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Abstract. We establish sharp capacitary estimates for Carnot-Carathéodory rings associated to a
system of vector fields of Hörmander type. Such estimates are instrumental to the study of the local
behavior of singular solutions of a wide class of nonlinear subelliptic equations. One of the main
results is a generalization of fundamental estimates obtained independently by Sanchez-Calle and
Nagel, Stein and Wainger.

1. Introduction. Since Hörmander’s famous hypoellipticity paper [H] the
study of second order pde’s arising from noncommuting vector fields has un-
dergone considerable progress. In this context an important class of models is
that of stratified, nilpotent Lie groups with their associated sub-Laplacians. The
homogeneous structure of such groups allows the development of a harmonic
analysis which, in turn, plays a central role in the regularity theory of general
Hörmander type operators. This program was developed in the works [FS], [F1],
[F2], [RS], following a circle of ideas outlined by E. Stein [St1] in his address
at the Nice International Congress in 1970.

Among the stratified Lie groups the Heisenberg group H
n = (C n

�R , �) plays
a prominent role. For the latter, Folland [F1] discovered a remarkably simple
fundamental solution of the real part of the Kohn-Laplacian given by

Γ(u, v) = C�(u�1
� v)2�Q.(1.1)

Here, for u = (z, t) 2 H
n we have denoted by �(u) = (jzj4 + t2)

1
4 the norm

function on H
n , whereas Q = 2n + 2 is the homogeneous dimension associated to

the anisotropic dilations ��(z, t) = (�z,�2t). If we introduce the distance d(u, v) =
�(u�1

� v), and corresponding balls Bd(u, r) = fv 2 H
n
j d(u, v) < rg, then (1.1)

can be recast in the form

Γ(u, v) = c
d(u, v)2

jBd(u, d(u, v))j
.(1.2)
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A deep result of Nagel, Stein, and Wainger [NSW] and of Sanchez-Calle
[SC] states that the behavior near the singularity of the fundamental solution
of any Hörmander operator is quantitatively given by the right-hand side of
(1.2). Precisely, consider a family X1, : : : , Xm of C1 vector fields in R

n (or in
a connected n-dimensional manifold), n � 3, satisfying Hörmander’s finite rank
condition [H]

rank Lie [X1, : : : , Xm] � n.

Let Γ(x, y) denote the fundamental solution of

Lu =
mX

j=1

X�j Xju = 0,(1.3)

where X�j is the formal adjoint of Xj. Then, it was proved in [NSW], [SC]: For
every U �� R

n there exist C, R0 > 0 such that for x 2 U and 0 < d(x, y) � R0

one has

C
d(x, y)2

jBd(x, d(x, y))j
� Γ(x, y) � C�1 d(x, y)2

jBd(x, d(x, y))j
.(1.4)

In (1.4) d(x, y) denotes the Carnot-Carathéodory distance associated to X1,
: : : , Xm, and Bd(x, r) = fy 2 R

n
j d(x, y) < rg the corresponding ball.

It is interesting to compare (1.4) with a famous result due to Littman, Stam-
pacchia and Weinberger [LSW]. These authors proved that the fundamental so-
lution G(x, y) of a uniformly elliptic operator (with bounded measurable coeffi-
cients) satisfies the estimate

G(x, y) � cap (B(x, r), B(x, R))�1,

where cap denotes the Newtonian capacity, R > 0 is fixed and r = jx�yj is small
compared to R. Since

cap (B(x, r), B(x, R)) � rn�2,

one infers that

G(x, y) � jx� yj2�n.(1.5)

The estimate (1.4) constitutes the subelliptic analogue of (1.5). The above
also underlines the crucial role of capacitary estimates of a spherical ring in
determining the local behavior of singular solutions.

In this paper we study the pointwise behavior of singular solutions of a general
class of nonlinear subelliptic equations. The prototypes of such equations naturally
arise in questions concerning the geometry of CR manifolds or in the theory of
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quasi-regular mappings on stratified Lie groups. Consider a family X1, : : : , Xm of
C1 vector fields satisfying the above mentioned finite rank condition. Denoting
by Xu = (X1u, : : : , Xmu) the gradient of a function u, we introduce the Sobolev
functional

Jp(u) =
Z
jXujp dx =

Z � mX
j=1

(Xju)2
� p

2

dx, 1 < p <1.

The Euler-Lagrange equation associated to Jp is given by

mX
j=1

X�j (jXujp�2Xju) = 0,(1.6)

which reduces to (1.3) when p = 2. Equation (1.6) is the subelliptic analogue of
the so-called p-Laplacian. The latter is obtained when m = n and Xj = @

@xj
.

The case in which X1, : : : , Xm are left-invariant vector fields on a stratified
Lie group and p = Q, the homogeneous dimension of the group, has a special
geometrical meaning in connection with the theory of quasi-conformal or quasi-
regular mappings.

Originated with Mostow’s celebrated work on rigidity [M], the theory of
quasi-conformal mappings on nilpotent Lie groups has been recently developed
by several authors. We recall, in particular, the papers [KR1], [KR2], [KR3],
[P1], [P2], [HR], [HH]. From the point of view of applications it is important to
study equations more general than (1.6). There are several reasons for this. First,
in the study of topological properties of quasi-regular mappings the theory of
general structure quasi-linear equations plays a pervasive and fundamental role.
This is well-known for the Euclidean setting (see, e.g. the classical monograph by
Reshetnyak [R], and the more recent one by Heinonen, Kilpelainen and Martio
[HKM]), and still holds true for stratified nilpotent Lie groups (see, for instance,
the papers [HH] and [HR]). Secondly, as it was pointed out by Pansu in [P1], the
Euclidean proofs of the regularity of 1-quasiconformal mappings (the so-called
Liouville theorem) of Gehring [G] and Reshetnyak [R], “: : : rely on nonlinear
elliptic regularity theory. In the nilpotent case, the corresponding equations are
hypoellipitc and the necessary regularity is not yet available.” We mention that
the relevant equation here is (1.6), with p = Q and for solutions u such that
M�1

� jXuj � M > 0. It should be emphasized that the regularity of the
(horizontal) gradient constitutes, in this framework, an extremely hard problem.
For nilpotent stratified Lie groups of step two the optimal smoothness has been
recently achieved by one of us in [Ca]. Our paper represents some needed progress
in the direction of a general regularity theory. The recent works by Mostow
and Margulis [MM], and by Gromov [Gr], constitute further justification for
developing the theory in the more general setting of Carnot-Carathéodory spaces,
rather than only in stratified nilpotent Lie groups.
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In this paper we consider equations of the type

mX
j=1

X�j Aj(x, u, Xu) = f (x, u, Xu).(1.7)

Here, the functions A = (A1, : : : , Am): R
n
�R�R

m
! R and f : R

n
�R�R

m
!

R are measurable and satisfy the following structural conditions. There exist
1 < p < 1, c1 � 0 and measurable functions f1, f2, f3, g2, g3, and h3 such that
for a.e. x 2 R

n , u 2 R and � 2 R
m :8>><>>:

jA(x, u, �)j � c1j�j
p�1 + g2jujp�1 + g3,

j f (x, u, �)j � f1j�jp�1 + f2jujp�1 + f3,

A(x, u, �) � � � j�jp � f2jujp � h3.

(1.8)

The relevant integrability assumptions on the functions fi, i = 1, 2, 3, g2,
g3 and h3 will be introduced in section 3. It should be noted that the choice
Aj(x, u, �) = j�jp�2�j makes (1.6) a particular case of (1.7).

One of the main results in this paper is a precise quantitative description of
the local behavior of singular solutions of (1.7), see Theorem 7.1 below. Roughly
speaking, the latter states that if u is a solution of (1.7) in a punctured ball
Bd(x0, R) n fx0g, then either x0 is a removable singularity, or for some C > 0

(1.9)

C capp (Bd(x0, d(x, x0)); Bd(x0, R))
1

1�p �u(x)

�C�1 capp � (Bd(x0, d(x, x0)); Bd(x0, R))
1

1�p .

In the above inequality we have denoted by capp (E; Ω) the subelliptic p-
capacity of the condenser (E; Ω) defined via the functional Jp.

As a corollary of (1.9) and of the optimal capacity estimates of a metric ring,
established in Theorems 4.1 and 4.2, we obtain the following generalization of
results in [NSW], [SC]:

C
�

d(x, y)p

jBd(x, d(x, y))j

� 1
p�1

� Γp(x, y) � C�1
�

d(x, y)p

jBd(x, d(x, y))j

� 1
p�1

(1.10)

where Γp(x, y) denotes the fundamental solution of (1.7).
Our approach is based on that of Serrin’s ingenious papers [S1] and [S2],

where the elliptic case m = n and Xj = @
@xj

, j = 1, : : : , n was extensively studied.

Although the present work much owes to Serrin’s original ideas, it should be
emphasized that the subelliptic geometry introduces new substantial difficulties
in the problem. Only recently we have been able to establish two basic results:
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An optimal embedding for the Sobolev spaces associated to the functional Jp; the
Harnack inequality for positive solutions of (1.7), see [CDG1], [CDG3]. Another
important aspect of the analysis in [S1], [S2] is the existence of sharp capacitary
estimates of Euclidean rings. In the subelliptic setting these estimates are proved
in Theorems 4.1 and 4.2. We would like to point out that one of the starting
motivations for us was provided by Pansu’s observation in [P1] that “: : : a big
part of the analytic theory of quasiconformal mappings in the Euclidean space can
be carried out on Carnot groups. However, it seems to be harder to obtain capacity
estimates.” Theorems 4.1 and 4.2 generalize results of Pansu [P2], Korányi and
Reimann [KR1] and Heinonen and Holopainen [HH]. We remark that (1.9) in the
conformally invariant case p = Q for equations of a simpler form on stratified
Lie groups has also been established in [HH].

We were led to conjecture that (1.10) or, more generally, (1.9) should hold by
the discovery of a remarkable explicit fundamental solution of (1.6) for groups
of Heisenberg type. The construction of such a fundamental solution is presented
in Section 2. Once known, the latter is used to compute, with explicit geomet-
ric constants, the p-capacity of a spherical ring (see Theorem 2.2). Even for the
Heisenberg group H

n the existence of these fundamental solutions is a nontriv-
ial fact. Groups of Heisenberg type were introduced by Kaplan [K] as direct
generalizations of H

n . There are infinitely many isomorphism classes of such
groups and they include the nilpotent component in the Iwasawa decomposition
of simple groups of rank one. The relatively simple structure of Heisenberg type
groups provides an ideal framework for testing conjectures and for construct-
ing interesting examples in analysis and geometry. We hope that the results in
Section 2 will motivate the reader to undertake the more technical part of the
paper.

Before closing we would like to briefly discuss an interesting aspect of the
capacitary estimates in Section 4. A fundamental result in [NSW] describes the
volume of the Carnot-Caratheodory balls introduced above: For any U �� R

n

there exist C, R0 > 0 such that if x 2 U and 0 < r � R0,

CΛ(x, r) � jB(x, r)j � C�1Λ(x, r).

