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A NOTABLE FAMILY OF ENTIRE INTRINSIC MINIMAL
GRAPHS IN THE HEISENBERG GROUP WHICH

ARE NOT PERIMETER MINIMIZING

By D. DANIELLI, N. GAROFALO, and D. M. NHIEU

Abstract. One of the main objectives of this paper is to unravel a new interesting phenomenon of
the sub-Riemannian Bernstein problem with respect to its Euclidean ancestor, with the purpose of
also indicating a possible line of attack toward its solution. We show that the global intrinsic graphs
(1.2) are unstable critical points of the horizontal perimeter. As a consequence of this fact, the study
of the stability acquires a central position in the problem itself.

1. Introduction. The development of geometric measure theory in sub-
Riemannian spaces has received a strong impulse over the past decade, see
[Pa1], [Pa2], [CDG], [KR], [E1], [E2], [E3], [Gro], [GN], [Be], [DS], [DGN1],
[AK1], [AK2], [CS1], [A], [FSS1], [Ma1], [FSS2], [Ma2], [CMS], [FSS3], [BRS],
[DGN4], [DGN5], [LR], [LM], [FSS4], [Ma3], [CS2] [P1], [P2], [GP], [CG],
[CHMY], [CH], [HP1], [HP2], [RR], [BC], [Se1], [Se2], [Mo]. In particular, the
papers [GP], [CHMY] and [CH] contain a detailed study of the Bernstein prob-
lem in the first Heisenberg group H1, and in more general CR manifolds of real
dimension three. Despite the progress made in these latter papers, this problem
presently still constitutes a basic open question. One of the main objectives of
this paper is to unravel a new interesting phenomenon of the sub-Riemannian
Bernstein problem with respect to its Euclidean ancestor, with the purpose of
also indicating a possible line of attack toward its solution.

To provide the reader with some perspective, we recall that in the Heisenberg
group Hn a basic discovery of Franchi, Serapioni and Serra Cassano is a structure
theorem à la De Giorgi for sets of locally finite horizontal perimeter [FSS1] (see
[FSS3] for an extension to Carnot groups of step r = 2). To prove the latter
they show that the nonisotropic blow-up of such a set at a point of its reduced
boundary produces a vertical hyperplane

Pγ = {(x, y, t) ∈ Hn | 〈a, x〉 + 〈b, y〉 = γ}, a2 + b2 �= 0,(1.1)
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(when γ = 0 these sets are also the maximal subgroups of Hn). Recalling that
the characteristic locus of a hypersurface S ⊂ Hn, denoted henceforth by Σ(S),
is the collection of all points g ∈ S at which TgS = HgH

n, where HHn denotes
the horizontal bundle of Hn, it is easy to recognize that Σ(Pγ) = ∅ for any
γ ∈ R. Therefore, in analogy with the Euclidean situation, the cited blow-up
result from [FSS1] suggests the natural conjecture that if S ⊂ Hn is a C2 entire
H-minimal graph over some hyperplane, and if Σ(S) = ∅, then S = Pγ for some
γ. Here, following a perhaps unfortunate tradition of the classical situation, H-
minimal is intended in the sense that S is of class C2, and the horizontal mean
curvature, defined in (2.13) below, vanishes identically as a continuous function
on S. However, for Hn the situation is very different than in Euclidean space. In
fact, it was proved in [GP] that there exist nonplanar entire H-minimal graphs
with empty characteristic locus, thus violating the above plausible conjecture. For
instance, the nonplanar real analytic surfaces

S = {(x, y, t) ∈ H1 | x = y(αt + β),α > 0,β ∈ R},(1.2)

are H-minimal, and they have empty characteristic locus. Moreover, the surfaces
(1.2) are global intrinsic X1-graphs in the sense of Franchi, Serapioni and Serra
Cassano, see [FSS4] (we stress that intrinsic graphs have empty characteristic
locus by definition). This means that there exists a globally defined function
φ: R2

u,v → R such that, in the coordinates (x, y, t), we can parameterize (1.2) as
follows

(x, y, t) = (0, u, v) ◦ φ(u, v)e1 = (0, u, v) ◦ (φ(u, v), 0, 0)(1.3)

=
(
φ(u, v), u, v − u

2
φ(u, v)

)
,

where ◦ indicates the non-Abelian group multiplication in H1, see (2.1). In fact,
imposing the defining equation x = y(αt + β) for S, with α > 0, we obtain the
function

φ(u, v) =
2u(αv + β)

2 + αu2 ,(1.4)

which describes S as an entire X1-graph. We also note that a vertical plane Pγ
is a global X1-graph if a �= 0 (or an X2-graph if b �= 0), with

φ(u, v) =
γ − bu

a
, if a �= 0.(1.5)

Examples such as (1.2) seem to cast a dim light on the Bernstein problem in
H

1. There is however a deeper aspect of the problem which has gone unnoticed
so far. What could be happening in fact is that, due to the different nature of
the relevant perimeter functional, global intrinsic graphs such as (1.2) are only
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stationary for the horizontal perimeter, but not stable. In this paper we examine
this aspect in depth. More precisely, we recall that, thanks to the convexity of
the area functional

