ)2
.

To reach the desired conclusion we are left with using the latter equation in the stability inequality
in Theorem 15.2, in combination with the expression of dσH and with (15.4). �

In [26] it was conjectured that the only C2 stable intrinsic graphs in H
1 are the vertical planes.

Using also the results in [26], in [3] the authors have provided a positive answer to this conjecture.
We next turn to the proof of Theorem 15.2.

Proof of Theorem 15.2. Since we want to extract a more geometrically meaningful formula
from the general expression in Theorem 14.5, we will now make several reductions. First, ex-
panding the three squares, and regrouping terms using repeatedly p2 + q2 = 1, we find for the
integrand in the right-hand side of (14.6)

Integrand = 2(qZa −pZb)(T k −ωYk)+ (T a −ωYa)
[−2qZk −q(ap +bq)−p(aq −bp)

]
+ (T b − ωYb)

[
2pZk + p(ap + bq) − q(aq − bp)

]+ (pZa + qZb)2
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+ ω2(Zk)2 + 2(pZa + qZb)ωZk + 2ω2(ap + bq)Zk + 2ω(aZa + bZb)

+ (a2p2 + b2q2 + 2pqab
)
ω2.

We easily obtain from the latter equation

VH
II (S;X ) = 2

∫
S

(qZa − pZb)(T k − ωYk)dσH

+ 2
∫
S

[−q(T a − ωYa) + p(T b − ωYb)
]
Zk dσH

+
∫
S

{
(T a − ωYa)

[−q(ap + bq) − p(aq − bp)
]

+ (T b − ωYb)
[
p(ap + bq) − q(aq − bp)

]+ (pZa + qZb + ωZk)2

+2ω2(ap + bq)Zk + 2ω(aZa + bZb) + (ap + bq)2ω2}dσH . (15.6)

Our final objective is to remove all derivatives from the functions a, b and k from the right-
hand side of (15.6). This is somewhat delicate and involves some effort. The final product will
be achieved by a repeated use of the basic integration by parts Lemma 14.8 and of the geometric
identities in Section 13. We begin by observing that, thanks to (13.28), the H -minimality of S
implies that

qZa − pZb = Z(qa − pb).

Using this observation, Lemma 14.8, and Corollary 13.10, we obtain

∫
S

2(qZa − pZb)(T k − ωYk)dσH

= −2
∫
S

(qa − pb)Z(T − ωY)k dσH − 2
∫
S

ω(qa − pb)(T − ωY)k dσH

= −2
∫
S

(qa − pb)(T − ωY)Zk dσH + 2
∫
S

(qa − pb)[T − ωY,Z]k dσH

− 2
∫
S

ω(qa − pb)(T k − ωYk)dσH

= 2
∫
S

Zk(T − ωY)(qa − pb)dσH − 2
∫
S

ωk(T − ωY)(qa − pb)dσH

+ 2
∫

ωk(T − ωY)(qa − pb)dσH
S
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= 2
∫
S

[
q(T a − ωYa) − p(T b − ωYb)

]
Zk dσH

+ 2
∫
S

aZk(T q − ωYq)dσH − 2
∫
S

bZk(T p − ωYp)dσH . (15.7)

Substituting (15.7) in (15.6), we find

VH
II (S;X ) = 2

∫
S

aZk(T q − ωYq)dσH − 2
∫
S

bZk(T p − ωYp)dσH

+
∫
S

{
(T a − ωYa)

[−q(ap + bq) − p(aq − bp)
]

+ (T b − ωYb)
[
p(ap + bq) − q(aq − bp)

]
+ (pZa + qZb + ωZk)2 + 2ω2(ap + bq)Zk + 2ω(aZa + bZb)

+ (ap + bq)2ω2}dσH . (15.8)

It should be clear to the reader that we have made some interesting progress, since we have
eliminated terms containing products of derivatives of a, b and k. However, we are still far from
our final goal. We next use the H -minimality of S , and (13.28) again, to see that

(ZF)2 = ((pZa + qZb + ωZk) −Ak
)2

= (pZa + qZb + ωZk)2 +A2k2 − 2Ak(pZa + qZb) − ωAZ
(
k2),

where F is as in (14.4) and A is the function defined in Corollary 13.3. This identity, the fact that
pZa + qZb = Z(ap + bq) (the H -minimality of S), Corollary 13.11 and Lemma 14.8, give∫

S

(pZa + qZb + ωZk)2 dσH

=
∫
S

(ZF)2 dσH + 2
∫
S

AkZ(ap + bq)dσH −
∫
S

(
ω2 − 2A

)
ω2k2 dσH

=
∫
S

(ZF)2 dσH +
∫
S

(
2A− ω2)(ω2k2 + 2ωk(ap + bq)