Here, Λ(x, r) is a polynomial in r whose coefficients are positive (continuous)
functions of x. Furthermore, the following estimate holds:

CrQ
� Λ(x, r) � C�1rQ(x),

for all x 2 U and 0 < r � R0, where

Q � Q(x) � n.
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The number Q is called the local homogeneous dimension, relative to U ��

R
n , of the family X1, : : : , Xm. The justification for such a name comes from the

role played by Q in the Sobolev embedding Theorem 3.1, or in the isoperimetric
inequality Theorem 3.2.

In view of the close connection between capacitary estimates and Sobolev
embeddings it came as a surprise to us that in the former it is not the local
homogeneous dimension Q, but rather the number Q(x) which constitutes the
threshold. By this we mean that the subelliptic p-capacity of a metric ring centered
at x changes drastically depending on whether 1 < p < Q(x), p = Q(x) or
p > Q(x). This unsettling behavior is not observed in the analysis of stratified
Lie groups, since one has in that case Q(x) � Q, the homogeneous dimension of
the group associated to the dilations.

Our work can be seen as a generalization to the subelliptic context of the
quasi-linear theory developed by Serrin, Ladyzenskaja, Uraltseva and many oth-
ers. In this respect, this paper is a sequel to the works [CDG1], [CDG3], [CDG2],
[D1], and [D2]. We mention that a general theory of Sobolev and isoperimetric
inequalities for systems of (nonsmooth) vector fields has been recently developed
in [GN]. Combining the ideas in the present paper with the results in [GN] it is
now possible to study the local behavior of solutions to quasilinear subelliptic
equations in the general context of Carnot-Carathéodory spaces as in [GN] or
[Gr].

Finally, we would like to acknowledge our indebtedness to the results in
[NSW].

2. Fundamental solutions in groups of Heisenberg type. This section
serves to motivate the subsequent developments. We construct explicit funda-
mental solutions for the model equation (1.6) in the context of Kaplan, or H-type
groups. Aside from its aesthetical appeal the existence of such singular solutions
is a remarkable fact which has several implications. On the one hand it demon-
strates the sharpness of the results in this paper (see the remarks at the end of
this section). On the other hand, in the conformally invariant case p = Q such
exact solutions play an important role in the theory of quasiregular mappings (see
[KR3], [HH]).

Groups of H-type arise as a generalization of the Heisenberg group H
n .

Since their introduction by Kaplan [K] in 1980 they have provided an interesting
framework in which to construct examples both in analysis and geometry. A group
of Heisenberg type is best described in terms of its Lie algebra g. We assume
that we are given a positive definite inner product h , i on g and an orthogonal
decomposition g = � � � (stratification of Step 2). Here, � is the center of g and
for every unit z 2 � the mapping Jz: � ! �, defined by

hJz(v), v 0i = hz, [v, v 0]i(2.1)
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is orthogonal. We observe explicitly that

hJz(v), vi = 0, hJz(v), Jz(v)i = jzj2jvj2(2.2)

for every v 2 �, z 2 �.
There exist infinitely many isomorphism classes of groups of H-type which

include, in particular, the nilpotent component in the Iwasawa decomposition of
simple groups of rank one. For any integer n there is a group of H-type having
center of dimension n, see [K]. When n = 1 one obtains the Heisenberg groups.

Let m = dim �, k = dim �. The homogeneous dimension of G is Q = m + 2k.
Let now fXjgj=1,:::,m be an orthogonal basis for � and denote in the same way the
corresponding left-invariant vector fields on G. Consider a Riemannian metric
on G defined so that hXi, Xji = �ij. Since the exponential map of a group of
Heisenberg type is an analytic diffeomorphism, we can define analytic mappings
v: G ! � and z: G ! � by x = exp [v(x) + z(x)], for every x 2 G. Denote
by f��g�>0 the group of dilations on G defined by ��(x) = exp [�v(x) + �2z(x)].
We observe that, since for each j = 1, : : : , m the translations generated by Xj are
isometries, then X�j = �Xj. This means that for every �, 2 C1

0 (G) we have

Z
G
�Xj d� = �

Z
G
 Xj� d�.

Hereafter, d� will denote a bi-invariant Haar measure on G obtained by
lifting the Lebesgue measure on g via the exponential mapping. Following [K]
we introduce the norm function

�(x) =
h
jv(x)j4 + 16jz(x)j2

i 1
4 , x 2 G.

Let e 2 G denote the identity. The following lemma provides a remarkable
description of the “radial” solutions of Lpu =

Pm
j=1 X�j (jXujp�2Xju) = 0 in Gnfeg.

LEMMA 2.1. Let p > 1, f 2 C2(R +) and set u(x) = f (�(x)). Then, one has

Lpu = (p� 1)jX�jpj f 0(�)jp�2
�
f 00(�) +

Q� 1
p� 1

f 0(�)
�

�

at every point x 2 G n feg where f 0(�(x)) 6= 0.

Proof. For the reader’s convenience we develop in the sequel the computa-
tions in [K]. Given j = 1, : : : , m we set for t > 0

�j(t) =
�
jv(x exp (tXj))j

4 + 16jz(x exp (tXj))j
2
� 1

4
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and note that �j(0) = �(x) for j = 1, : : : , m. The Baker-Campbell-Hausdorff for-
mula [V] gives at once

v(x exp (tXj)) = v(x) + tXj, z(x exp (tXj)) = z(x) +
t
2

[v, Xj].

As a consequence we have

Xj(jv(x)j2) =
d
dt
jv(x exp (tXj))j

2
jt=0= 2hv(x), Xji,(2.3)

Xj(jz(x)j2) =
d
dt
jz(x exp (tXj))j

2
jt=0= hz(x), [v(x), Xj]i = hJz(x)(v(x)), Xji,(2.4)

where in the last equality in (2.4) we have used (2.1). From now on, in order
to simplify the notation we will write v and z instead of v(x), z(x). Using the
definition of �(x) and (2.3), (2.4) we obtain

Xj� =
1
4
��3Xj(�

4) = ��3[jvj2hv, Xji + 4hJz(v), Xji].(2.5)

This gives

jX�j2 =
mX

j=1

(Xj�)2(2.6)

= ��6
mX

j=1

n
jvj4hv, Xji

2 + 16hJz(v), Xji
2 + 8jvj2hv, Xji hJz(v), Xji

o
.

Since fXjgj=1,:::,m is an orthonormal basis, by (2.2) we infer

mX
j=1

hv, Xji hJz(v), Xji = hJz(v), vi = 0.

Using (2.2) once more we conclude

jX�j2 = ��6[jvj6 + 16jJz(v)j2] =
jvj2

�2 .(2.7)

Observe that (2.7) implies that jX�j is ��-homogeneous of degree zero. This is
not surprising since � is ��-homogeneous of degree one.
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We next choose an orthonormal basis fzigi=1,:::,k of � and observe that by
(2.1), (2.2)

mX
j=1

j[v, Xj]j
2 =

kX
i=1

mX
j=1

hzi, [v, Xj]i
2 =

kX
i=1

mX
j=1

hJzi(v), Xji
2 =

kX
i=1

jJzi(v)j2(2.8)

=
kX

i=1

jzij
2
jvj2 = kjvj2.

Using (2.8) we obtain

mX
j=1

X2
j (�4) =

mX
j=1

d2�j

dt2

����
t=0

= 4
mX

j=1

h
jvj2 + 2hv, Xji

2 + 2[v, Xj]
2
i

(2.9)

= 4(m + 2k + 2)jvj2 = 4(Q + 2)jvj2.

We deduce from (2.7), (2.9)

mX
j=1

X2
j � =

1
4
��3

� mX
j=1

X2
j (�4)� 12�2

jX�j2
�

(2.10)

= ��3[(Q + 2)jvj2 � 3jvj2] =
Q� 1
�

jX�j2.

After these preliminaries we return to the proof of Lemma 2.1. To make the
following arguments rigorous we should replace the function � with its regular-

ization �" =
�
(jvj2 + "2)2 + 16jzj2

� 1
4 and let " ! 0 in the end. For the sake of

simplicity we will, however, proceed formally. Recalling that u = f � � we have

Lpu = f 0j f 0jp�2
jX�jp�2

mX
j=1

X2
j � + jX�jp�2

mX
j=1

Xj�Xj( f 0j f 0jp�2)(2.11)

+ f 0j f 0jp�2
mX

j=1

Xj�Xj(jX�j
p�2) = (I) + (II) + (III).

By (2.7) and (2.10) we obtain easily

(I) + (II) = (p� 1)j f 0jp�2
jX�jp

�
f 00 +

Q� 1
p� 1

f 0

�

�
.(2.12)

We now turn our attention to (III) and prove that the latter vanishes. Here,
even more than before, the remarkable structure of H-type groups plays a crucial
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role. We have by (2.5), (2.7)

mX
j=1

Xj�Xj(jX�j
p�2)

=
p� 2

2
jX�jp�4

�
� 2��3

jvj2jX�j2 + ��2
mX

j=1

Xj�Xj(jvj
2)
�

=
p� 2

2
jX�jp�4

�
� 2��1

jX�j4

+ 2��5
mX

j=1

hv, Xji[jvj
2
hv, Xji + 4hJz(v), Xji]

�
.

From (2.2), (2.7) we conclude (III) = 0. In virtue of (2.11), and (2.12) the
proof of the lemma is complete.

Lemma 2.1 allows us to compute explicit fundamental solutions of (1.6) on
H-type groups. We need to introduce some notation.

For r > 0 let Br = fx 2 G j �(x) < rg and define for 1 < p <1

jBrjp =
Z

Br

jX�jp d�.

We denote !p the number jB1jp. Since d� � �� = �Qd�, a rescaling and (2.7)
give

jBrjp = !prQ.(2.13)

Next, we define

j@Brjp =
d
dr
jBrjp = Q!prQ�1.

On the other hand, Federer’s co-area formula [C] yields

jBrjp =
Z r

0

Z
@B�

jX�jp

j grad �j
dHN�1 d�

where grad � denotes the Riemannian gradient of �, N = m + k, and dHN�1 is
the (N � 1)-dimensional Riemannian density on @Br. From the latter equality we
obtain

j@Brjp =
Z
@Br

jX�jp

j grad �j
dHN�1 = Q!prQ�1.
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We define �p = Q!p and introduce the constants

Cp =

8><>:
p� 1
p� Q

��1=(p�1)
p when p 6= Q,

�
�1=(p�1)
p when p = Q.

(2.14)

THEOREM 2.1. Let 1 < p <1 and Cp be as in (2.14). The function

Γp(x) =

(
Cp�

(p�Q)=(p�1) when p 6= Q,

Cp log � when p = Q,

is a fundamental solution of (1.6) with singularity at the identity element e 2 G. A
fundamental solution with singularity at any other point of G is obtained by Γp by
left-translation.

Proof. From Lemma 2.1 it is clear that Γp is an analytic solution of (1.6) in
G n feg. To prove the theorem we only need to show that for every � 2 C1

0 (G)

Z
G
jXΓpj

p�2
hXΓp, X�i d� = ��(e).