A(u) =
∫

Ω

√
1 + |Du|2 dx, Ω ⊂ Rn,

in the classical theory of minimal surfaces any critical point of A is automatically
stable, i.e., it is a local minimizer, see e.g. [CM]. By contrast, we show that the
global intrinsic graphs (1.2) are unstable critical points of the horizontal perimeter
PH(S) defined in (2.22) below. As a consequence of this fact, the study of the
stability acquires a central position in the problem itself, and our results suggest
that, if properly understood from this new perspective, the Bernstein property
is still true in H1. Besides their intrinsic interest, we believe that the relevance
of our results lies in the method of proof, which is quite general and flexible,
and has the potential of being successfully applied to attack the sub-Riemannian
Bernstein problem. In Geometric Measure Theory there exist in essence two (dif-
ferent, but equivalent) approaches to stability: the former is based on the so-called
method of calibrations, the latter on second variation formulas. Our approach re-
volves around a general second variation formula established in [DGN3], and on
the explicit construction of a continuum of directions along which the intrinsic
perimeter strictly decreases. We need to introduce a basic definition.

Definition 1.1. We say that a C2 oriented H-minimal surface S ⊂ H1, with
Σ(S) = ∅, is stationary if it has vanishing first variation of the H-perimeter, i.e.,
if

VH
I (S;X )

def
=

d
dλ

PH(Sλ)
∣∣∣∣
λ=0

= 0,

for any deformation S → Sλ = S + λX , where X ∈ C2
0(S,H1), with X �≡ 0. We

say that a stationary S is stable if the second variation is nonnegative, i.e.,

VH
II (S;X )

def
=

d2

dλ2 PH(Sλ)

∣∣∣∣∣
λ=0

≥ 0,

for any X ∈ C2
0(S,H1), with X �≡ 0. If there exists such an X for which

VH
II (S;X ) < 0, then we say that S is unstable.

It has been proved in [DGN3] that S is stationary if and only if S is H-
minimal, see Theorem 3.1 below. In this paper we establish the following result.

THEOREM 1.2. For every α > 0 and β ∈ R, the H-minimal global intrinsic
X1-graphs

S = {(x, y, t) ∈ H1 | x = y(αt + β)},(1.6)
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are unstable. More precisely, there exist a ∈ C∞0 (S), a �≡ 0, and h ∈ C∞0 (S), h �≡ 0,
such that with either X = aX1, or X = hνH, we have VH

II (S;X ) < 0.

To explain the strategy behind Theorem 1.2 we mention that in Section 2
we collect some preliminary material which constitutes the geometric backbone
of the paper. The novel part of the paper is contained in Section 3. An essen-
tial ingredient in the proof of Theorem 1.2 is the second variation formula, see
Theorem 3.2 below. Combining the latter with some basic sub-Riemannian in-
tegration by parts formulas, see Lemmas 3.5 and 3.6, we reduce the study of
the stability of (1.2) to checking the validity of some Hardy type inequalities on
S, see Lemmas 3.7 and 3.9. Using the representation of S as a global graph,
we then pull back such Hardy inequalities to ones onto the (y, t)−plane, see
Lemma 3.12. Finally, in Lemma 3.13 and Corollary 3.14 we explicitly construct
the directions such that, deforming the surface (1.2) along them, the H-perimeter
strictly decreases. This establishes the instability of (1.2).

We would like to close this introduction with some conjectures which are
suggested by the present work. Consider a C2, H-minimal intrinsic X1-graph
S ⊂ H

1. Denoting by Bφ the linearized Burger’s operator, whose action on
a function F = F(u, v) is given by Bφ(F) = Fu + φFv , then it was proved in
Theorem 1.2 in [ASV] that, provided that φ ∈ C2

0(R2), the H-perimeter of S is
given by

PH(S) =
∫

supp(φ)

√
1 + Bφ(φ)2 du ∧ dv.(1.7)

Now, if we think of (1.7) as a functional PH(φ) acting on φ, one can easily
recognize that, given ζ ∈ C∞0 (R2), then the first variation of PH(S) with respect
to the deformation S → Sλ = S + λX , with X = ζX1, is given by

VH
I (S;X )

def
=

dPH(Sλ)
dλ

∣∣∣∣∣
λ=0

(1.8)

=
∫
R2

Bφ(φ)√
1 + Bφ(φ)2

(ζu + φζv + ζφv) du ∧ dv.

In view of Theorem 1.2, it is natural to make the following conjecture: Sup-
pose that φ, belonging to a suitable Sobolev space, is a local (or even a global)
minimizer of (1.7), and therefore in particular also a critical point, then after mod-
ification on a set of measure zero, φ must be of the type (1.5).

If we assume a priori that φ ∈ C2(R2), then integrating by parts in (1.8) we
obtain that

VH
I (S;X ) = −

∫
R2
ζ Bφ


 Bφ(φ)√

1 + Bφ(φ)2


 du ∧ dv, ζ ∈ C∞0 (R2).(1.9)
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On the other hand, under the same regularity hypothesis on φ one can rec-
ognize, see [GS], that

Bφ


 Bφ(φ)√

1 + Bφ(φ)2


 = −H,(1.10)

where H represents the H-mean curvature of S, defined in (2.13) below. There-
fore, a C2 global intrinsic graph S is a critical point of (1.7) if and only if S
is H-minimal. As a consequence of these considerations, in the C2 framework
the above conjecture could be reformulated by saying that: The only C2, stable,
global intrinsic graphs in H1 are the vertical planes. Finally, we would also like
to return to the conjecture in the opening of this introduction and amend it as
follows: In H1 the vertical planes (1.1) are the only C2, stable, entire H-minimal
graphs (over some plane).

