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1 Introduction

The aim of this paper is to study bounded critical points of the following general
functional from the calculus of variations

(1.1) E(u) = / &(u, Du) dz,

whose Euler-Lagrange equation is
(1.2) div &, (u, Du) = P¢(u, Du).

Using compactness methods based on the translation invariance of the equation
(1.2), and a priori estimates ifi* norm, we prove various properties of bounded
entire solutions of (1.2), such as a sharp inequality for the gradient, energy mono-
tonicity and optimal growth, Liouville type results, and one-dimensional symmetry.
An important role in this program is played by the function

1.3) P = P(x;u) =< P,(u(zx), Du(z)), Du(z) > — &(u(z), Du(z)),

which incorporates basic analytic and geometric information ibself. To explain
this point let us notice that when the level sets.@fre hyper-planes, then

(1.4) u(z) = g(< a,xz >),

for someg : R — R, and some vectar € R, with |a| = 1. If, in addition, @ is
spherically symmetric iwr, i.e., if we can write

15) 2(60) = 5 G(& lof?)
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for some functiorG = G(¢, s), thenitis easy to recognize that the funct®mtro-
duced in (1.3) is constant, see Proposition 4.2. Vice-versa, the constaR¢y of
hides geometric information on the level séise R™ | u(z) = ¢} of the solution
u, such as the property of being surfaces of zero mean curvature. A basic feature
of the functionP is that it satisfies a maximum principle, which becomes optimal
(in the sense tha? becomes constant) for a distinguished geometric configuration
of u, namely (1.4). Such result has important connections with the beautiful theory
of isoparametric surfaces developed by E. Cartan [C], see also [Tho].

On a bounded entire solution of the model equatibm = F’(u), one has
P = (1/2)|Du(x)|*> — F(u(x)). In this case L. Modica in [M2] first established
the following important property oP

(1.6) |Du(z)|* < 2F(u(x)), x € R",

under the hypothesig8 > 0. Gradient estimates of entire solutions of uniformly
elliptic equations have along history, which for obvious reasons we will not attempt
to describe. The first contributions more closely connected to (1.6), but with dif-
ferent assumptions, are contained in two pioneering papers by Serrin [Sel], [Se2],
and in one by Peletier and Serrin [PS].

Using ideas different from those in [M2], the non-positivity Bfwas general-
ized in [CGS] to the case

@) 2(¢0) = 5 Gllof) + F(©)

whereG = G(s) is a non-linearity which includes models as diverse aspthe
Laplacian and the minimal surface operator, see (2.12) and (2.13) below. In this
situation, the function introduced in (1.3) becomes

(18) P = G,(DuP) IDuf* ~ 3 G(Du?) ~ Fu),

and one of the main results in [CGS] stated that 0 on a bounded entire solution
of (1.2). It was also shown in [CGS] that, if su¢hattains its upper bound at one
point, then in factP = const, and moreovet is one-dimensional, i.e., of the type
(1.4). This latter result provided evidence in favor of the following by now famous
conjecture of E. De Giorgi [DG, Open question 3, p. 11%tu € C?(R") be an
entire solution of

(1.9) Au = u® — u,
such thafu| < 1. If

Ou
0xy,

holds, then the level sets ofare hyper-planes, i.ey must be of the typgl.4), at
least ifn < 8.

The limitation in the dimension is suggested by the deep connection with the
Bernstein problem in the theory of minimal surfaces, see [DG], [BDG], [M1],

(1.10) > 0 in R"
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[AAC], and Sect. 4. It is worth noting that the above mentioned “evidence in favor”

in [CGS], is however in discrepancy with the conjecture, in that it establishes the
one-dimensional symmetry irregardless of the dimension of the ambient space. The
following family of explicit solutions of (1.9) has long been known

(111)  u(z) = uga(xz) = tanh (<a,\/g> + )\) , x € R",
wherea € R™ is such thata| = 1, and\ € R. Therefore, the conjecture of De
Giorgi implicitly states that, at least if < 8, under the monotonicity hypothesis
(1.10), a bounded entire solution of (1.9) must be of the fogm, for somga| = 1,
and\ € R.

De Giorgi's conjecture, and some variants of it, have received considerable
attention over the past few years. The first result goes back to a pioneering paper
of L. Modica and S. Mortola [MM], in which the authors proved that in dimension
n = 2 the conjecture is true, under the additional hypothesis that the level sets
of u constitute an equi-Lipschitzian family of curves. A complete solution in the
two-dimensional case was only given in 1998, in a beautiful paper by Ghoussoub
and Guy [GG]. In fact, these authors proved the conjecture true not just for the
Ginzburg-Landau model, but for the equatidm = F’(u), with F € C?(R).