Using the polar coordinates in [FS] it is immediately recognized that Γp 2

L1
loc(G) only if p > 2Q

Q+1 .

Nonetheless, for x 6= e we have jXΓp(x)j � �(1�Q)=(p�1)(x), and therefore

jXΓpj
p�1

2 L1
loc(G).

Consider now � 2 C1

0 (G) and choose R > 0 such that supp� � BR. For
0 < " < R we have

Z
BRnB"

jXΓpj
p�2

hXΓp, X�i d�(2.15)

= �
mX

j=1

Z
BRnB"

div (jXΓpj
p�2(XjΓp)Xj)� d�

+
mX

j=1

Z
@(BRnB")

�jXΓpj
p�2(XjΓp)hXj, �i dHN�1,

where we have denoted by �( = � grad �=j grad �j�1) the unit normal.
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Since X�j = �Xj and Xj(jXΓpj
p�2XjΓp) = 0 in BR n B" the first integral in the

right-hand side of (2.15) vanishes. On the other hand

�

mX
j=1

Z
@(BRnB")

�jXΓpj
p�2(XjΓp)hXj, �i dHN�1

=
mX

j=1

Z
@B"

�jXΓpj
p�2(XjΓp)

Xj�

j grad �j
dHN�1

= CpjCpj
p�2 p� Q

p� 1

�
jp� Qj
p� 1

�p�2 1
"Q�1

Z
@B"

�
jX�jp

j grad �j
dHN�1

= �
1

j@B"jp

Z
@B"

�
jX�jp

j grad �j
dHN�1 ! ��(e)

as " ! 0. This completes the proof of the theorem in the case p 6= Q. The case
p = Q is treated similarly.

Remark 1. The case p = Q of Theorem 2.1 has also been recently established
in the interesting paper [HH]. As a remarkable application the authors prove
that every quasiregular map on a group of H-type is either constant or sense-
preserving, discrete and open.

The fundamental solutions in Theorem 2.1 can be used to find explicit for-
mulas for the p-capacity of a spherical ring in Heisenberg type groups (we refer
to Section 4 for the definition of capacity). By virtue of Lemma 2.1 the function

u(x) =

8>>><>>>:
�(x)(p�Q)=(p�1)

� R(p�Q)=(p�1)

r(p�Q)=(p�1) � R(p�Q)=(p�1)
, when p 6= Q,

log [�(x)=R]
log (r=R)

when p = Q,

is a weak (and a classical, smooth) solution to the Dirichlet problem

8><>:
mX

j=1

Xj(jXujp�2Xju) = 0 in BR n Br,

u j@Br = 1 and u j@BR= 0.

(2.16)

By the energy minimizing property of solutions of (2.16) and Definition 4.1
one sees easily that given a ring BR n Br, then for any r < " < R

capp (Br, BR) = �
Z
@B"

jXujp�2XjuhXj, �i dHN�1.(2.17)

Calculations similar to those in the proof of Theorem 2.1 allow us to compute
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the right-hand side of (2.17) and establish the following:

THEOREM 2.2. Let 0 < r < R, 1 < p <1. Then, we have

capp (Br, BR) =

8>>>>>>><>>>>>>>:

�
Q� p
p� 1

�p�1

�p[1� (r=R)(Q�p)=(p�1)]1�prQ�p, 1 < p < Q,

�Q

�
log

R
r

�1�Q

, p = Q,�
p� Q
p� 1

�p�1

�p[R(p�Q)=(p�1)
� r(p�Q)=(p�q)]1�p, p > Q.

We close this section with some remarks on the relevance of Theorems 2.1,
2.2 for the results in this paper. The former can be restated in the case p 6= Q in
the following suggestive fashion

Γp(x, y) = cp

�
d(x, y)p

jB(x, d(x, y))j

�1=(p�1)

,(2.18)

where we have let d(x, y) = �(x�1y), x, y 2 G. It was (2.18) that led us to
conjecture that a similar result should hold for any nonlinear operator modeled
on (1.6) in the vein of what was proved in [NSW] for the case p = 2. This question
will be taken up in Section 7, where more general results will be established.

In an analogous way, Theorem 2.2 yields when 1 < p < Q the estimate

capp (Br, BR) �
jBrj

rp .(2.19)

It will be seen in Section 4 that (2.19) locally holds far beyond the setting
of H-type groups.

3. Preliminaries. In this section we introduce the definitions and results that
will be needed subsequently. Let X1, : : : , Xm be a family of smooth vector fields
in R

n satisfying the above cited Hörmander’s condition [H]. Also, we label with
Y1, : : : , Y` the collection of the vectors Xj’s and of those commutators which
are needed to generate R

n . Following [NSW] a “degree” is assigned to each Yi,
namely the order of the commutator needed to obtain the vector itself starting
from the original set X1, : : : , Xm. If I = (i1, : : : , in), 1 � ij � ` is a n-tuple
of integers then we define d(I) =

Pn
j=1 deg (Yij), and aI(x) = det (Yi1 , : : : , Yin).

Throughout the paper we denote by Xu = (X1u, : : : , Xmu) the subelliptic gradient
of a function u. A piecewise C1 curve : [0, T] ! R

n is called subunitary if for
every y 2 R

n and t 2 (0, T) for which ̇(t) exists one has

ḣ(t), yi2 �
mX

j=1

hXj((t)), yi2.
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Given x, y 2 R
n the Carnot-Carathéodory distance between x and y is defined

as follows:

d(x, y) = inffT > 0j There exists : [0, T] ! R
nsubunitary,

with (0) = x, (T) = yg.

For x 2 R
n and R > 0, denote Bd(x, R) = fy 2 R

n
j d(x, y) < Rg. A

fundamental result due to Nagel, Stein and Wainger [NSW] is the existence for
any U �� R

n of constants C > 0, 0 < R0 < 1, and of a polynomial function

Λ(x, r) =
X

I

jaI(x)jrd(I),(3.1)

where I = (i1, : : : , in) ranges in the set of n-tuples with 1 � ij � `, such that for
every x 2 U and 0 < r � R0

CΛ(x, r) � jBd(x, r)j � C�1Λ(x, r).(3.2)

An important consequence of (3.2) is the doubling condition: namely, there
exists a constant Cd > 0 such that for x and r as above

jBd(x, 2r)j � CdjBd(x, r)j.(3.3)

We denote by

Q =
log (Cd)

log 2
= supfd(I) j jaI(x)j 6= 0 and x 2 Ug(3.4)

the homogeneous dimension relative to the X1, : : : , Xm in U, and by

Q(x) = inffd(I) j jaI(x)j 6= 0g,(3.5)

the homogeneous dimension at x relative to X1, : : : , Xm. Clearly n � Q(x) � Q. It
is easy to see that there exists a constant C depending only on U and X1, : : : , Xm

for which

�Q(x)
jBd(x, r)j � jBd(x,�r)j � C�Q

jBd(x, r)j,(3.6)

for any � > 1. For future reference we also point out the following trivial
estimate:

jaQ(x)(x)jrQ(x)
� jBd(x, r)j � CrQ(x).(3.7)
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A particularly interesting case is that of stratified Lie groups in which case
Q(x) = Q in every point x 2 U (see Section 8). Closely related to (3.2) are
the important estimates of the fundamental solution Γ(x, y) of the operator L =Pm

j=1 X�j Xj established by Nagel, Stein, Wainger [NSW] and by Sanchez-Calle
[SC],

C
d(x, y)2

jBd(x, d(x, y))j
� Γ(x, y) � C�1 d(x, y)2

jBd(x, d(x, y))j
,(3.8)

jXΓ(x, y)j � C�1 d(x, y)
jBd(x, d(x, y))j

,(3.9)

where x 2 U �� R
n , 0 < d(x, y) � R0 and both C and R0 depend on U.

Next, we introduce a different family of “balls” via the fundamental solution
Γ(x, y). There are several advantages in working with the latter. The first is that,
unlike the metric balls, they are smooth sets. Secondly, they are better fitted to
the geometry of the operator L =

Pm
j=1 X�j Xj, in the sense that they support ad

hoc cut-off functions (see Lemma 3.1) below. Another remarkable aspect is the
existence of mean value formulas.

Consider the polynomial Λ(x, r) in (3.1) and set

E(x, r) =
Λ(x, r)

r2 .

Since the function r ! E(x, r) is strictly increasing it admits an inverse
F(x, r). We define the L-balls

B(x, r) =
�

y 2 R
n
j Γ(x, y) >

1
E(x, r)

�
.(3.10)

The following facts were proved in [CGL]:

Bd(x, r=a) � B(x, r) � Bd(x, ra),(3.11)

C d(x0, y) � F(x0, Γ(x0, y)�1)) � C�1d(x0, y),(3.12)

for x 2 U �� R
n , and r < R0 with C, a, R0 > 0 depending on U.

Throughout the paper we will work with the sets (3.10) rather than with
the metric balls Bd. It is important to observe that in virtue of (3.11), (3.12)
the estimate (3.6) continues to hold. Namely, for every U �� R

n there exist
C, R0 > 0 such that

C�Q(x)
jB(x, r)j � jB(x,�r)j � C�1�Q

jB(x, r)j,(3.13)

for any � > 1.
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Remark 2. Let U, x and R0 be as above, k a positive integer with 2k+1r < R0.
There exists a positive constant C such that if x 2 B(x, 2k+1r) n B(x, 2kr) one has

C2kr � d(x, y) � C�12k+1r.

This important observation follows from (3.11), (3.12), and will be used several
times in the paper without explicit notice.

As a consequence of (3.11), (3.12) and of the estimates (3.2), (3.8) and (3.9)
we have ����XF(x, Γ(x, y)�1)

���� � C,(3.14)

with d(x, y) � R0, x 2 U �� R
n and C depending on U. The estimate (3.14) is

crucial in the construction of a class of test functions. More precisely one has
from [CGL]

LEMMA 3.1. Let U �� R
n. There exists R0 > 0 such that given a L-ball

B(x, t) �� U, with t � R0 and 0 < s < t, one can find a function ' 2 C1

0 (B(x, t))
satisfying 0 � ' � 1, ' = 1 in B(x, s) and jX'j � C(t � s)�1. Here, C > 0 is a
constant independent of s and t.

In the same paper the following representation formula was found:

LEMMA 3.2. Given U �� R
n there exists a positive constant R0 such that for

every x 2 R
n , 0 < r < R0, u 2 C1

0 (B(x, r)) and � 2 B(x, r)

u(�) = �
Z

B(x,r)
hXu(y), XΓ(�, y)i dy.