Acknowledgments. The problems treated in this paper were inspired by some
stimulating discussions with F. Serra Cassano and R. Serapioni during a visit of
the second author at the University of Trento in April 2005. He would like to
thank them for their gracious hospitality. The authors would also like to thank
the anonymous referee for his/her careful reading of the manuscript and for some
comments which helped to improve the presentation of the paper.

2. Preliminary material. In this section we introduce some relevant nota-
tion and definitions from [DGN3] which will be used in the proof of Theorem 1.2.
We consider the first Heisenberg group H1 = (R3, ◦) with group law

(x, y, t) ◦ (x′, y′, t′) =
(

x + x′, y + y′, t + t′ +
1
2

(xy′ − x′y)
)

,(2.1)

and nonisotropic dilations δλ(x, y, t) = (λx,λy,λ2t), see [S]. Hereafter, we will
use the letters g = (x, y, t), g′ = (x′, y′, t′), etc., to indicate points in H1. Denoting
with (Lg)∗ the differential of the left-translation operator Lg : H1 → H

1 defined
by Lg(g′) = g ◦ g′, and letting ei , i = 1, 2, 3, indicate the standard orthonormal
basis of R3, one readily verifies that

X1(g)
def
= (Lg)∗(e1) =

∂

∂x
− y

2
∂

∂t
,(2.2)

X2(g)
def
= (Lg)∗(e2) =

∂

∂y
+

x
2
∂

∂t
,

T(g)
def
= (Lg)∗(e3) =

∂

∂t
.
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The three vector fields {X1, X2, T} generate the Lie algebra h1 of all left-
invariant vector fields on H1. They satisfy at every point of H1 the nontrivial
commutation relation

[X1, X2] = T ,(2.3)

all other commutators being trivial. In view of (2.3), the Heisenberg group consti-
tutes the first (and perhaps most important) prototype of a class of graded nilpotent
Lie groups nowadays known as Carnot groups, see [Fo], [S], [Gro], [Pa2], [Be].
We observe explicitly that, if we let V1 = R2

x,y × {0}t, and V2 = {0}x,y × Rt,
then the Heisenberg algebra admits the decomposition h1 = V1 ⊕ V2. We assume
hereafter that H1 be endowed with a left-invariant Riemannian metric with re-
spect to which {X1, X2, T} constitute an orthonormal basis. The inner product
with respect to this metric will be denoted by 〈·, ·〉. This is the only inner product
that will be used in this paper, therefore there will be no confusion with other
inner products, such as for instance the Euclidean one, in R3. The corresponding
Levi-Civita connection on H1 will be denoted by ∇XY . We will denote by HH1

the subbundle of the tangent bundle TH1 generated by the distribution {X1, X2}.
The horizontal Levi-Civita connection is given as follows. For any X ∈ Γ(TH1),
Y ∈ Γ(HH1) we let

∇H
X Y =

2∑
i=1

〈∇XY , Xi〉Xi,(2.4)

and one can easily verify that ∇H
X Y is metric preserving and torsion free, in the

sense that if we define the horizontal torsion of S as

TH(X, Y) = ∇H
X Y −∇H

Y X − [X, Y]H ,

where [X, Y]H =
∑2

i=1〈[X, Y], Xi〉Xi, then TH(X, Y) = 0. Given a function f ∈
C1(H1), its Riemannian gradient is given by

∇f = X1f X1 + X2f X2 + Tf T ,

whereas its horizontal gradient is given by the projection of∇f onto the subbundle
H

1, hence

∇Hf = 〈∇f , X1〉X1 + 〈∇f , X2〉X2 = X1f X1 + X2f X2.

Given an oriented C2 surface S ⊂ H1, we denote by N its (nonunit) Rieman-
nian normal with respect to the orthonormal frame {X1, X2, T}, and by ν = N/|N|
its Riemannian Gauss map. We consider the quantities

p = 〈N, X1〉, q = 〈N, X2〉, ω = 〈N, T〉, W =
√

p2 + q2.(2.5)
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In this paper we adopt the classical nonparametric point of view, see for
instance [MM], according to which a C2 surface S ⊂ H1 is a subset of R3 which
locally coincides with the zero set of a real function. Thus, for every g0 ∈ S there
exists an open set O ⊂ H1 and a function φ ∈ C2(O) such that: (i) |∇φ(g)| �= 0
for every g ∈ O; (ii) S ∩ O = {g ∈ O | φ(g) = 0}. We will always assume that
S is oriented in such a way that for every g ∈ S one has

N(g) = ∇φ(g) = X1φ(g)X1 + X2φ(g)X2 + Tφ(g)T .

We note explicitly that, in this situation, the functions p, q,ω defined in (2.5),
which are given by p = X1φ, q = X2φ, ω = Tφ, are not only defined on S, but for
every g0 ∈ S they belong to C1(O). This notion of C2 surface obviously includes
the entire intrinsic graphs considered in Theorem 1.2. In fact, in the case of the
surfaces S in (1.6), we have (see (3.17)),

p = X1φ = 1 +
α

2
y2, q = X2φ = −αt − β − α

2
xy, ω = Tφ = −αy,

and thus in particular the field N = pX1 + qX2 + ωT belongs to C∞(O,H1), with
O = H1.