A modified version of the conjecture, known &sbbons’ conjecturdCa],
contains the additional assumption thdt’, z,,) tend to its extremum values as
x, — Foo, butuniformly inz’ € R"~1. Such conjecture has been independently
answered in the affirmative in every dimension, and with very different approaches,
in the recent papers by Berestycki, Hamel and Monneau [BHM], and by Barlow,
Bass and Guy [BBG]. Again, there is a discrepancy between De Giorgi’'s and
Gibbons’ conjectures, since the latter has been established irregardless of the di-
mension. Under a similar assumption of uniform limit at infinity, but for equations
in a cylinder, a positive answer for the degenerate model (2.12) has been given by
Farina [F1] using rearrangement techniques, see also the paper by Brock [Bro], for
a prior related result of one-dimensional symmetry. For a stronger version of the
Gibbons’ conjecture, one should also consult the recent paper by Farina [F2].

A new major development in the problem proposed by De Giorgi has recently
come with the work of L. Ambrosio and X. Cédhrln their beautiful paper [AC]
the authors have proved the conjecture tru&inin fact, [AC] contains a positive
answer to a stronger form of the conjecture, see Theorem 10.1. The double-well
potential for the Ginzburg-Landau model with two equal wélia)) = % (1 —

u?)?, for which F'(u) = u® — u, satisfies the requirements in Theorem 10.1,
with m = —1, M = 1, thus the conjecture follows fdR3. Subsequently, in
the joint work with Alberti [AAC], the authors have succeeded in removing the
additional assumptions on the non-linea#itf) in Theorem 10.1, thus establishing
the validity of the conjecture iR? for the equationAu = F’(u), whereF (u) is

an arbitrary function irC?(R), see Theorem 10.3.

The aim of this paper is to generalize various results in [CGS], [BCN], [GG],
[AC], and [AAC], to equations of the general type (1.2). A distinctive aspect of
our results is that they do not distinguish between Laplace equation, and the two
important, yet very different, models given by the the minimal surface operator,
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and by thep-Laplacian. In addition to this, the general setting in which we work
clarifies for the first time the role of invariance under the action of the orthogonal
groupO(n). As we will see, such invariance pays no role in low dimensiog-(2),
whereas, whem > 3, it becomes important, or remains irrelevant, depending on
the situation at hand. The paper is composed of ten sections. A short description
can be obtained by glancing at the titles of the sections.

After this paper was accepted for publication we received the preprint [F3] by
A. Farina, in which the author obtains a one-dimensional symmetry re®Rit fior
equations having energy as in (1.7). This result implies the validity of De Giorgi’'s
conjecture in the plane, and within its more restricted range, it provides a very
interesting independent proof of our Theorem 7.1.

2 Structural assumptions

In this section we list the general structural hypothesis for this paper. Since we are
not interested in the weakest regularity requirement® @re assume that

® € C*R x (R"\ {0})) N C*R x R"),

(although, inmost cases, the weaker requirentent C? (R x (R™\{0}))NC* (R x
R™) would suffice). The functiod® will be supposed normalized as follows

(2.2) &y, (u,0) = 0, i=1,...,n.

Since we want to include the very diverse models (2.12) and (2.13) below, we
will list two separate sets of structural hypothesis, (H 1) and (H 2).

(H 1) Thereexisp > 1,¢e > 0, and for evenyC' > 0 there exist constants, ca > 0
such that for any € R, with [¢| < C, and every, ¢ € R™ \ {0}, one has

(22)  calof (e + o) < B(E,0) — D(E0) < ez (e + |o])P.
(2.3) |D5(£,0)] < ca (e + |o])P7
(2.4) Be(€,0)| < 2 (1 + |a])P.

(25) (e + [o])P PP << Pool(€,0)C,¢> < o (e + |o])P2[CI
where®,, denotes the Hessian matrix &f

(H 2) For everyC > 0 there exist constants, c; > 0 such that for every € R,
with [¢| < C, for anyo € R", and every(’ = (¢,(n,+1) € R™™! which is
orthogonal to the vectqr-o, 1) € R"*!, one has

(2.6) P(¢,0) — D(£,0) > c1 /1 + |of%

(2.7) |Ps(E,0)|] < co.
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(2.8) [Pe(&,0)] <

[ < Il

(29) C1 m << 4500(57 U)Cv C > S Co m
Remark 2.1.We emphasize that wheh has the special structure (1.7), then the
following weaker regularity hypothesis suffices: In the case (H 1) we aséume
C3(R\ {0})NCL(R), F € C%*(R), whereasin case (H 2) we suppdse C3(R),
F € C?(R). Itis then clear that the results in this paper do include the special case
of the non-linear Poisson equatigh: = F'(u), with F' € C?(R).