Now let Ω � R
n be a bounded open set. Given 1 � p < 1 we will denote

by S1,p(Ω) the completion of Lip (Ω), the space of Lipschitz functions in Ω, with
respect to the norm

kukS1,p(Ω) =
�Z

Ω
(jujp + jXujp) dx

� 1
p
.(3.15)

The Sobolev space
�

S
1,p

(Ω) is defined as the completion of Lip0 (Ω), the
space of compactly supported Lipschitz functions in Ω, with respect to the same
norm. We let S1,p

loc(Ω) denote the space of those u 2 Lp(Ω) such that 'u 2 S1,p(Ω)
for any ' 2 Lip0 (Ω). In the next sections we will make frequent use of the
following embedding theorem (see [D1], [CDG1], [CDG3]).
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THEOREM 3.1. Let U � R
n be a bounded open set and denote by Q the homo-

geneous dimension relative to U. Given 1 � p < Q there exist C > 0 and R0 > 0,
such that for any x 2 U, R � R0, we have

�
1

jB(x, R)j

Z
B(x,R)

jujkp dx
� 1

kp
� CR

�
1

jB(x, R)j

Z
B(x,R)

jXujp dx
� 1

p

for any u 2
�

S
1,p

(B(x, R)). Here 1 � k � Q
Q�p .

Theorem 3.1 holds for metric balls Bd(x, R) as well. It seems worthwhile to
recall here that the geometric case (p = 1) of the Sobolev embedding is equivalent
to a remarkable isoperimetric inequality proved in [CDG3] and also independently
in [FGW]. The role played in this inequality by the homogeneous dimension Q
is analogous to the one played by the topological dimension in the euclidean
setting.

THEOREM 3.2. Let U � R
n be a bounded open set and denote by Q the ho-

mogeneous dimension relative to U. For every C1 open set E � E � B(x, R) one
has

jEj(Q�1)=Q
� CRjB(x, R)j�1=QPX(E, B(x, R)),

where PX(E; B(x, R)) denotes the X-perimeter of E in B(x, R) (see [CDG3], Defini-
tion 4).

Let p > 1. At this point we can state the relevant integrability requirements
on the functions fi, gi and hi in the structural assumptions (1.9) for the equation
(1.7):

(i) g2, g3 2 Lr
loc(U), with r > Q(p� 1)�1;

(ii) f2, f3, h3 2 Ls
loc(U), with s > Q=p;

(iii) f1 2 Lt
loc(U), with t > Q.

(3.16)

Assumptions (i)–(iii) above allow us to write, for some 0 < " < 1, s = Q(p�")�1,
t = Q(1� ")�1, and r = Q(p� 1� ")�1.

Given the assumptions (3.16) a function u 2 S1,p
loc(Ω) is called a weak solution

to (1.7) if for any ' 2
�

S
1,p

(Ω), such that supp(') �� Ω, we have

mX
j=1

Z
Ω

Aj(x, u, Xu)Xj' dx =
Z

Ω
f (x, u, Xu)' dx.(3.17)

Under the above integrability assumptions the following uniform Harnack
inequality for positive weak solutions of (1.7) was proved in [CDG1],
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THEOREM 3.3. Let 1 < p � Q and u 2 S1,p
loc(Ω) be a nonnegative solution to

(1.7). Then, there exist C > 0 and R0 > 0 such that for any BR = B(x, R) � Ω, with
B(x, 4R) � Ω, and R � R0

essupBR
u � C

�
essinfBR u + k(R)

�
.

Here,

k(R) =

8<:
�
jBRj

"
Q kf3kLs(BR)+kg3kLr(BR)

� 1
p�1 +

�
jBRj

"
Q kh3kLs(BR)

� 1
p , 1<p<Q,�

jBRj
"
Q kf3kLs(BR)+jBRj

"
Q kg3kLr(BR)

� 1
Q�1 +

�
jBRj

"
Q kh3kLs(BR)

� 1
Q , p = Q.

with r, s as in (3.16).

It is not difficult to extend Theorem 3.3 to rings whose inner and outer radii
have proportional length. More precisely, if u and BR are as in Theorem 3.3, and
B(x, 4R) � Ω, then

essupBRnBR=2
u � C

�
essinfBRnBR=2

u + k(R)
�

.(3.18)

Here k(R) is defined as above but the Lebesgue norms are computed on
BR n BR=2. In order to prove (3.18) it suffices to show that we can cover the ring
with a fixed number of balls, not depending on R. Such covering of Wiener type
is a consequence of (3.3) and (3.11) (see [CW], Theorem 1.2, chapter 3).

One of the main steps in the proof of Theorem 3.3 is the following Cacciop-
poli type inequality. If u is a weak solution of (1.7) in Ω and B(x, s) � B(x, t) � Ω,
then there exists a positive constant C depending on Ω and (S), such that

Z
B(x,s)

jXujp dx � C(t � s)�p
Z

B(x,t)

�
juj + k(t)

�p dx.(3.19)

As for the Harnack inequality, a version of (3.19) holds for rings. The argu-
ment is based on a suitable choice of the test function in Lemma 3.1 and on the
inclusions (3.11). More precisely, let U �� R

n . Then, there exist C, R0 > 0 such
that for any x 2 U and R < R0 we have with BR = B(x, R)

Z
B2RnBR

jXujp dx � CR�p
Z

B3RnBR=2

�
juj + k(3R)

�p dx.(3.20)

The next lemma will often be used in Section 7.

LEMMA 3.3. Let Ω be a bounded, open set inR n , x0 2 Ω, and u 2 S1,p
loc(Ωnfx0g)

a weak solution of (1.7) in Ω n fx0g. Then, there exist constants K1 and K2 such
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that for every � 2
�

S
1,p

(Ω) identically equal to one in some neighborhood of x0 the
following holds:

(a)
Z

Ω

mX
j=1

Aj(x, u, Xu)Xj� dx �
Z

Ω
f (x, u, Xu)� dx = K1,

(b)
Z

Ω

mX
j=1

Aj(x, u, Xu)Xj� dx �
Z

Ω
f (x, u, Xu)(�� 1) dx = K2.

The simple proof of Lemma 3.3 rests on the definition of weak solution; we
leave the details to the reader. For later purposes we include a numerical lemma
from [S1].

LEMMA 3.4. Let z > 0 and suppose z� �
PN

i=1 aiz�i with ai > 0 and 0 � �i <

�. Then z �
PN

i=1 ai
i , where �1

i = � � �i, and C > 0 only depends upon N, �
and �i.

4. Capacitary estimates. The aim of this section is to establish sharp es-
timates for the subelliptic p-capacity of a ring. Throughout, we work with C1

vector fields X1, : : : , Xm satisfying the finite rank condition. In the setting of strat-
ified Lie groups Pansu [P1], [P2] proved that the capacity of such a condenser is
positive, and remarked the difficulty involved in finding better estimates. Korányi
and Reimann [KR1] computed explicitly the Q-capacity of a metric ring in the
Heisenberg group. Their computation made use of a suitable choice of “polar”
coordinates in H

n . More recently, Heinonen and Holopainen [HH] have proved
sharp estimates for the Q-capacity of a ring in the setting of Carnot groups. Our
results generalize all previous ones. We emphasize an interesting feature of The-
orems 4.1 and 4.2 that cannot be observed in the setting of stratified groups: The
dependence of the estimates on the center of the ring. This is a consequence of
the fact that in the general case Q(x) 6= Q when x 2 Ω (see (3.4), (3.5)). The
results in this section will play an important role in the subsequent developments.

Definition 4.1. Let Ω � R
n be a bounded, open set, and K � Ω a compact

set. For 1 � p <1 we define the p-capacity of the condenser (K, Ω) as

capp (K, Ω) = inf
�Z

Ω
jXujp dxj u 2 C1

0 (Ω), u = 1 on K
�

.(4.1)

THEOREM 4.1. (Estimates from below) Let Ω � R
n be a bounded open set,

x0 2 Ω and Q(x0) be the homogeneous dimension in x0 associated to the vector fields
X1, : : : , Xm. Then, there exists 0 < R0 = R0(Ω) such that for any 0 < r < R < R0
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we have

capp (B(x0, r), B(x0, R)) �

8>>>>>><>>>>>>:

C1
jB(x0, r)j

rp , if 1 < p < Q(x0),

C2

�
log

R
r

�1�Q(x0)

, if p = Q(x0),

C3

����(2R)
p�Q(x0)

p�1 � r
p�Q(x0)

p�1

����(1�p)

, if p > Q(x0),

where

C1 = C
�
2

Q(x0)�p
p�1 =

�
2

Q(x0)�p
p�1 � 1

��(1�p)

,

C2 = C
�
jB(x0, r)j

rQ(x0)

�
,

C3 = C
jB(x0, r)j

rQ(x0)

�
2

p�Q(x0)
p�1 � 1

�(p�1)

,

with C > 0 depending only on Ω and X1, : : : , Xm.

Remark 3. In virtue of (3.7), C2 and C3 are bounded from below by a strictly
positive constant whose value depends on x0, Ω, the vectors X1, : : : , Xm but not
on r.

THEOREM 4.2. (Estimates from above) Let Ω, x0 and Q(x0) be as in Theo-
rem 4.1. Then, there exists R0 = R0(Ω) > 0 such that for any 0 < r < R < R0 we
have

capp (B(x0, r), B(x0, R)) �

8>>>>>><>>>>>>:

C1
jB(x0, r)j

rp if 1 < p < Q(x0),

C2

�
log

R
r

�1�Q(x0)

if p = Q(x0),

C3

����(2R)
p�Q(x0)

p�1 � r
p�Q(x0)

p�1

����1�p

if p > Q(x0).

Here C1 and C2 are positive constants depending on Ω and X1, : : : , Xm. The last
constant has the form

C3 = C(2
p�Q(x0)

p�1 � 1)�1,

where C > 0 depends only on Ω and X1, : : : , Xm.

Proof of Theorem 4.1. Let u 2 C1

0 (B(x0, R)) be such that u = 1 on B(x0, r).
By Lemma 3.2 we have

1 = u(x0) =
����Z

B(x0,R)
hXu(y), XΓ(x0, y)i dy

����
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�

�Z
B(x0,R)

jXu(y)jp dy
� 1

p
�Z

B(x0,R)nB(x0,r)
jXΓ(x0, y)jp

0

dy
� 1

p0

,

where we have let p0 = p
p�1 . We choose k0 2 N such that 2k0+1r > R � 2k0r.

Then, by (3.9) and (3.3) we have

Z
B(x0,R)nB(x0,r)

jXΓ(x0, y)jp
0

dy(4.2)

� C
k0X

k=0

Z
B(x0,2k+1r)nB(x0,2kr)

d(x0, y)p0

jB(x0, d(x0, y))jp0
dy

� C
k0X

k=0

(2kr)p0

jB(x0, 2kr)j(p0�1) (by (3.6))

� C
rp0

jB(x0, r)j(p0�1)

k0X
k=0

2k(p0�Q(x0)(p0�1)).

Now, if 1 < p < Q(x0), then p0 < Q(x0)(p0 � 1) and we have

1 � C
�

2
Q(x0)�p

p�1

2
Q(x0)�p

p�1 � 1

�p�1 rp

jB(x0, r)j

Z
B(x0,R)

jXu(y)jp dy.(4.3)

If, instead, p = Q(x0), then Q(x0)(p0 � 1) = p0 and (4.2) yields

1 � C k(p�1)
0

�Z
B(x0,R)

jXu(y)jp dy
�

rp

jB(x0, r)j
= C

rp

jB(x0, r)j

�
log

R
r

�(p�1)

.(4.4)

Finally, if p > Q(x0), then p0 > Q(x0)(p0 � 1) and we have

1 � C
rp

jB(x0, r)j

�
(R=2)

p�Q(x0)
p�1 � 1

�(p�1) �
2

p�Q(x0)
p�1 � 1

�(1�p)

(4.5)

�

Z
B(x0,R)

jXu(x)jp dy.