We emphasize here that the local defining function φ in (i) and (ii) above
has a different meaning from the function φ in the definition of intrinsic graph
in the introduction. Given a surface S ⊂ H1, on the set S \ Σ(S) we define the
horizontal Gauss map by

νH = p X1 + q X2,(2.6)

where we have let

p =
p
W

, q =
q
W

, so that |νH|2 = p2 + q2 ≡ 1 on S \ Σ(S).(2.7)

Given a point g0 ∈ S\Σ(S), the horizontal tangent space of S at g0 is defined
by

HTg0 (S) = {v ∈ Hg0H
1 | 〈v,νH(g0)〉 = 0}.

Let us notice that a basis for HTg0 (S) is given by the vector field

ν⊥H = q X1 − p X2.(2.8)

Given a function u ∈ C1(S) one clearly has ∇H,Su(g0) ∈ HTg0 (S). We next
recall some basic definitions from [DGN3].
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Definition 2.1. Let S ⊂ H1 be a C2 surface, with Σ(S) = ∅, then we define
the horizontal connection on S as follows. For every X, Y ∈ C1(S; HTS) we let

∇H,S
X Y = ∇H

X Y − 〈∇H
X Y ,νH〉νH ,

where X, Y ∈ C1(H1; HH1) are such that X = X, Y = Y on S.

Similarly to the Riemannian case, it is possible to prove that ∇H,S
X Y does not

depend on the extensions X, Y . The tangential horizontal gradient of a function
f ∈ C1(S) is defined as follows

∇H,S f = ∇Hf − 〈∇Hf ,νH〉νH ,(2.9)

where f denotes any extension of f to all of H1. The definition of ∇H,S f is
well-posed since ∇H,S f only depends on the values of f on S. Since |νH| ≡ 1
on S \ Σ(S), we clearly have 〈∇H,S f ,νH〉 = 0, and therefore

|∇H,S f |2 = |∇Hf |2 − 〈∇Hf ,νH〉2.(2.10)

All the above definitions are specializations to H1 of analogous ones for
general Carnot groups, see [DGN3]. The next definition contains the essential
geometric concept of horizontal second fundamental form. It is convenient to
state it for Hn, rather than H1.

Definition 2.2. Let S ⊂ Hn be a C2 hypersurface with Σ(S) = ∅, then for
every X, Y ∈ C1(S; HTS) we define a tensor field of type (0, 2) on S, as follows

IIH,S(X, Y) = 〈∇H
X Y ,νH〉νH ,(2.11)

where X, Y have the same meaning as in Definition 2.1. We call IIH,S(·, ·) the
horizontal second fundamental form of S. We also define AH,S : HTS → HTS
by letting for every g ∈ S and u, v ∈ HTgS

〈AH,Su, v〉 = −〈IIH,S(u, v),νH〉 = −〈∇H
X Y ,νH〉,(2.12)

where X, Y ∈ C1(S, HTS) are such that Xg = u, Yg = v, and X, Y are as above.
We call the linear map AH,S : HTgS → HTgS the horizontal shape operator. If
e1, . . . , e2n−1 denotes a local orthonormal frame for HTS, then the matrix of the
horizontal shape operator with respect to the basis e1, . . . , e2n−1 is given by the
(2n− 1)× (2n− 1) matrix −[〈∇H

ei
ej,νH〉]i,j=1,...,2n−1.



A NOTABLE FAMILY OF ENTIRE INTRINSIC MINIMAL GRAPHS, ETC. 325

If S has nonempty characteristic locus Σ(S), then we consider S ′ = S \ Σ(S)
and define the H-mean curvature of S at a point g0 ∈ S ′ as follows

H = − traceAH,S = −
2n−1∑
j=1

〈∇H
ei

ej,νH〉.(2.13)

We recall that is was proved in [B], [Ma3] that HQ−1(Σ(S)) = 0, where Hs

denotes the s-dimensional Hausdorff measure associated with the horizontal or
Carnot-Carathéodory distance of G, and Q indicates the homogeneous dimension
of G. If g0 ∈ Σ(S) we let

H(g0) = lim
g→g0,g∈S\Σ(S)

H(g),

provided that such limit exists, finite or infinite. We do not define the H-mean cur-
vature at those points g0 ∈ Σ(S) at which the limit does not exist. The following
result is taken from [DGN3].

PROPOSITION 2.3. The H-mean curvature ofS ⊂ H1 coincides with the function

H =
2∑

i=1

∇H,S
i 〈νH , Xi〉 = ∇H,S

1 p +∇H,S
2 q = X1p + X2q,(2.14)

where p, q are as in (2.7).

Definition 2.4. A C2 surface S ⊂ H1 is called H-minimal if H ≡ 0 as a
continuous function on S.