It is important to note that either when> 0 in (H 1) (and even wheifH 1)
holds withe = 0, butp > 2), or when(H 2) is in force, we can actually assume,
and will do so, thath € C3*(R x R"), since the gradient o with respect tar
has in such cases no singularitysat= 0. Such hypothesis will become effective
after Remark 9.3, for the remaining part of Sect. 8, and also for sections nine and
eleven.

Remark 2.2.Assume(H 2). For everyo € R" the choice(’ = (o, |o]?) in (2.9)
gives

(2.10) ¢ o) V1 + |02 < < Byu(f 0)0,0 > < o lo> V1 + |02
Thisinequality, when used in the proof of Lemma 6.1, guarantees the conclusion
<0,9,(&,0)>> P, 0) — PE,0).
From the latter and from (2.6) we obtain
(2.11) <0, D, (E,0)>> 1 /1 + |02,
which gives the structural assumption (2.3) in [LU2] with = ¢; andus = 0.

The basic models for (H 1) and (H 2) are, respectively,

(212) @(¢0) = — (¢ + o) + Fl),  1<p<ox, €20,

SRR

and

(2.13) P, 0) = /1 + |02 + F(§),

with corresponding Euler-Lagrange equations
div ((62 + |Du)?)P=2)/2 Du) = F'(u), 1 <p< oo,

and

. Du — Pl
dzv(\/W) = F'(u).
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When (H 1) holds, by aentire (weak) solutiorto (1.2) we mean a function
u € Wllo’f(R”) such that for every € W1-P(R") with compact support

(2.14) / < ®,(u,Du), D¢ > dx + / Pe(u, Du) pdx = 0.

n

If, instead, (H 2) is in force, then an entire solution to (1.2) will be a function
u € C?(R™) which satisfies the equation in the classical sense.

3 The analysis of the ode

In this section we analyze the ordinary differential equation associated with (1.2),
namely

(3.1) (Po(u,uz)), = Pe(u,ug).
We assume that
Dy5(&,0) > 0 forevery (¢,0) e R x (R\ {0}),

see (2.5). It will be useful in the sequel to also have the expression of (3.1) in
non-variational form, at those pointsc R whereu, (x) # 0

(3.2) Do (U, Ug) Uy + DPoo (U, Uz) Upy = Pe(u,uy).
We introduce the function
(33) P = P(IE;U) = @(U,UT) - Uy Qja(uvum)'

Lemma 3.1. There exists a numbe?, such that ifu is a solution to(3.1), and if
moreoveru, (z) # 0 for everyz € R when (H 1) holds witla = 0, then

P(z;u) = P,.

Proof. If either (H 1) holds withe > 0, or (H 2) is valid, then the regularity theory
of ode’s guarantee that € C?(R). The same conclusion is true when= 0 in
assumption (H 1), but,, (x) # 0foreveryz € R. Differentiating (3.3) with respect
to = we find

Py = ®e(u,ug) Uz + Po (U Usg) Uy — Peo(u,uy) ur

- dsoa(uu uz) Uy Uy — d)a(ua um) Ugx

= [ng(u, um) - @ﬁd(uaux) Uy — Qsaa'(uaux) urx} Uy = 07
where in the last equality we have used (3.2). O

Remark 3.2.It is worth observing that the assumptiap # 0 in the statement of
Lemma 3.1 has only been made to give a sense to the quantityu, u,). Such
assumption is clearly not needed when the equation is non-degenenate-al,
as itis the case for (H 1) with> 0, or for (H 2).
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Lemma 3.3. Letwu be a bounded solution @.1) satisfyingu,, > 0in R and set

A = inf u, B = sup u.
R R

One has
®(A,0) = &(B,0), De(A,0) = P¢(B,0) = 0,

and
®(£,0) > &(A,0) = &(B,0) ¢ e (A, B).