Taking the infimum on all competing u’s in (4.2)-(4.4) we obtain the desired
estimates.
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Proof of Theorem 4.2. We consider the function E(x0, �) and its inverse
F(x0, �), introduced in Section 3. For i = 0, 1, we define

Hi(y) =

8>>>>><>>>>>:

0 if y 62 B(x0, R),

F(x0, Γ(x0, y)�1)
p�Qi
p�1 � R

p�Qi
p�1

r
P�Qi
p�1 � R

p�Qi
p�1

if y 2 B(x0, R) n B(x0, r),

1 if y 2 B(x0, r),

where Q0 = Q, Q1 = Q(x0), and

H2(y) =

8>>><>>>:
0 if y 62 B(x0, R),�

log
�

R
r

��
�1

log
�

R
F(x0, Γ(x0, y)�1)

�
if y 2 B(x0, R) n B(x0, r),

1 if y 2 B(x0, r).

By the chain rule for S1,p
loc and the important estimate (3.14) we obtain

jXHi(y)j � C
����r p�Qi

p�1 � R
p�Qi
p�1

�����1

� F(x0, Γ(x0, y)�1)
1�Qi
p�1 ,(4.6)

for i = 0, 1 and

jXH2(y)j � C
���� log

�
R
r

������1

F(x0, Γ(x0, y)�1)�1.(4.7)

Recalling (3.12), we thus conclude from (4.6) and (4.7)

jXHi(y)j � C
����r p�Qi

p�1 � R
p�Qi
p�1

�����1

d(x0, y)
1�Qi
p�1 ,(4.8)

jXH2(y)j � C
���� log

�
R
r

������1

d(x0, y)�1.(4.9)

Since Hi, H2 2
�

S
1,p

(B(x0, R)), i = 0, 1, and Hi � H2 � 1 in B(x0, r), we infer
for p 6= Q(x0) and 1 < p

capp (B(x0, r), B(x0, R)) �
Z

B(x0,R)nB(x0,r)
jXHi(y)jp dy(4.10)
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�

k0X
k=0

Z
(B(x0,2k+1r)nB(x0,2kr)

jXHi(y)jp dy

� C
����r p�Qi

p�1 � R
p�Qi
p�1

�����p k0X
k=0

(2kr)
1�Qi
p�1 p

jB(x0, 2kr)j,

where k0 is as in the previous theorem.
At this point we need to make a distinction. If 1 < p < Q(x0) then we select

i = 0 and observe that from (3.2) there exists a positive constant C0 depending
on Ω and X1, : : : , Xm such that

jB(x0, 2kr)j � C02kQ
jB(x0, r)j.(4.11)

Substituting (4.11) in (4.12) we have

capp (B(x0, r), B(x0, R)) � C
����r p�Q

p�1 � R
p�Q
p�1

�����p

jB(x0, r)jr
1�Q
p�1 p

k0X
k=0

(2k)
1�Q
p�1 p+Q

� C

0@ 1

1� 2
p�Q
p�1

1A
������1�

�
R
r

� p�Q
p�1

������
�p
jB(x0, r)j

rp

�

24C

0@ 1

1� 2
p�Q
p�1

1A35 jB(x0, r)j
rp .

This completes the proof in the range 1 < p < Q(x0). When p > Q(x0) we
observe that as a consequence of (3.2) and (3.7)

jB(x0, 2kr)j � CrQ(x0)2kQ(x0).(4.12)

At this point we select i = 1 and from (4.10) we deduce

capp (B(x0, r), B(x0, R)) � CrQ(x0)
����r p�Q(x0)

p�1 � R
p�Q(x0)

p�1

�����p

� r
1�Q(x0)

p�1 p
� k0X

k=0

(2k)
p�Q(x0)

p�1

�

� C(2
p�Q(x0)

p�1 � 1)�1rQ(x0)

�

�
(2R)

p�Q(x0)
p�1 � r

p�Q(x0)
p�1

�1�p

r
p�pQ(x0)

p�1 �
p�Q(x0)

p�1
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� C(2
p�Q(x0)

p�1 � 1)�1
�
(2R)

p�Q(x0)
p�1 � r

p�Q(x0)
p�1

�1�p

.

The latter concludes the proof in the case p > Q(x0). When p = Q(x0), a
similar argument, involving H2(y), applies.

5. Maximum principle. The maximum principle for weak solution of (1.7)
will play a crucial role in the sequel. We follow closely the arguments in [S1] and
[S2], the only significant difference being the fact that the Sobolev embedding
Theorem 3.1 holds only in suitably small domains.

THEOREM 5.1. Let Ω � R
n be a bounded open set, Q be the homogeneous

dimension relative to Ω, and D � Ω. If 1 < p � Q, and u 2 S1,p
loc(Ω) is a weak

solution of (1.7) in D such that u � M on the boundary of D, then there exist positive
constants C1, C2 and D0, depending only on Ω and the structure conditions (3.16)
such that if jDj � D0, then

sup
x2D

u(x) � M + C1jDj
"=[Q(p�1)]

jMj + C2k,

where k = (jDj"=Q
kf3ks)

1
p�1 + (jDj"=Q

kh3ks)
1
p .

Proof. In the course of the proof we will assume k > 0, the case k = 0 can
be treated by an approximation argument.

Let us assume initially M = 0. For every "0 > 0 we have (u� "0)+
2
�

S
1,p

(D).
Let u = max ("0, u) + k � "0 2 S1,p

loc(D), then clearly u = k in a neighborhood of
@D. Define for q � 1, ` > k,

F(u) =

(
uq, if k � u � `,

q`q�1u� (q� 1)`q, if ` � u,

G(u) = F(u)F0(u)p�1
� qp�1k� 2

�

S
1,p

(D),

where � = pq � p + 1. We observe that in the set where u < "0, G(u) = 0, while
in the set fu � "0g,

f (x, u, Xu) � f1jXujp�1 + f 2juj
p�1,(5.1)

A(x, u, Xu) � Xu � jXujp � f 2juj
p,

with f 2 = f2 + k1�pf3 + k�ph3, and f2, f3 and h3 as in (3.16). We observe explicitly
that with this choice we have

kf 2kLs(D) � kf2kLs(D) + 2jDj�"=Q.
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Now use G(u) as a test function in (3.17). In the case 1 < p < Q the estimates
(5.1) imply

Z
D
jXvjp dx �

q
�

�
(1 + �)qp�1

Z
D

f 2jvj
p dx +

Z
D

f1vjXvjp�1 dx
�

(5.2)

with v = F(u). We now estimate the two integrals on the right-hand side of (5.2).
Hölder inequality gives

Z
D

f1vjXvjp�1 dx �

�Z
D

f
Q

1�"
1 dx

� 1�"
Q
�Z

D
vp dx

� "
p

(5.3)

�

�Z
D
jXvjp dx

� p�1
p
�Z

D
v

Qp
Q�p dx

�(1�") Q�p
Qp

.

We note that v � kq
2
�

S
1,p

(D). If diam (D) is sufficiently small we can apply
Theorem 3.1 to a small ball containing D, after having extended v� kq with zero
outside D. In the case when diam (D) is large we proceed as follows. By Theorem
1.2, Chapter 3 in [CW] it is possible to choose a covering of Ω with a family
of balls fBjg

N
j=1 having a fixed radius r < R0, where R0 is as in Theorem 3.1.

Furthermore, the Bj’s can be chosen so that 1
3 Bi\

1
3 Bj = 0 for i 6= j. We stress that

the number of balls N solely depends on the bounded open set Ω. Let f�jg
N
j=1 be

a partition of unity subordinated to the covering fBjg
N
j=1. We have

Z
D

v
Qp

Q�p dx �

Z
D
jv � kq

j

Qp
Q�p dx + jDjkq Qp

Q�p

� C
NX

j=1

Z
Bj\D

jv � kq
j

Qp
Q�p�

Qp
Q�p
j dx + jDjkq Qp

Q�p .

Theorem 3.1 yields

Z
D

v
Qp

Q�p dx � C
NX

j=1

�Z
Bj\D

jXvjp�p
j dx +

Z
Bj\D

jv � kq
j
p
jX�jj

p dx
� Q

Q�p
(5.4)

+ jDjkq Qp
Q�p .

In conclusion there exists a positive constant C = C(Ω) such that

Z
D

v
Qp

Q�p dx � C
�Z

D
jXvjp + vp dx

�Q=(Q�p)

+ CjDjkqQ=(Q�p).(5.5)
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From (5.3) and (5.5) we obtain

Z
D

f1vjXvjp�1 dx � kf1kt

�Z
D

vp dx
�"=p�Z

D
jXvjp dx

�(p�1)=p

(5.6)

�

�� Z
D

vp + jXvjp dx
�(1�")=p

+ CjDj(Q�p)(1�")=Qpkq(1�")
�
.

A similar argument leads to an estimate of the first integral on the right-hand
side of (5.2), specifically

Z
D

f 2jvj
p dx � kf 2ks

�Z
D

vp dx
�"=p

(5.7)

�

�� Z
D

vp + jXvjp dx
�(p�")=p

+ Cp,QjDj
(Q�p)(p�")=Qpkq(p�")

�
.

Inequalities (5.2), (5.6) and (5.7) yield

Z
D
jXvjp dx � kf 2ks

q
�
kvk"p(5.8)

�
�
(1 + �)qp�1(kvjp�"p + kXvkp�"

p + jDj(Q�p)(p�")=Qpkq(p�"))

+ kf1ktkXvkp�1
p kvk"p

�(kvk1�"
p + kXvk1�"

p + jDj(Q�p)(1�")=Qpkq(1�"))
�
.

All the Lp norms are taken over the set D. Since v � kq, then kq
jDj(Q�p)=Qp

�

jDj�1=Q
kvkp. Using this observation and the numerical Lemma 3.3, we obtain

from (5.8) the following Caccioppoli type inequality for v

�Z
D
jXvjp dx

�1=p

�

�
kf1kt(jDj

�1=Q + 1) + (kf 2ks)
1=p(5.9)

� (jDj�(1�"=p)=Q + 1)
�
q

p
"

�Z
D

vp dx
�1=p

.

Although v does not vanish on @D, the function v � kq does. Repeating the
partition of unity argument that led to (5.4) we can use Theorem 3.1 in (5.9) and
obtain

�Z
D

vQp=(Q�p) dx
�(Q�p)=Qp

� C(1 + jDj�1=Q)qp="
�Z

D
vp dx

�1=p

(5.10)

+ Ckq
jDj(Q�p)=Qp.
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In the case p = Q we follow Serrin’s argument substituting p with Q(1 +
"=2Q)�1 in the preceding computations. In this way (5.10) can still be proved
(see also [CDG1] Theorem 3.4 for more details).