In keeping up with the notation of [DGN3] it will be convenient to indicate
with Yζ and Zζ the respective actions of the vector fields νH and ν⊥H on a
function ζ ∈ C1

0(S \ Σ(S)), thus

Yζ
def
= p X1ζ + q X2ζ, Zζ

def
= q X1ζ − p X2ζ.(2.15)

The frame {Z, Y , T} is orthonormal. It is worth observing that, since the met-
ric tensor {gij} with respect to the inner product 〈·, ·〉 has the property det{gij} = 1,
then the (Riemannian) divergence in H1 of these vector fields is given by

div Y = X1p + X2q = H, div Z = X1q− X2p.(2.16)

Using Cramer’s rule one easily obtains from (2.15)

X1ζ = q Zζ + p Yζ, X2ζ = q Yζ − p Zζ.(2.17)



326 D. DANIELLI, N. GAROFALO, AND D. M. NHIEU

One also has

∇H,S
1 ζ = q Zζ, ∇H,S

2 ζ = −p Zζ,(2.18)

so that

|∇H,Sζ|2 = (Zζ)2.(2.19)

We notice that

qZp− pZq = H.(2.20)

This can be easily recognized using Proposition 2.3 and (2.17), as follows

H = X1p + X2q = qZp− pZq + pYp + qYq = qZp− pZq,

where we have used the fact that 0 = 1
2 Y(p2 + q2) = pYp + qYq. Finally, we will

need the following identity

H2 = (Zp)2 + (Zq)2.(2.21)

This can be easily proved observing that (2.20) and the identity p2 + q2 = 1
give

H2 = (Zp)2 + (Zq2)− (pZp + qZq) = (Zp)2 + (Zq2).

In the classical theory of minimal surfaces, the concept of area or perime-
ter occupies a central position, see [DG1], [DG2], [DCP], [G], [MM]. In sub-
Riemannian geometry there exists an appropriate notion of perimeter. Given an
open set Ω ⊂ H

1 we denote F(Ω) = {ζ ∈ C1
0(Ω; HH1) | ‖ζ‖L∞(Ω) ≤ 1}. A

function u ∈ L1(Ω) is said to belong to BVH(Ω) (the space of functions with
finite horizontal bounded variation), if

VarH(u; Ω) = sup
ζ∈F (Ω)

∫
Ω

u divHζ dg <∞.

This space becomes a Banach space with the norm ‖u‖BVH (Ω) = ‖u‖L1(Ω) +
VarH(u; Ω). Given a measurable set E ⊂ H1, the H-perimeter of E with respect
to the open set Ω ⊂ H1 is defined as follows, see for instance [CDG], and [GN],

PH(E; Ω) = VarH(χE; Ω).

Given an oriented C2 surface S, we will denote by dσH the H-perimeter
measure concentrated on S. For any Borel subset E ⊂ S such that PH(E) <∞,
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one has

PH(E) =
∫

E
dσH =

∫
E

√
〈ν, X1〉2 + 〈ν, X2〉2 dσ(2.22)

=
∫

E

√
〈N, X1〉2 + 〈N, X2〉2

|N| dσ =
∫

E

W
|N| dσ,

where in the last equality we have used (2.5). We thus obtain from (2.22)

dσH =
W
|N| dσ,(2.23)

where dσ denotes the standard surface measure.

3. Proof of Theorem 1.2. This section is devoted to proving Theorem 1.2.
In the course of the proof we need to build some auxiliary results which we
felt have an independent interest. We begin by recalling the notions of first and
second variation of the H-perimeter introduced in Definition 1.1. Classical min-
imal surfaces are critical points of the perimeter (area functional). It is natural
to ask what is the connection between the notion of H-minimal surface and that
of H-perimeter. The answer to this question is contained in the following result
from [DGN3], see also [DGN2].

THEOREM 3.1. Let S ⊂ H1 be an oriented C2 surface with Σ(S) = ∅, then

VH
I (S;X ) =

∫
S
H cos (X∠N)

cos (νH∠N)
|X | dσH ,(3.1)

where∠ denotes the angle between vectors in the inner product 〈·, ·〉. In particular,
S is stationary if and only if it is H-minimal.

We emphasize that, thanks to the assumption Σ(S) = ∅, the denominator in
the integrand in the right-hand side of (3.1) does not vanish on S. We mention that
versions of Theorem 3.1 have also been obtained independently by other people.
An approach based on motion by H-mean curvature can be found in [BC]. When
X = hνH , then a proof based on CR-geometry can be found in [CHMY].

A central (and more complex) result for this paper is the following theorem
established in [DGN3]. Recalling the function ω defined in (2.5), henceforth we
let ω = ω/W.

THEOREM 3.2. LetS ⊂ H1 be a C2 oriented surface with Σ(S) = ∅. The second
variation of the H-perimeter with respect to the deformation S → Sλ = S + λX ,
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with X = aX1 + bX2 + kT ∈ C2
0(S;H1), is given by the formula

VH
II (S;X ) =

∫
S

{
− 2 (pZb− qZa) (Tk − ωYk)(3.2)

+ (Ta− ωYa)
[
− 2qZk − q(ap + bq)− p(aq− bp)

]

+ (Tb− ωYb)
[
2pZk + p(ap + bq)− q(aq− bp)

]

+ 2 (aq− bp)(qZa− pZb) ω

+ (Za + ω p Zk)2 + (Zb + ω q Zk)2

+ (a2 + b2) ω2

+ 2 ω(aZa + bZb) + 2 ω2(ap + bq)Zk

− (qZa− pZb + (aq− bp)ω)2
}

dσH .