Furthermore,
/ {P(u,uy) — ¢(B,0)} de < oo.
R
Proof. Lemma 3.1 implies

(3.4) D(uyuz) — Uy Po(Uyuy) = P,

SinceA = lim,,_ u(x),B = lim,_,+ u(z), and moreover the bounded-
ness ofu forces

(3.5) lim ug(z) = 0,

z—+o0

we conclude from (3.4), (3.5)
(3.6) &(A,0) = P, = &(B,0).

Observe next that
(3.7) 0 B, (£,0) — [B(E,0) — B(E,0)] > 0, (€,0) € R x (0,00).

The proof of (3.7) follows noting that the function
(3.8) V(E,0) = 0 Bs(E.0) — [B(E,0) — B(€,0)]
satisfieal (£,0) = 0 and that furthermore

U,(&,0) = 0 Pye(€,0) > 0, (&,0) e R x (0,00).
Once this is known we obtain from (3.4), (3.6)
D(u,0) — P(A,0) = &(u,0) + uy Po(u, uy) — P(u,uy) >0,

where in the last inequality we have used (3.7). An analogous inequality holds if

we replaceb (A, 0) with ¢(B,0). This provesb(¢,0) > $(A,0) = ¢(B,0) for
¢ € (A, B). For every fixed € R let us denote by

H(€> ) = gp(& ')_1
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the inverse function o¥ (&, -). Re-writing (3.4) as
W(U,Um) = @(U,O) - ¢(3v0)7
we obtain
(3.9 uy = H(u,®(u,0) — &(B,0)).
If we consider the functiorf : R? — R? defined byf(¢,0) = (&,¥(¢,0)),
thenf is one-to-one and continuous, and one easily sees thatits inverée, 2) =
(n,H(n,z)) is also continuous. In particular, the function, z) — H(n,z) is

continuous. From this observation and from (3.9) we infer that in addition to (3.5)
one has in fact

(3.10) lim wuz(x) = 0.

z—+o0

Furthermore, (3.9) implies the existence of a constéint M (||ul|z®)) > 0
such that

|ug ()] < M, z €R.
Using (3.10), the equation (3.1), and the mean-value theorem, one easily obtains
Pe(A,0) = De(B,0) = 0.

Finally, (3.4) and (3.6) give

/]R {®(u,u;) — &(B,0)} dx
= /Ruw Dy (u,uy) de

therefore to estimate the energy it suffices to control the latter integral. For every
¢ > 0one has

¢ u(¢)
/ e () By (), 1 () i = / B (b g (u= (1)) dt
—¢ u(=¢)

< / i Do (t,up (u™' (1)) dt < (B — A) ( max %(5»0))

A (&,0)€[A,B]x[—M,M]

Letting { — oo we reach the conclusion

/Rux B, (u,up) dz < (B — A) ( @a(g,a)) < .

max
(&,0)€[A,B]x[-M,M]
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4 Higher-dimensional analysis of theP-function

Before proving the main results in this section we develop some preparatory con-
siderations. We have the following basic result, see [U], and also [To], [DB] and
[Le].

Theorem 4.1. AssuméH 1), and letu be a bounded entire solution (b.2). There
exist positive numberd/, o« and~ depending only on, the parameters, ¢ in the
structural assumptionfH 1), and on||u||oc = |[u||z @), SUch that

4.1) |[Dullos < M,
and
(4.2) |Du(z) — Du(y)] <M R~ ('tﬂ')

for everyz, € R", R > 0,and anyz,y € Br(z,) = {£ € R" | | — x| < R}.

For bounded entire solutions of (1.2), with the structural assumptions (H 2),
interior a priori bounds for the gradient have been obtained under additional re-
guirements on the energy functidn For the special model (2.13) with = 0, the
following celebrated result of Bombieri, De Giorgi and Miranda [BDM] holdst
u be aC? solution of the minimal surface equation in a bBl(z, R) C R",n > 2,
then
SUPye (e, ) (u(y) — u(x))

R )
for appropriate positive numberS;, Co depending only om. See also [K] for
a simpler proof based of the maximum principle. It follows that bounded entire
solutions of the minimal surface equation have bounded gradient. For a detailed
description of conditions under which itis possible to obtain similar a priori bounds
of the gradient for (1.2) with (H 2), we refer the reader to [LUZ2], p.691-94, where
eventhe more general setting (7.11) is treated, and also to the subsequent work [Si1].
For our purposes it will be important to know that there exist situations in which
bounded entire solutions have bounded gradient and we will always work within
this framework. This means that when (H 2) is in force we will alwaysriori
assume the existence of a constant> 0, depending om, and on||u||, such
that (4.1) hold. Under these circumstances the equation (1.2) becomes uniformly
elliptic. We can thus appeal to the classical Schauder estimates, see [LU1], [GT],
to conclude that: € C27(R™) and that (4.2) is valid also.