)
dσH

− 2
∫
S

A(ap + bq)Zk dσH . (15.9)

Substitution of (15.9) into (15.8) gives

VH
II (S;X ) =

∫
S

(ZF)2 dσH +
∫
S

(
2A− ω2)(ω2k2 + 2ωk(ap + bq)

)
dσH

+ 2
∫

aZk
[
(T q − ωYq) + pω2 − pA

]
dσH
S



D. Danielli et al. / Advances in Mathematics 215 (2007) 292–378 373
+ 2
∫
S

bZk
[−(T p − ωYp) + qω2 − qA

]
dσH

+
∫
S

{
(T a − ωYa)

[−q(ap + bq) − p(aq − bp)
]

+ (T b − ωYb)
[
p(ap + bq) − q(aq − bp)

]}
dσH

+
∫
S

ωZ
(
a2 + b2)dσH +

∫
S

(ap + bq)2ω2 dσH . (15.10)

We now claim

(T q − ωYq) + pω2 − pA = −(T p − ωYp) + qω2 − qA = 0.

We only check the first of the two equations, leaving it to the reader to provide the details of the
second one. Corollary 13.3 and the identity p2 + q2 = 1 give

pA = p2(T q − ωYq) − pq(T p − ωYp) + pω2

= (T q − ωYq) − q2(T q − ωYq) − pq(T p − ωYp) + pω2

= (T q − ωYq) + pω2 − q
[
q(T q − ωYq) + p(T p − ωYp)

]
= (T q − ωYq) + pω2,

which proves the first identity. Using the claim in (15.10), with a further application of
Lemma 14.8, we obtain

VH
II (S;X ) =

∫
S

(ZF)2 dσH +
∫
S

(
2A− ω2)(ω2k2 + 2ωk(ap + bq)

)
dσH

+
∫
S

{
(T a − ωYa)

[−q(ap + bq) − p(aq − bp)
]

+ (T b − ωYb)
[
p(ap + bq) − q(aq − bp)

]}
dσH

+
∫
S

(
A− ω2)(a2 + b2)dσH +

∫
S

(ap + bq)2ω2 dσH . (15.11)

Completing the square in the second integral in the right-hand side of (15.11), we find

VH
II (S;X ) =

∫
S

(ZF)2 dσH +
∫
S

(
2A− ω2)F 2 dσH +

∫
S

{
(T a − ωYa)

[−2apq + b
(
p2 − q2)]

+ (T b − ωYb)
[
2bpq + a(p2 − q2)

]}
dσH

+
∫ (

A− ω2)(a2 + b2)dσH − 2
∫ (

A− ω2)(ap + bq)2 dσH . (15.12)
S S
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The proof of the theorem will be completed if we can establish the following crucial claim:

∫
S

{
(T a − ωYa)

[−2apq + b
(
p2 − q2)]+ (T b − ωYb)

[
2bpq + a

(
p2 − q2)]}dσH

+
∫
S

(
A− ω2)(a2 + b2)dσH − 2

∫
S

(
A− ω2)(ap + bq)2 dσH = 0. (15.13)

To prove (15.13) we proceed as follows. First, Lemma 14.8 gives

−2
∫
S

apq(T a − ωYa)dσH =
∫
S

a2(T − ωY)(pq)dσH .

Therefore, the coefficient of a2 in the left-hand side of (15.13) is given by

(T − ωY)(pq) + (A− ω2)− 2
(
A− ω2)p2 = (T − ωY)(pq) + (A− ω2)(q2 − p2)= 0,

where we have used the identity p2 + q2 = 1. Similarly, we have

2
∫
S

bpq(T b − ωYb)dσH = −
∫
S

b2(T − ωY)(pq)dσH ,

hence the coefficient of b2 in the left-hand side of (15.13) is given by

−(T − ωY)(pq) + (A− ω2)− 2
(
A− ω2)q2 = −[(T − ωY)(pq) + (A− ω2)(q2 − p2)]= 0.

Finally, we have

∫
S

{
b
(
p2 − q2)(T a − ωYa) + a

(
p2 − q2)(T b − ωYb)

}
dσH

= −
∫
S

ab(T − ωY)
(
p2 − q2)dσH .

We thus see that the coefficient of ab in the left-hand side of (15.13) is given by

4
(
ω2 −A

)
pq + (T − ωY)

(
q2 − p2)= 0.

From these considerations, the claim (15.13) follows. We have thus completed the proof. �
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