COROLLARY 3.3. If we choose a ∈ C∞0 (S), b ≡ k ≡ 0, and therefore X = aX1,
then the corresponding second variation of the H-perimeter is given by

VH
II (S;X ) =

∫
S

{
p2(Za)2 + p2 ω2 a2(3.3)

+ ωZ(a2)− p q
(

T(a2)− ωY(a2)
)}

dσH .

Proof. It follows in an elementary fashion from (3.2). One only needs to keep
in mind that p2 + q2 = 1.

COROLLARY 3.4. Given a C3 oriented surfaceS ⊂ H1, with Σ(S) = ∅, consider
the deformation

Sλ = S + λ (h νH + k T), h, k ∈ C2
0(S),(3.4)

corresponding to the choiceX = phX1 +qhX2 (notice that a = ph, b = qh ∈ C2
0(S)).

One has

VH
II (S;X ) =

∫
S

(
Zh + ωZk

)2

dσH(3.5)

+2
∫
S

hH (Tk − ωYk) dσH

+
∫
S

{
ωZ(h2) + 2 A h Zk +A h2

}
dσH ,
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where we have set

A = (pTq− qTp) + ω(qYp− pYq) + ω2.(3.6)

Proof. We notice that we presently have

pa + qb = h, qa− pb = 0,

a Za + b Zb = h Zh,

pZb− qZa = h(pZq− qZp) = −h H,

where in the last equality we have used the identity (2.20). We also have

Ta− ωYa = p (Th− ωYh) + h (Tp− ωYp) ,

Tb− ωYb = q (Th− ωYh) + h (Tq− ωYq) ,

(Za + ω p Zk)2 = p2 (Zh + ωZk)2 + (Zp)2 h2 + 2 p Zp h (Zh + ωZk) ,

(Zb + ω q Zk)2 = q2 (Zh + ωZk)2 + (Zq)2 h2 + 2 q Zq h (Zh + ωZk) .

Substituting these formulas in the right-hand side of (3.2), and using (2.21),
we reach the desired conclusion.

A different approach to a version of (3.5) based on CR-geometry was found
in [CHMY]. To reduce further the expressions in the right-hand side of (3.3),
(3.5) we would like to transform the terms containing the derivatives Z(a2),
T(a2), Y(a2), Z(h2). For this, we will use the following basic integration by parts
formulas proved in [DGN3].

LEMMA 3.5. Let S ⊂ H1 be a C2 oriented surface with Σ(S) = ∅. For any
ζ ∈ C1

0(S) one has ∫
S

Zζ dσH = −
∫
S
ζ ω dσH .

LEMMA 3.6. With S as in Lemma 3.5, for any function ζ ∈ C1
0(S) one has

∫
S

Tζ dσH =
∫
S

Yζ ω dσH +
∫
S
ζ ω H dσH .

Using Lemma 3.5 we find

∫
S
ωZ(a2) dσH =

∫
S

Z
(
ωa2

)
dσH −

∫
S

a2Zω dσH(3.7)

= −
∫
S

a2ω2 dσH −
∫
S

a2Zω dσH .
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From Lemma 3.6 we obtain instead

−
∫
S

p q
(

T(a2)− ωY(a2)
)

dσH(3.8)

=
∫
S

a2
{

(pTq + qTp)− ω(pYq + qYp)− p q ωH
}

dσH .

Substituting (3.7), (3.8) into (3.3), and keeping (2.9) in mind, we finally
obtain:

LEMMA 3.7. Let S ⊂ H1 be a C2, oriented surface, with Σ(S) = ∅, then the
second variation of the H-perimeter, with respect to deformation Sλ = S + λaX1,
is given by

VH
II (S; aX1) =

∫
S

p2|∇H,Sa|2dσH(3.9)

+
∫
S

a2
{

(pTq + qTp)− ω(pYq + qYp)

− q2ω2 − Zω − p q ωH
}

dσH .

To establish the next lemma we need the following auxiliary result.

LEMMA 3.8. On a surface S as in Lemma 3.7, one has

−Zω = A,

where A is the quantity defined in (3.6).

Proof. From the definition of ω one has

− Zω = ω
ZW
W
− Zω

W
.(3.10)

We now claim that

Zω
W

= q Tp− p Tq,(3.11)

and that, furthermore,

ZW
W

= q Yp− p Yq + ω.(3.12)

It should be obvious to the reader that, inserting (3.11), (3.12) into (3.10), we
obtain the desired conclusion. We are thus left with proving (3.11) and (3.12).
For the former, we observe that

〈Z, N〉 = 0.
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If φ denotes a local defining function of S in the neighborhood of an arbitrary
point, we thus have Zφ = 0. Applying T to this identity, we obtain

0 = T(Zφ) = T(qX1φ− pX2φ) = TqX1φ + q TX1φ− TpX2φ− p TX2φ

= Tq X1φ− Tp X2φ + qX1Tφ− pX2Tφ = pTq− qTp + Z(Tφ),

where we have used [Xi, T] = 0, i = 1, 2. It follows that

Zω
W

=
Z(Tφ)

W
= q Tp− p Tq,

which proves (3.11). As for (3.12), we have

ω = Tφ = X1X2φ− X2X1φ = X1(q W)− X2(p W) = −(X2p− X1q)W + ZW ,

from which the desired conclusion follows immediately.