Now the Moser iteration process can be applied without having to shrink the
domain at each step. One concludes

sup
D

u � C
�
jDj�1=p

kukp

�
.

Recalling the definition of u, the latter inequality yields

sup
D

u � C
�
jDj�1=p

kukLp(fu�0g) + k
�

(5.11)

once we let "0 ! 0. Next we consider the case M > 0. We observe that u0 = u�M
is a weak solution of

X�j A0j(x, u0, Xu0) = f 0(x, u0, Xu0),(5.12)

the functions A0 and f 0 satisfy conditions similar to those in (1.9), (3.16) with
coefficients f1, f2, f 03, g2, g03, and h3 where

f 03 = f3 + C1f2Mp�1,(5.13)

g03 = g3 + C2g2Mp�1,

and C1, C2 are positive constants depending only on p. The new constant k0

associated to (5.12), (5.13) satisfies the following estimate

k0 � k + CjDj
"

Q( p�1) jMj,(5.14)

where C and " depend on (3.16). Now we can apply (5.11) to u0 and obtain

sup
D

u � C
�
jDj�1=p

kukLp(fu�Mg) + k + C4jDj
"=Q(p�1)

jMj
�

+ M.(5.15)

Let us remark that (5.15) holds without restrictions on the measure of D. In
order to conclude the proof, we need to estimate the term kukLp(fu�Mg). To this
end we assume once more M = 0 and consider

u = max ("0, u) + K��1
� "0,(5.16)

for some small � > 0, to be fixed at a later time. This function solves an equa-
tion similar to (1.7) with reduced coefficient f 2 = f2 + (k��1)1�pf3 + (k��1)�ph3.
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Modifying the definition of F and G properly and proceeding as above, we arrive
at the Caccioppoli inequality (5.10) for u. Setting q = 1 in the latter one obtainsZ

D
jXujp dx � Cp

0

Z
D

up dx,(5.17)

where C0 =
�
kf1kt(jDj�1=Q + 1) + (kf 2ks)1=p(jDj�(1�"=p)=Q + 1)

�
. Since kf 2ks �

kf2ks +�p�1
jDj�"=Q, then for a suitable choice of jDj and � we can make jDj1=QC0

as small as needed. The Sobolev embedding Theorem 3.1 now gives

�Z
D

uQp=(Q�p) dx
�(Q�p)Qp

� C
�Z

D
jXujp + up dx

�1=p

(5.18)

+ Cp,QjDj
(Q�p)=Qpk��1.

The Hölder inequality, (5.17) and (5.18) yield

�Z
D

up dx
�1=p

� jDj1=Q
�Z

D
uQp=(Q�p) dx

�(Q�p)=Qp

� jDj1=QC0C
�Z

D
up dx

�1=p

+ CjDj1=Q
�Z

D
up dx

�1=p

+ CjDj1=pk��1.

Choosing C0 sufficiently small we have the desired estimate in the case
M = 0. The theorem now follows from an argument similar to the one in (5.12)–
(5.14).

6. Removable singularities. In this section the classical result on remov-
ability of singularities in [S1] for solutions of quasilinear elliptic equations is
extended to the subelliptic setting.

THEOREM 6.1. Let Ω � R
n be a bounded open set and Q be the homogeneous

dimension relative to Ω. Let E � Ω be a compact set and for 1 < p � Q,
u 2 S1,p

loc(Ω n E) be a weak solution of (1.7) in Ω n E. Suppose that for p � s � Q,
caps (E, Ω) = 0. If u 2 Lr(Ω) for some r > s(p�1)

s�p , when s > p, or u 2 L1(Ω)
when s = p, then u can be extended to become a solution in all of Ω.

In the next section we will use the following corollary.

COROLLARY 6.1. Suppose that E = fx0g in Theorem 6.1 and denote by Q(x0)
the homogeneous dimension at x0. Let p � s � Q(x0). If u 2 S1,p

loc(Ω n fx0g) is
a solution to (1.7) in Ω n fx0g and u 2 Lr(Ω) with r as in Theorem 6.1, then the
singularity at x0 is removable.
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The next propositions are basic ingredients for the proof of Theorem 6.1.
They follow from the definition of capacity and the Poincare inequality based on
Theorem 3.1.

PROPOSITION 6.1. Let Ω � R
n be a bounded open set, 1 < s � Q, and E � Ω

a relatively closed subdomain of zero s-capacity. There exists a sequence �i 2
�

S
1,s

(Ω n E) such that �i ! 1 almost everywhere in Ω and
R

Ω jX�ij
s dx ! 0 as i

approaches infinity.

PROPOSITION 6.2. Let Ω � R
n be a bounded open set, and 1 < p < 1. If

E � Ω is a relatively closed subdomain of zero p-capacity, then jEj = 0.

Proof of Theorem 6.1. By Theorem 3.3 it suffices to show that u is a solution
in the neighborhood of any point x in E. We will only consider a ball B(x, 2r)
where r is properly small (so as to use the Sobolev embedding Theorem 3.1).
Let u = juj + k, with

k = k(2r) =
�
jB(x, 2r)j

"
Q kf3ks + kg3kr

� 1
p�1 +

�
jB(x, 2r)j

"
Q kh3ks

� 1
p ,

then the structure conditions (1.8) can be restated as

f (x, u, Xu) � f1jXujp�1 + f 2juj
p�1,(6.1)

A(x, u, Xu) � c1jXujp�1 + g2juj
p�1,

A(x, u, Xu) � Xu � jXujp � f 2juj
p,

with

f 2 = f2 + k1�pf3 + k�ph3 2 Ls
loc(B(x, 2r)),

and

g2 = g2 + k1�pg3 2 Lr
loc(B(x, 2r)).

Define for �0 = "(p� 1), p0 = p + �0 � 1, q � q0 = p0=p, and ` > k

F(u) =

(
uq, if k � u � `,

q0[q`q�q0uq0 � (q� q0)`q], if ` � u,

G(u) = sign (u)fF(u)F0(u)p�1
� qp�1k�g 2 S1,p

loc(B(x, 2r) n E).

Let � 2 C1

0 (B(x, 2r)) and �i be as in Proposition 6.1. Since u is locally
bounded outside E we are allowed to use  = (��i)pG(u) as a test function in
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(3.17). The structure conditions (6.1), and the Sobolev embedding Theorem 3.1
lead to the Caccioppoli inequalityZ

B(x,2r)nE
jXvjp(��i)

p dx(6.2)

� Cq
p
"

� Z
B(x,2r)nE

jvjp(��i)
p dx +

Z
B(x,2r)nE

jvjpjX(��i)j
p dx

�

with v = F(u). We now observe that v < const. uq0 2 L
sp

s�p (B(x, 2r) n E), because
of the integrability assumption on u. By Hölder inequality we have

Z
B(x,2r)nE

vp�p
jX�ij

p dx �
�Z

B(x,2r)nE
(v�)

sp
s�p

� s�p
s
�Z

B(x,2r)nE
jX�ij

s
� p

s
.

By Proposition 6.1 the right-hand side tends to zero as i ! 1. We thus
obtain from (6.2)Z

B(x,2r)nE
jXvjp�p dx � Cq

p
"

� Z
B(x,2r)nE

jvjp�p dx +
Z

B(x,2r)nE
jvjpjX�jp dx

�
.(6.3)

We now let ` ! 1 in (6.3). By Moser’s iteration process, starting with q = q0,
one obtains

sup
B(x,r)nE

u � C
�Z

B(x,2r)nE
jujp0

� 1
p0

.

Since p0 < s(p� 1)=(s� p), we infer u 2 L1(B(x, r) nE). In particular, from
the Caccioppoli inequality (6.3) we have Xu 2 Lp(B(x, r) n E). Being E a set of
s-capacity zero, and s � p, it is easy to show that there exists a sequence of
functions uj 2 C1

0 (B(x, r) n E) such that uj ! u in S1,p(B(x, r) n E). Proposition
6.2 finally implies that u 2 S1,p(B(x, r)). To conclude the proof we need to show
that u is solution of (1.7) in B(x, r). Since u is a weak solution in B(x, r) nE, thenZ

B(x,r)
Aj(x, u, Xu)Xj' dx =

Z
B(x,r)

'f (x, u, Xu) dx,

for every test function ' 2 S1,p
0 (B(x, r) n E). Let  2 C1

0 (B(x, r)), and �i as in
Proposition 6.1. Then the proof follows from Lebesgue dominated convergence
theorem once we set ' =  �i and let i !1.

Remark 4. If y 2 Ω is a nonremovable singularity for a weak solution u
to (1.7) which is bounded from below, then as a consequence of the Harnack
inequality Theorem 3.3, the maximum principle Theorem 5.1 and Theorem 6.1
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above we have

Limx!y u(x) = 1.

7. Local behavior of singular solutions. This section is devoted to estab-
lishing the main results about the local behavior of solutions to (1.7) having a
singularity at one point.

THEOREM 7.1. Let Ω � R
n be a bounded open set, x0 2 Ω and Q(x0) denote the

homogeneous dimension at x0. If u 2 S1,p
loc(Ω n fx0g) is a nonnegative (or bounded

from below) solution to (1.7) in Ω n fx0g with 1 < p < Q(x0), then one of the
following holds:

(i) The singularity at x0 is removable,

(ii) There exist positive constants A, B and R such that for d(x, x0) < R
2 we

have

A
�

capp (B(x0, d(x, x0)); B(x0, R)
�
�

1
p�1

� u(x)

� B
�

capp (B(x0, d(x, x0)); B(x0, R))
�
�

1
p�1 .

The constants R, A and B depend on u, Ω, (3.16) and p. The constants B and R
depend also on C1 in Theorem 4.1.

Proof. Take R > 0 to be subsequently chosen. Without loss of generality we
can assume that u � 0 on @B(x0, R). Suppose x0 is not a removable singularity.
By Remark 4, Limx!x0 u(x) = 1. Therefore, there exists 0 < �0 < R such that
u(x) � 1 in B(x0,�0). Let 0 < � � �0 and denote m(�) = min@B(x0,�) u. In
B(x0, R) n B(x0,�) we define

v(x) =

8>><>>:
0 if u � 0,

u if 0 < u < m(�),

m(�) if u � m(�).

Extend v by letting v � m(�) in B(x0,�), then v 2
�

S
1,p

(B(x0, R)). By (b) of
Lemma 3.3 we have

mX
j=1

Z
B(x0,R)nB(x0,�)

Aj(x, u, Xu)Xjv dx(7.1)

�

Z
B(x0,R)nB(x0,�)

f (x, u, Xu)(v � m(�)) dx = K2m(�).
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Observing that Xv � 0 on the set where v 6= u, we can rewrite (7.1) as
follows

mX
j=1

Z
B(x0,R)

Aj(x, v, Xv)Xjv dx � K2m(�) + F(�)kv � m(�)kL1(B(x0,R)),(7.2)

where we have let

F(�) =
Z

B(x0,R)nB(x0,�)
f (x, u, Xu) dx.