For the structural hypothesis (H 1), with= 0, itis well known that the optimal
regularity of weak solution is expressed by Theorem 4.1. If, however, in an open
setf? C R™ we have

|Du(x)] < Cy exp |Cy

(4.3) i?)f |Du| > 0,

then appealing to the regularity theory for non-degenerate quasi-linear equations
[LU1] one infers that actually: € Cfo’f(()), for someg € (0,1) depending on
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||u|| ., ON the structural constants, and on the quantity in the left-hand side in (4.3).
If either (H 1) and (4.3) hold, or we are in the situation (H 2), we are thus allowed
to take second derivatives of the solutionObserve that if.;, = Dju, then in a
classical fashion one recognizes that in weak form the linear equation satisfied by
uy in £21is

4.9
/ < Dyo(u, Du) D(ug), Dp > dx = — / < Peo(u, Du), Do > uy, da
7 2

— / < Peo(u, Du), D(ug) > ¢ doe — / Dee(u, Du) uy, ¢ de,
Ie; Q

whereg is a test function irf2. Hereafter, we adopt the summation convention over
repeated indices. The latter equation can be re-written as follows

(4.5) (aij (uk)i); = [Pee — div Deo] ua,
with a;; given by
(4.6) aij = aij(§,0) = Po,0,(§,0).
In the sequel it will be useful to have (1.2) also in the non-variational form
4.7) aij wij = Pg — < D¢y, Du >,

which makes clearly sense when either (H 1) and (4.3) hold, or (H 2) is in force.
We now let

48) A= AEo) = % (€.0) €R x (R"\ {0})
and set

g a4 (67 U)
(49) dij = d” (570') - Aj(g,a)

We note explicitly that
(4.10) dij(u, Du) u; uj = |Dul?.

Guided by the analysis of the ode in Sect.2 we introduce the funégtion
R x R™ — R defined by

(411) !p(&a) = 2<o, ¢U(§7U) > =2 [¢(§?U) - @(570)},

and consider the quantity

(4.12) P = Plau) ¥ 2 < Du,®y(u, Du) > — 2 &(u, Du)
= U(u,Du) — 2 P(u,0).
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In the remainder of this section we suppose gt o) has the structure (1.5).
We lets = |o|? so that (1.5) gives

(4.13) By (6,0) = Gy |0]?) o

The equation (4.7) presently takes the form

1
(4.14) ij Uij = 5 Ge — Ges |Dul?,
with
(415) aij(gao—) =2 Gss(ga |0|2) 005 + Gs(fa |J|2) 52]

For the function in (4.8) we have
(4.16) A = A(&,s) = 25Ges(&,8) +Gs(&,8) >0 (&, 5) € Rx(0,00).

The last inequality is nothing but a reformulation of the ellipticity of the matrix
aij = Po,,; Which is guaranteed by (2.5), (2.9). We obtain from (4.11)

(4.17) U= s) =2sG4(&s) — G, s) + G(&,0).

Since
(4.18) w(£,0) = 0,
and
(4.19) U, = 25Ges + Gy = A,

we conclude from (4.16) that must be
(4.20) U, s) >0 (¢,5) e R x RT.

Ifwe let F(£) = G(&, 0), then we can write the non-linear quanti®yin (4.12)
as follows

(4.21) P = 2G,(u,|Dul?) |Du|* — G(u,|Dul*) = @(u,|Dul?) — F(u).

Itis obvious that ifu = const, then the same is true fét. The next proposition
motivates the introduction of the functidh and also the subsequent development
in this section.

Proposition 4.2. Letu be a non-constant entire solution{b.2), with & satisfying
(1.5). If
u(z) = g(<a,z>),

for someg € C%(R) anda € R™ with |a| = 1, and if when (H 1) holds with = 0
one hasg’(t) # 0 for everyt € R, then theP-function relative to such a is
identically constant.
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Proof. We observe that
(4.22) u = ¢(<a,z>)a, w; = ¢"(<a,z>)a; a;.