Using Lemma 3.5 in (3.5) of Corollary 3.4, in combination with Lemma 3.8,
we obtain:

LEMMA 3.9. Let S ⊂ H
1 be a C3, oriented surface, with Σ(S) = ∅, then

the second variation of the H-perimeter with respect to the deformation of Sλ =
S + λhνH, is given by

VH
II (S; hνH) =

∫
S

{
(Zh)2 + h2

(
2A− ω2

)}
dσH(3.13)

=
∫
S

{
(Zh)2+h2[2(pTq−qTp)+2ω(qYp−pYq)+ω2]} dσH ,

where A is defined in (3.6).

After these preparations we turn to the core of the proof of Theorem 1.2. We
will focus on the case in which the surface is given by

S = {(x, y, t) ∈ H1 | x = y(αt + β)},(3.14)

the other family of surfaces S = {(x, y, t) ∈ H1 | y = x(αt + β)}, with α < 0 and
β ∈ R, being treated by completely analogous considerations. Our first step in the
proof of Theorem 1.2 is to compute the second variation of the H-perimeter for
S. In view of (3.9) in Lemma 3.7, or (3.13) in Lemma 3.9, we need to compute
the quantities which appear as the coefficient of a2 and h2 in the integral in
the right-hand side of the respective formulas. This is the content of the next
lemma.
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LEMMA 3.10. Let S be the H-minimal surface given by (3.14), then one has

(pTq+qTp)− ω(pYq+qYp)−q2ω2−Zω−p q ω H = − 2α
W2(1+(αt+β)2)

,(3.15)

2(pTq− qTp) + 2ω(qYp− pYq) + ω2 = − 2α
W2 .(3.16)

Proof. We can use the global defining function φ(x, y, t) = x − y(αt + β). As
previously stipulated, we assume that S is oriented in such a way that N = ∇φ =
X1φ X1 + X2φ X2 + Tφ T . Recalling (2.5), simple calculations based on (2.2) thus
give

p = X1φ = 1 +
α

2
y2, q = X2φ = −αt − β − α

2
xy, ω = Tφ = −αy.(3.17)

The second equation in (3.17) becomes on S

q = −(αt + β)
(

1 +
α

2
y2
)

.(3.18)

We thus find on S

W2 = |∇Hφ|2 =
(

1 +
α

2
y2
)2

(1 + (αt + β)2).(3.19)

Using (2.15) we obtain

Z(Tφ) = q X1(Tφ)− p X2(Tφ) =
αp
W

=
α
(
1 + α

2 y2)
W

> 0.(3.20)

Next, we have

X1p = 0, X1q = 0, X2p = αy, X2q = −αx.(3.21)

This gives

X1W =
pX1p + qX1q

W
=0, X2W =

pX2p + qX2q
W

=αy
(

1 + (αt + β)2)
)1/2

.(3.22)

From (2.15) and (3.22) we find

ZW = qX1W − pX2W = − p
W

X2W = −α y.(3.23)
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Combining (3.23) with (3.20) we obtain

Zω =
Z(Tφ)

W
− Tφ

W2 ZW =
α− α2

2 y2

W2 .(3.24)

Using the above formulas it is not difficult to verify that

Yp = Yq = 0.(3.25)

We now have from (3.17)

TW =
pTp + qTq

W
= −αq

W
,

and therefore we easily find




Tp = − α(αt + β)(
1 + α

2 y2
)

(1 + (αt + β)2)3/2
= − α(αt + β)

W(1 + (αt + β)2)
,

Tq = − α

W(1 + (αt + β)2)
.

(3.26)

From (3.17) and (3.26) we conclude that

p Tq + q Tp =
α
(
1 + α

2 y2) ((αt + β)2 − 1)

W2(1 + (αt + β)2)
.(3.27)

From (3.18), (3.24), and (3.27), and elementary computations, we easily reach
the conclusion that (3.15) holds. In a similar fashion, we obtain the proof of (3.16)
by (3.17), (3.18), (3.19) and (3.26).

From Lemmas 3.7, 3.9 and 3.10, we obtain the following corollary:

COROLLARY 3.11. Let S be the H-minimal surface given by (3.14). For any
a ∈ C∞0 (S), the second variation along the deformation S → Sλ = S + λaX1 is
given by

VH
II (S; aX1) =

∫
S

(
1+ α

2 y2)2

W2 |∇H,Sa|2dσH−2 α
∫
S

a2

W2(1+(αt+β)2)
dσH .(3.28)

For any h ∈ C∞0 (S), the second variation along the deformation S → Sλ =
S + λhνH is given by

VH
II (S; hνH) =

∫
S
|∇H,Sh|2dσH − 2 α

∫
S

h2

W2 dσH .(3.29)
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We now consider the global smooth parametrization θ : R2 → R
3 of the

surface S given by θ(y, t) = (y(αt + β), y, t). Clearly, S = θ(R2).

LEMMA 3.12. Let S be the H-minimal surface given by (3.14). For any a ∈
C∞0 (S), then one has

VH
II (S; aX1) =

∫
R2

(
1 + α

2 y2) u2
y

(1 + (αt + β)2)3/2
dy dt(3.30)

−2α
∫
R2

u2(
1 + α

2 y2
)

(1 + (αt + β)2)3/2
dy dt,

where u = a ◦ θ ∈ C∞0 (R2). For any h ∈ C∞0 (S), the one has

VH
II (S; hνH) =

∫
R2

(
1 + α

2 y2) u2
y

(1 + (αt + β)2)1/2
dy dt(3.31)

− 2α
∫
R2

u2(
1 + α

2 y2
)

(1 + (αt + β)2)1/2
dy dt,

where this time we have set u = h ◦ θ ∈ C∞0 (R2).