Using the assumption (1.8) we infer

mX
j=1

Z
B(x0,R)

Aj(x, v, Xv)Xjv dx �

Z
B(x0,R)

jXvjp dx(7.3)

�

Z
B(x0,R)

f2vp dx �
Z

B(x0,R)
h3 dx.

By 3.16 on f2 and Sobolev’s embedding Theorem 3.1 (see also estimate (3.10)
in [CDG1]) we infer from (7.3) for some C1 = C1(Q, p) > 0

mX
j=1

Z
B(x0,R)

Aj(x, v, Xv)Xjv dx �

Z
B(x0,R)

jXvjp dx� C1kf2kLs(B(x0,R))(7.4)

�

Z
B(x0,R)

jXvjp dx� kh3kLs(B(x0,R))

�
1
2

Z
B(x0,R)

jXvjp dx� C2

provided that R > 0 is chosen sufficiently small. Since v
m(�) is an admissible

function for the definition of capp (B(x0,�); B(x0, R)), from (7.2) and (7.4) we
conclude

m(�)p capp (B(x0,�); B(x0, R)) � C1[1 + K2m(�) + F(�)m(�)],

where we have used kv � m(�)kL1(B(x0,R)) � m(�). Since m(�) � 1 we obtain

m(�)p�1
� C4[1 + F(�)] capp (B(x0,�); B(x0, R))�1.(7.5)

At this point we consider the ring B(x0, R) n B(x0,�). By (3.18) there exists
C5 > 0, depending only on Ω and the structure of the equation, such that

sup
B(x0,3�)nB(x0,�2 )

u � C5( inf
B(x0,3�)nB(x0,�2 )

u + k(�)).
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This implies

sup
B(x0,3�)nB(x0,�2 )

u � C6m(�).(7.6)

We now proceed to estimate F(�). We begin with estimating the integral of
f on the ring B(x0, 2�) n B(x0,�). By (1.8) and (7.6) we have

Z
B(x0,2�)nB(x0,�)

f (x, u, Xu) dx(7.7)

�

Z
B(x0,2�)nB(x0,�)

h
f1jXujp�1 + f2juj

p�1 + f3
i

dx,

�

Z
B(x0,2�)nB(x0,�)

f1jXujp�1 dx + C1m(�)p�1
jB(x0,�)j

Q�p+"
Q ,

where we have let C7 = Cp�1
6 (

R
B(x0,R) ( f2 + f3)s dx)

1
s with s = Q

p�" . To estimate the
integral containing jXuj we use Hölder inequality, and then (3.20), obtaining

Z
B(x0,2�)nB(x0,�)

f1jXvjp�1 dx � C8kf1kLt(B(x0,R))jB(x0,�)j
Q�p+p"

pQ(7.8)

�

�� Z
B(x0,3�)nB(x0,�2 )

jujp dx
� 1

p
+ jB(x0,�)j

1
p k
�p�1

� �1�p

where k is as in Theorem 3.3. By (7.6) we infer from (7.8)

Z
B(x0,2�)nB(x0,�)

f1jXujp�1 dx � C9jB(x0,�)j
pQ�p+p"

pQ �1�pm(�)p�1.(7.9)

Inserting (7.9) in (7.7) we conclude

Z
B(x0,2�)nB(x0,�)

f (x, u, Xu) dx � C10m(�)p�1
jB(x0,�)j

Q+"
Q(7.10)

�

�
jB(x0,�)j�

p
Q + �1�p

jB(x0,�)j�
1
Q

�
.

At this point we emphasize that the term in brackets in the right-hand side of
(7.10) lacks any scale invariance. This represents a serious threat to the possibility
of carrying on Serrin’s idea, were it not for the sharp capacity estimates of
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Theorem 4.1. From the latter and (7.5) it follows

m(�)p�1
� C11[1 + F(�)]

�p

jB(x0,�)j
,(7.11)

where now the constant C11 depends on p, C4, and C1 from the statement of
Theorem 4.1.

Observing that

F(�)� F(2�) =
Z

B(x0,2�)nB(x0,�)
f (x, u, Xu) dx,

we arrive to the crucial estimate

F(�)� F(2�) � C12[1 + F(�)]jB(x0,�)j
"
Q � C13[1 + F(�)]�

"n
Q .(7.12)

Here we have made repeated use of the fundamental result (3.2). An elemen-
tary iteration argument gives from (7.12) for � � �0 and some small � > 0

F(�) � C14(7.13)

and Z
B(x0,�)

j f (x, u, Xu)j dx � C14�
�.(7.14)

The estimate from above in the statement of the theorem now follows from
(7.5), (7.13) and the Harnack inequality.

The preceding argument holds in the case p = Q(x0) as well.
We turn our attention to the estimates from below. The following result plays

an important role.

LEMMA 7.1. If 1 < p < Q(x0), then the constant K1 in part (a) of Lemma 3.3
is strictly positive.

Proof. We recall the function v introduced before (7.1). Arguing by contra-
diction we assume that K1 � 0. Then,

0 �

mX
j=1

Z
B(x0,R)

Aj(x, u, Xu)Xjv dx �
Z

B(x0,R)
f (x, u, Xu)v dx(7.15)

=
mX

j=1

Z
B(x0,R)

Aj(x, v, Xv)Xjv dx�
Z

V1

v f (x, v, Xv) dx

�

Z
V2

v f (x, u, Xu) dx = I + II + III,
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where we have let V1 = [B(x0, R) n B(x0,�)] \ fx 2 Ω j u(x) < m(�)g, V2 =
B(x0,�) [ fx 2 Ω j u(x) � m(�)g. As in (7.4) one obtains

I �
1
2

Z
B(x0,R)

jXvjp dx� C1,(7.16)

for some C1 > 0 depending only on Q, p and the structural assumptions. On the
set V1 we have u � v and, therefore,

jIIj �
Z

V1

jvj j f (x, v, Xv)j dx �
Z

V1

f1vjXvjp�1 + f2vp + f3v.

To estimate the latter we use Hölder inequality and Sobolev Theorem 3.1,
obtaining for R small enough

jIIj �
1
3

� Z
B(x0,R)

jXvjp dx + C2

�
(7.17)

with C2 > 0 depending on the structural assumptions. From (7.15)–(7.17) one
has (recalling that v � m(�) on V2)

Z
B(x0,R)

jXvjp dx � C3

�
m(�)

Z
V2

j f (x, u, Xu)j dx + C4

�
.(7.18)

Since v=m(�) is admissible for capp (B(x0,�); B(x0, R)) we conclude

m(�)p
� C4 capp (B(x0,�); B(x0, R))�1

�
m(�)

Z
V2

j f (x, u, Xu)j dx + C4

�
.(7.19)

At this point we claim that there exists a positive constant A, depending on
x0, Ω, p and the structure assumptions (3.16) such that for every � < �0,

m(�) � A
�
jB(x0,�)j

�p

� 1��
1�p

,(7.20)

where � = "
Q(x0)�p+" , with " as in (S). We observe that once the claim is

proved, then (7.20) implies that the solution v belongs to Lt(B(x0, R)) with
t = Q(x0)(p�1)

Q(x0)�p (1 + �). This can be recognized by means of a decomposition of
the ball B(x0, R) in dyadic rings. The argument is similar to those used in the
proof of Theorems 4.1, 4.2. As a consequence of Corollary 6.1 we infer that v
has a removable singularity at x0. This contradiction stems from the assumption
K1 � 0.
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We are thus left with proving the claim. To this regard suppose that for
� < �0 we have

m(�) >
�
jB(x0,�)j

�p

� 1��
1�p

,(7.21)

since, if the opposite inequality holds there is nothing to prove. Let x 2 B(x0, �0
2 )n

B(x0, ��1��), where � > 1 is to be determined later. Setting r = F(x0, Γ(x0, x)�1),
by the Harnack inequality there exists a positive constant C5 such that

u(x) � sup
@B(x0,r)

u � C5 inf
@B(x0,r)

u = C5m(r).

From this estimate, (7.11) and (7.13) one obtains

u(x) � C5m(r) � C6

�
rp

jB(x0, r)j

� 1
p�1

.

In view of (3.7) the previous inequality yields

u(x) � C7r�
Q(x0)�p

p�1 .(7.22)

From (7.20), (7.21) we infer

u(x) � C8�
�

Q(x0)�p
p�1 m(�),

where (3.6) has been used. Choosing � appropriately large we conclude

u(x) < m(�)

for every x 2 B(x0, �0
2 ) n B(x0, ��1��). The latter inequality, along with the fact

m(�) ! +1 as � ! 0, implies that V2 � B(x0, ��1��), provided that � is small
enough. Thereby, we obtain from (7.19)

m(�)p
� C3 capp (B(x0,�); B(x0, R))�1(7.23)

�

�
m(�)

Z
B(x0,��1��)

j f (x, u, Xu)j dx + C4

�
.

Using (7.14) in the right-hand side of (7.23) we conclude

m(�)p
� C9[m(�)��(1��) + C4] capp (B(x0,�), B(x0, R))�1.
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Estimate (3.6) and Theorem 4.1 yield

m(�)p
� C10

h
m(�)�p�Q(x0)+�(1��) + �p�Q(x0)

i
.(7.24)

Applying Lemma 3.4 in (7.24), and recalling the definition of �, we conclude

m(�) � C11

�
�

p�Q(x0)+"(1��)
p�1 + �

p�Q(x0)
p

�
= C11

�
�

p�Q(x0)
p�1 (1��) + �

p�Q(x0)
p

�
.

Since Q(x0)�p
p�1 (1� �) > Q(x0)�p

p (at least for " small), the latter inequality and
(3.6) imply the claim (7.19). This concludes the proof of Lemma 7.1.

Remark 5. We explicitly observe that the restriction p < Q(x0) in the statement
of the theorem is only due to the previous lemma. If the positivity of K1 is
assumed as a hypothesis, then the following can be easily extended to include
the endpoint case p = Q(x0).

We can now complete the proof of Theorem 7.1 by showing that the estimate
from below holds for u as in the statement. By (6.14) and Lemma 7.1 one can
find �2 2 (0,�0) such that for 0 < � < �2 we haveZ

B(x0,�)
j f (x, u, Xu)j dx �

1
2

K1.(7.25)

Now fix 1 > � > 0 and choose � = �(�) 2
�

S
1,p

(B(x0,�2)), with � � 1 on
B(x0,�), such that

Z
B(x0,�2)

jX�jp dx �
capp (B(x0,�); B(x0,�2))

1� �
.(7.26)

Since max
@B(x0,�)

� = 1, Lemma 3.3 (a) yields

K1 =
mX

J=1

Z
B(x0,R)

Aj(x, u, Xu)XJ� dx�
Z

B(x0,R)
�f (x, u, Xu) dx.(7.27)

Hölder’s inequality, (7.25) and (7.26) give

C(1� �)
1

p�1 capp (B(x0,�); B(x0,�2))�
1

p�1(7.28)

�

Z
B(x0,�2)nB(x0,�)

jA(x, u, Xu)jp
0

dx,

where C > 0 depends on K1 and P, but not on �.
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Let M(�) = max@B(x0,�) u and

v(x) =

8>><>>:
u+(x) x 2 B(x0, R) n B(x0,�),

min (M(�), u(x)) x 2 B(x0,�) n fx0g,

M(�) x = x0.