By the assumption op, we know thatDu(x) # 0 for everyz € R™ when (H
1) holds withe = 0. Therefore, using (4.22) and (4.15), the equation (4.14) now
becomes

(4.23)  {2Gus(9:(9")%) (9) + Gsl9,(9))} 9" + Geslg,(9)?) (¢')°
1
= 5 Gel9:(9)%),
where we have omitted the argumenta, z > of g, ¢/, ¢”. Lettingt =< a,z >,

ando = s in (4.23), we conclude thaj is a solution to (3.1) withb(¢,0) =
(1/2)G(&,0?). By Lemma 3.1 we infer thaP (x; u) = const. O

Theorem 4.3. Assumg1.5), and letu be a bounded entire solution {@.2) such
that

inf |Du| > 0
7

in a bounded open sét c R". The following differential inequality holds if?
for the functionP in (4.21)

D; (d;;j(u, Du) D; P B, D;P > ———.
ij; (dij(u, Du) D; )JF; 2 A [Dul?
Here,
_ 2
B, — Gs Ges Ge (|Dul® Gos + Gs) Dyu,

Gs A

where all the functions entering in the right-hand side of the latter equation are
evaluated in(u, | Dul?) .

Remark 4.4.We stress that although we assumed thas of classC?, in the
expression of3; only second partial derivatives 6f appear. Third derivatives do
appear in the calculations needed in the proof on Theorem 4.3, but they eventually
cancel.

Proof. Differentiating (4.21) with respect te; and using (4.19) gives

(424) P, = !pg w; + 2 up; up — F’ Uy -
= 2 Aup; up + [WE — F’]uz

The following expression will be useful

(4.25) < Du,DP > = 2 Augju;uj + [T — F'||Dul?.
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In the sequelg,; will be a short notation for;; (u, Du). Similarly, we will
write d,;, instead ofl;; (v, Du). One has from (4.24)

(4.26)
(dij Pi)j = 2 (ay (U’k)i)j ur + 2 a5 Uk Uk

+dij uiy (We — F') + dijjus (P — F') + diju; (Fe — F'); .

Using (4.14), and differentiating (4.17) with respectfave obtain

1 1
(4.27) dij uig (Vg — F') = " (2 Ge — Ges |DU|2)
_ AN L _ N2
(We — F) = — o7 (T — F1)°.
Inserting (4.5) and (4.27) in (4.26), we find
1
(428) (d” P’L)] = 2aij ki ukj — ﬂ (Lpg — F/)2

+ 2 (P — div ¢,) |Dul?
+ dij_’j U; (@E — F’) + dl‘j U; (@5 — Fl)j.
We next estimate from below the tefu, jui;ui;. The equation (4.15) gives
(4.29) 2 ajj up; ug; = 4 Glys Ui Ukj U Uj + 2 Gy Ui Uk

Schwarz inequality implies

Uk Ukj Ui Uy
| Dul?

Substituting (4.30) in (4.29), one finds

o 24
Yki = D2

2 Qij Ukq Ukq Ukj Ui Uy

We now employ (4.24) in the latter inequality, obtaining

(4.31)
21 Pkf(W§7F/)uk Pkf(W§fF’)uk
2 a5 uki uk; =
tig Uki Uki = Dy |2 24 24
|DPP? (Fe — F')? (¥ — F)
= — Du, DP > .
A T 24 ADap PP

Substitution of (4.31) in (4.28) gives
(Ve — F')
4.32 i Py) ~—=— 2 < Du,DP
(4.32) (di; Pr); + ADuf? < Du, >
|DPJ?
— 2 A|Dul?
+ dij U; (g/g - F/)j.

+ 2 (@55 — div @gg) |Du\2 —‘r‘dij’j (7 (Wg — F/)



464 D. Danielli, N. Garofalo

The proof of the theorem will be completed if we show that for some vector
—
field C

(4.33) R 2 (Bee — divde,) |Duf® + dij,jui (T — F')

N
+ dij U (Wg — Fl)j :<C,DP>.

First, we have

dij U; (Wg — F/)j dij U; Uj (!Z’gg - F”) + dij (173 ngk ukj
(4.34) = (2|Dul® Gees — Gee) |Dul® + dij wi Yeo, upy.
From
g;fﬂk = (4 ‘Du|2 Gfss + 2G§s) Ug
and (4.15), we find
di]‘ Uj Uk Q/&,k = (4 |Du|2 G&ss + 2 Ggs) Usj Ui Uy
Substituting the latter expression in (4.34), noting that
2 (@55 — div @gg) |D’LL|2 = G§§ |Du\2 -2 G{s Au
-2 fos ‘Du|2 -4 Gfss Uij Ui Uy
and that (4.17) gives
!pg — F/ = 2SG§S — G§7
we conclude
(435) R =2 Gfs [|D’LL|2 Au — Usj Uq Uj] + dij’j U; (2 |Du\2 Ggs — Gg)

The second main step in the proof of (4.33) is the computation of the term
d;j,; u;. Since the latter is very long, and the details are rather tedious and uninfor-
mative, we only give the final outcome

2 ss
(436) dij,j U; = G

[[Dul®* Au — wij u; uy] .