Proof. In order to prove (3.30) we make some reductions. Keeping in mind
that from (2.23) we have dσH = (|∇Hφ|/|∇φ|)dσ = (W/|∇φ|)dσ, from (3.19)
we obtain

∫
S

a2

W2(1 + (αt + β)2)
dσH =

∫
R2

u2(
1 + α

2 y2
)

(1 + (αt + β)2)3/2
dy dt.

In order to express the first integral in the right-hand side of (3.28) as an
integral on R2, we compute |∇H,Sa|2. We have from (2.9), (2.15), (3.17) and
(3.18)

|∇H,Sa|2 = (Za)2 = (qX1a− pX2a)2(3.32)

=
((αt + β)X1a + X2a)2

1 + (αt + β)2 .

Now, the chain rule gives uy = (αt + β)ax + ay, and therefore we see from
(2.2) that we have on S

(αt + β)X1a + X2a = (αt + β) ax + ay = uy.

From (3.32) we thus conclude that

∫
S

p2 |δHa|2 dσH =
∫
R2

(
1 + α

2 y2) u2
y

(1 + (αt + β)2)3/2
dy dt.
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This proves (3.30). The proof of (3.31) proceeds analogously, and we omit
the details.

LEMMA 3.13. Let χk ∈ C∞0 (R) be such that 0 ≤ χk(s) ≤ 1, χk(s) = 0 for
|s| > 2k, χk(s) ≡ 1 for |s| < k, and |χ′k(s)| ≤ C/k with C independent of k. Define
for any α > 0

fk(y) =
χk(y)√
1 + α

2 y2
.

We have fk ∈ C∞0 (R), and there exists k0 ∈ N such that for all k > k0

∫
R

fk(y)2

1 + α
2 y2 dy >

1
2α

∫
R

(
1 +

α

2
y2
)

f ′k(y)2 dy.(3.33)

Proof. We begin by observing that integration of the right-hand side of (3.33)
gives

∫
R

(
1 +

α

2
y2
)

f ′k(y)2 dy(3.34)

=
∫
R

(χ′k)2 dy +
α2

4

∫
R

y2χ2
k

(1 + α
2 y2)2 dy +

α

2

∫
R

χ2
k

(
y

1 + α
2 y2

)′
dy.

Observing that (
y

1 + α
2 y2

)′
=

1− α
2 y2

(1 + α
2 y2)2 ,

we conclude from (3.34) and dominated convergence

∫
R

(1 +
α

2
y2)f ′k(y)2 dy = O

(
1
k

)
+
α

2

∫
R

χ2
k(

1 + α
2 y2
)2 dy(3.35)

−→ α

2

∫
R

1(
1 + α

2 y2
)2 dy =

√
α

2
π

2
, as k→∞.

On the other hand, again by dominated convergence, we obtain for the integral
in the left-hand side of (3.33)

∫
R

fk(y)2

1 + α
2 y2 dy =

∫
R

χk(y)2(
1 + α

2 y2
)2 dy(3.36)

−→
∫
R

1(
1 + α

2 y2
)2 dy =

π

2

√
2
α

as k→∞.
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In view of (3.35), (3.36), we obtain

∫
R

fk(y)2

1 + α
2 y2 dy− 1

2α

∫
R

(
1 +

α

2
y2
)

f ′k(y)2 dy −→ 3π
8

√
2
α

.

From this the conclusion readily follows.

As an immediate consequence of Lemma 3.13 and Fubini’s theorem we ob-
tain:

COROLLARY 3.14. For k ∈ N, k ≥ k0, define uk(y, t) = fk(y)χk(t), where χk and
fk and k0 are as in Lemma 3.13. One has

∫
R2

uk(y, t)2

(1 + α
2 y2)(1 + (αt + β)2)3/2

dy dy(3.37)

>
1

2α

∫
R2

1 + α
2 y2

(1 + (αt + β)2)3/2

(
∂uk(y, t)
∂y

)2

dy dt.

We are finally ready to give the following:

Proof of Theorem 1.2. Let uk, k ≥ k0, be as in Corollary 3.14. Define ak :
H

1 → R, ak ∈ C∞0 (H1), as follows

ak(x, y, t) =
χk(y)χk(t)χk(x− y (α t + β))√

1 + α
2 y2

.

We observe that ak(θ(y, t)) = uk(y, t)χk(0) = uk(y, t). At this point, appealing
to (3.30) in Lemma 3.12 and to Corollary 3.14, we conclude that for every fixed
k ≥ k0, we have for the deformation S → Sλ = S + λakX1

VH
II (S; akX1) =

d2

dλ2 PH(Sλ)

∣∣∣∣∣
λ=0

< 0.

This proves that S cannot be a local minimizer of the H-perimeter for
compactly supported deformations along X1. In a similar way, using (3.30) in
Lemma 3.12 and Corollary 3.14, we see that S cannot be a local minimizer for
deformations along the horizontal normal νH . In particular, since every global
minimizer is also a local one, S cannot be a global minimizer either.
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