We observe that v 2
�

S
1,p

(B(x0, R)). This can be seen by noting that ev =

min (M(�), u+) 2
�

S
1,p

(B(x0, R)) (recall that u is negative on @B(x0, R)), and that

(u�M(�))+�B(x0,�)C = v � ev 2�S1,p
(B(x0, R) \ B(x0,�)C) �

�

S
1,p

(B(x0, R)).
With this choice of the function v, along with the maximum principle The-

orem 5.1 and Sobolev’s embedding Theorem 3.1 the argument in [S2] can be
repeated almost word by word, concluding from (7.28) that

C(1� �)
1

p�1 capp (B(x0,�); B(x0,�2))�
1

p�1 � M(�).

Letting � ! 0 and using the Harnack inequality Theorem 3.3, we obtain the
left-hand side inequality in the statement of Theorem 7.1. This completes the
proof.

Remark 6. The range of p can be extended to include Q(x0) = p in Theorem
6.1, if we restrict ourselves to the estimate from above. More precisely we have
the following: There exist positive constants B and R depending on Ω, p, (3.16),
u and C2 from Theorem 4.1 such that if 0 < d(x, x0) < R=2 then

u(x) � B capQ(x0) (B(x0, d(x, x0)), B(x0, R))
�1

Q(x0)�1 .

This is showed by means of a slight variation of the first part of the proof of
Theorem 7.1. We exploit the fact that the number K2 in (7.1) needs not be positive
in this argument.

Theorem 7.1 and the capacity estimates in Section 4 can be used to extend
to the nonlinear contest the famous estimates (3.8) of Sanchez-Calle [SC] and
Nagel, Stein and Wainger [NSW].

We start with the following:

LEMMA 7.2. Let Ω, x0, Q(x0) and u be as in the statement of Theorem 7.1 If the
singularity of u in x0 is not removable, we have for any � 2 C1

0 (Ω)

mX
j=1

Z
Ω

Aj(x, u, Xu)Xj�(x) dx�
Z

Ω
f (x, u, Xu)�(x) dx = K1�(x0),

with K1 as in Lemma 3.3 (a).
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We postpone the proof of Lemma 7.2 to the end of the section.

Definition 7.1. Let Ω, p and x0 as before. Let Γp 2 S1,p
loc(Ω n fx0g) be a

nonnegative solution of (1.7) in Ω n fx0g having a nonremovable singularity in
x0. We say that Γp is a fundamental solution in Ω with pole at x0 for the operator

Lpu =
mX

j=1

X�j Aj(x, u, Xu) � f (x, u, Xu),

if for any � 2 C1

0 (Ω)

mX
j=1

Z
Ω

Aj(x, Γp, XΓp)Xj� dx �
Z

Ω
f (x, Γp, XΓp)� dx = �(x0).

THEOREM 7.2. Let Ω, x0, Q(x0) be as in Theorem 7.1, and let Γp be a funda-
mental solution with pole at x0 2 Ω for the operator Lp, 1 < p � Q(x0). Then there
exist positive constants C and R0 such that for any 0 < r < R0 and x 2 B(x0, r)

C
�

d(x, x0)p

jB(x0, d(x, x0)j

� 1
p�1

� Γp(x) � C�1
�

d(x, x0)p

jB(x0, d(x, x0)j

� 1
p�1

,

when 1 < p < Q(x0), whereas

C log (
�

R0

d(x, x0)

�
� Γp(x) � C�1 log (

�
R0

d(x, x0)

�
,

when p = Q(x0). The constants C and R0 depend on Ω, the structure conditions
(3.16), and C1 (or C2, depending on the value of p) from the statement of Theorem
4.1, and Theorem 4.2.

Proof. The proof follows at once from Theorem 7.1 in the case 1 < p < Q(x0).
If p = Q(x0) we observe that by Lemma 7.2, Γp is a singular solution for (1.7)
with a nonremovable singularity at x0, for which K1 = 1. This observation allows
us to carry the proof of Theorem 7.1 without having to go through Lemma 7.1.
The desired estimates on the fundamental solutions now follow easily.

Proof of Lemma 7.2 We divide the proof in two steps:
(1) There exist positive constants C, and R0 such that if 0 < r < R0 and

x 2 B(x0, r), then if p < Q(x0)

Z
B(x0,r)

jA(x, u, Xu)j dx � Cr,(7.29)



1192 LUCA CAPOGNA, DONATELLA DANIELLI, AND NICOLA GAROFALO

while, if p = Q(x0)

Z
B(x0,r)

jA(x, u, Xu)j dx � Cr
�

log
2R0

r

�Q(x0)�1

,(7.30)

where jAj2 =
Pm

j=1 A2
j . In order to prove (7.29) and (7.30) recall that from the

structure assumption (3.16) we have

Z
B(x0,2r)nB(x0,r)

jA(x, u, Xu)j dx � C1

Z
B(x0,2r)nB(x0,r)

jXujp�1 dx(7.31)

+
Z

B(x0,2r)nB(x0,r)
g2juj

p�1 dx

+
Z

B(x0,2r)nB(x0,r)
g3 dx.

By Caccioppoli inequality, Hölder inequality and the doubling condition one
obtainsZ

B(x0,2r)nB(x0,r)
jXujp�1 dx � CjB(x0, r)j

1
p r1�p(7.32)

�

�Z
B(x0,3r)nB(x0,r=2)

jujp dx + CjB(x0, r)j
� p�1

p
.

The Harnack inequality and (3.18) yield

sup
B(x0,3r)nB(x0,r=2)

juj � Cm(r),(7.33)

where m(r) is as in the proof of Theorem 7.1. From (7.32), the estimates from
above in Theorem 7.1, Theorem 4.1 and (7.33) we infer

Z
B(x0,2r)nB(x0,r)

jXujp�1 dx � Cr,(7.34)

in the case p < Q(x0). Recalling (3.5) we also have if p = Q(x0)

Z
B(x0,2r)nB(x0,r)

jXujp�1 dx � Cr
�
jB(x0, r)j

rQ(x0)

��
log

1
r

�p�1

(7.35)

� Cr
�

log
1
r

�p�1

.
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Next we estimate the remaining terms in (7.31). By Hölder inequality, Har-
nack inequality, and the doubling condition one obtains

Z
B(x0,2r)nB(x0,r)

g2juj
p�1 dx � CjB(x0, r)j

1� p�1
Q(x0) m(r)p�1,

Z
B(x0,2r)nB(x0,r)

g3 dx � CjB(x0, r)j
1� p�1

Q(x0) .

After a decomposition argument similar to the one used in Theorem 7.1 the
inequalities above, together with Theorem 7.1 and the capacity estimates, yield
(7.29) and (7.30).

(2) Let � 2 C1

0 (B(x0, R0)) and � 2 C1

0 (B(x0, 2r)) be such that � = 1 on
B(x0, r) and jX�j � C=r (for the existence of such a function see Lemma 3.1).
Define � = (1� �)� + ��(x0). Lemma 3.3 (a) gives

Z
B(x0,R0)

Aj(x, u, Xu)Xj� �

Z
B(x0,R0)

f (x, u, Xu)�(7.36)

= K1�(x0)

=
Z

B(x0,R0)nB(x0,r)
Aj(x, u, Xu)(1� �)Xj�

�

Z
B(x0,2r)nB(x0,r)

Aj(x, u, Xu)�Xj�

�

Z
B(x0,R0)nB(x0,r)

(1� �)�f

+
Z

B(x0,2r)nB(x0,r)
Aj(x, u, Xu)�(x0)Xj�

�

Z
B(x0,2r)

f�(x0)�.

The result now follows from Step 1, (7.14), (7.36) and the estimate

sup
B(x0,2r)nB(x0,r)

j�(x)� �(x0)j � sup
B(x0,R0)

jX�(x)jr,

when we let r ! 0.

8. Stratified Lie groups. The results of the previous sections acquire a spe-
cial appeal in the setting of stratified Lie groups. By this is meant (see [F2]
and [St2]) a simply connected nilpotent Lie group together with a stratification
g = �

`
j=1Vj of its Lie algebra g, that is a decomposition of g as a vector space

sum g = V1 � : : : � V` such that [V1, Vj] = Vj+1 for 1 � j � ` and [V1, V`] = 0.
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There is a natural family of dilations on such a Lie algebra, namely

��(X1 + X2 + : : : + X`) = �X1 + �2X2 + : : : + �`X`,

with Xi 2 Vi. Since the exponential map exp: g ! G is a diffeomorphism,
then the dilations �� can be lifted to a one parameter group of automorphisms
of G, still denoted by ��. Accordingly, we define Q =

P`
j=1 j( dim (Vj)), to be

the homogeneous dimension of the Lie group G. If X1, : : : , Xm 2 V1 is a vector
basis, then the corresponding left-invariant vector fields on G (that we still call
X1, : : : , Xm) will satisfy the Hörmander condition for hypoellipticity [H]. The
homogeneous dimension in G related to the family X1, : : : , Xm is constant in G
and coincides with the number Q defined above. Moreover, the Nagel, Stein and
Wainger’s polynomial Λ(x, R) described in (3.1) is in this case a monomial, so
Q = Q(x0) for every x0 2 G. This last observation allows us to simplify the
statement of Theorems 4.1, 4.2, 7.1 and 7.2. In the following, we write A � B if
there exists a positive constant C such that CA < B < C�1A.

THEOREM 8.1. Let x0 2 G and r < R. We have

capp (B(x0, r), B(x0, R)) �=

8>>>>><>>>>>:

r(Q�p) when 1 < p < Q;�
log

R
r

�(1�Q)

when p = Q;�
R

p�Q
p�1 � r

p�Q
p�1

�(1�p)

when p < Q.

The constant of proportionality depends only on p, G and X1, : : : , Xm.

THEOREM 8.2. Let Ω � G be a bounded open set, x0 2 Ω and u 2 S1,p
loc(Ωnfx0g)

be a solution of (1.7) in Ω n fx0g with 1 < p < Q. Then one of the following holds:

(i) The singularity at x0 is removable.

(ii) There exists R0 > 0 such that for x 2 B(x0, R0=2),

u(x) � capp (B(x0, d(x, x0)), B(x0, R0))
�1
p�1 .

The constant of proportionality depends on u, p, (3.16), G and X1, : : : , Xm.

THEOREM 8.3. Let Ω � G be a bounded open set, x0 2 Ω and Γp(x, x0) be the
fundamental solution in Ω for the operator Lp with pole at x0. Then there exists
R0 > 0 depending only on Ω and (3.16) such that if x 2 B(x0, R0)

Γp(x, x0) �
�

d(x, x0)p

jB(x0, d(x, x0)j

� 1
p�1

� d(x, x0)
p�Q
p�1 ,
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when 1 < p < Q, whereas

Γp(x, x0) � log
�

R0

d(x, x0)

�
,

when p = Q. The constant of proportionality depends only on p, (3.16), G and
X1, : : : , Xm.
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