Once the latter equation is substituted in (4.35) one has

2

@437  R= -7

(Gg Gss + GS Ggs) (‘DU‘Q AU — U,ij U; Uj) .
At this point we use the equation (4.14) to obtain

1G¢ — Ges|Dul?
|Dul? Au — wjjuju; = 220 £ es|Dul
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Finally, (4.25) gives
1 2 1 2
Augjus uj = 3 < Du,DP > — | G¢s|Dul* — §G5 |Dul*,
and therefore we find

1
(4.38) |Dul* Au — wyjujuj = — YR < Du,DP > .

Using the latter equation in (4.37) we conclude

Gg Gss + G Ggs
GsA

(4.39) R = < Du,DP >,

which establishes (4.33) and completes the proof . Finally, the specific form of the

vector fieldg = (By, ..., Bp) in the statement of the theorem follows from (4.39)
and from (4.32). ad

Remark 4.5.The reader should notice the appearance of the geometric quantity
(4.40) |Dul? Au — uij u; u;

in the expressions (4.35), (4.36), (4.37), and in the directional derivative (4.38) of
P with respect taDu. We will return to this observation in the proof of Proposition
4.11.

Remark 4.6.In [PP] Payne and Philippin considered quasi-linear equations
div A(u, |Dul?) = B(u, |Dul?),

which are not necessarily the Euler-Lagrange equation of an elliptic integrand, and
derived maximum principles for some appropri&téunctions. Due to the greater
generality, however, the relevaRtand the conditions under which the latter satisfies
an elliptic differentialinequality are rather implicitly given. Our presentation (which

is inspired to an idea introduced in [GL], see also [CGS] and [GS]) is somewhat
different from that in [PP].

Theorem 4.7. Assuming1.5), letu be a bounded entire solution (b.2) such that

inf |Du| > 0,
(9

in a certain connected, bounded open&et R". If there exists:, € {2 such that

P(zy;u) = sup P(x;u),
TES?

thenP = P(z,;u) in 2.

Proof. Itis a direct consequence of Theorem 4.3 and of the maximum principle for
guasi-linear uniformly elliptic equations, see [GT]. O
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The nextthorem provides an a priori pointwise estimate of the gradient of a weak
solution to (1.2). It generalizes the results of L. Modica [M2], and of Caffarelli,
Segala and one of us [CGS], mentioned in the introduction. Since its proof is similar
to that of Theorem 1. in [CGS], we omit it, referring the reader to that source.

Theorem 4.8. Let u be a bounded entire solution {&.2), with & given by(1.5).
With¥ as in(4.17) under the hypothesis that(£, 0) > 0 for every¢ € R one has
¥ (u(z), |Du(z)|*) < G(u(x),0), x e R™

The following result is an immediate consequence of Theorem 4.8.

Corollary 4.9. Letwu be a bounded entire solution {(@.2), with @ as in(1.5). If
G" = min {G(ﬁ,O)iﬂgf u < & < sup u}7
n e,
then

(4.41) 2 |Dul? Gs(u, |Dul?) < G(u,|Dul?) — G

Proof. It is enough to observe that if we 16(¢,0) = (1/2)[G(¢, |0]?) — GY],
theno, = @, andO, = P, thereforeu is also a solution to

div Oy (u, Du) = O¢(u, Du).

Moreover,0(¢, o) satisfies the same structural assumptions, (H 1) or (H 2), of
the function®(&, o). Since®(&,0) = (1/2)[G(£,0) — G*] > 0, the conclusion
follows from Theorem 4.8. O

The next theorem of Liouville type can be easily derived from Theorem 4.8. For
its proof we refer the reader to that of Theorem 1.8 in [CGS], see also the preceding
paper by Modica [M2]. In connection with Theorem 4.10, we cite the remarkable
recent paper [SZ], in which the authors establish results of Liouville type, different
from Theorem 4.10, for non-linear equations of the form (2.12).

Theorem 4.10. Suppose tha® is as in(1.5), and when (H 1) holds and > 2
assume that iz (¢,,0) = G*, then

G(£,0) = G* = 0(l§ = &) as §— &

Let w be a bounded entire solution {d.2). If there existsz, € R™ such that
G(u(x,),0) = G¥, thenu = const. in R™.

The next result is dual to Proposition 4.2.

Proposition 4.11. Letu # const. Under the hypothesis of Theorem 4.10, assume
that P(u; x) =0, i.e.,

(4.42) 2 |Dul? Gs(u,|Dul?) = G(u,|Dul?) — G*, in R",
then the level sets af
Lo(t) = {z €R" |u(z) =t}

are embedde(r — 1)-dimensional manifolds of zero mean curvature.
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Proof. We claim thatitmustb®u(x) # 0foreveryz € R™. Ifinfactthere existed
x1 € R™ such thatDu(z,) = 0, then (4.42) would gives(u(x1),0) = G*. But
then, Theorem 4.10 would imply = u(x;), against the assumptian const.

Letnowt € [A, B],whereA = infg» u, B = supg. u, besuchthaf,(t) # 0.
The non-vanishing aDw implies that’,, (¢) is an embeddefh — 1)—dimensional
orientable manifold. The mean curvatufe= H(x) at a pointz € £, (t) is given
by the formula

(443) £(n—1)H = div (|Du|) = Dup [[Dul* Au — wij u; uj] .
According to (4.38), the vanishing @ implies that of the right-hand side of
(4.43). This concludes the proof. O

Proposition 4.11 displays the close connection between the analytic properties
of the P-function and the geometric properties of the levels sets. dypically,
the constancy of? implies that the non-critical level sets afare isoparametric
surfaces. This aspect has already been exploited in the past in several contexts, see
[Ka] for a survey. For instance, in the exterjgcapacitary problem, a fine analysis
of the asymptotic properties of the relevaiifunction in [GS], led to establish
the spherical symmetry of the capacitary potential and ofréeboundaryOne
of the important ingredients there was A.D. Alexandrov’s characterization of the
spheres as the only smooth, compact embedded surfa@s lraving constant
mean curvature. In the conjecture of De Giorgi the role of Alexandrov’s theorem
is played by the following Liouville type theorem for the minimal surface equation
established by BernsteitV( = 2), Fleming (different proof, stillv = 2), De Giorgi
(N = 3), Almgren (NV = 4), Simons (V < 7): Every entire solution of the minimal
surface equation ilR” is an affine function provided that < 7, see, e.g., [G],
[B] [Si2]. In the celebrated work [BDG] it was proved that the Bernstein property
fails if N > 8. In fact, the authors showed thadt: N > 8 there exist complete
minimal graphs ifRY*! which are not hyper-planes

The role of the dimension in the Bernstein problem suggests that a possible
attack to the conjecture of De Giorgi should ultimately rely on the theory of minimal
surfaces. Here is the heuristic argument.dbt a bounded entire solution to (1.9)
satisfying (1.10). If we consider a non-critical level g&t(¢) of u, then by the
implicit function theorem there exists, : R"~! — R such thatr = (2/,2,,) €
L, (t), ifand only ifz,, = ¢.(z). If one could prove thap, is an entire solution of
the minimal surface equation R, with N = n — 1, then the Bernstein property
would imply

() = 11 + o + Cpornoy + 0

if N=n-1<7ie,n < 8. Sinceu(z’, :(z')) = t, this would lead to the
conclusionD,u = —cD,u for k = 1,...,n — 1, and therefore, would have to
be of the type (1.4).

Despite its obvious appeal, such heuristic argument hides some serious obsta-
cles. Proposition 4.11 suggests that one should look at the relBviamtction, and
try to establish its constancy. However, our next result Theorem 4.12 evidentiates a
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discrepancy between the conjecture of De Giorgi and the corresponding properties
of the P—function. Irregardless of the dimension, if the latter becomes zero at one
single point, then it must be identically zero, and, furthermareyust be one-
dimensional. The next result extends Theorem 5.1 in [CGS] to the more general
setting of this paper. Due to the fact that the energy funcliefso depends on,

its proof does not follow straightforwardly from the former.

Theorem 4.12. Assuming tha® satisfy the hypothesis of Theorem 4.10, consider
a bounded entire solution of (1.2). If for onex, € R™ equality holds in(4.41),
then we must havB(-; «) = 0, and, furthermorey must be of the typél.4).

Proof. We begin by considering the set
A = {z e R"| P(x;u) =0},

which, thanks to the continuity oP is closed, and non-empty, sinag € A.
We claim thatA is also open, and thereforé = R"™. To see this let;; € A. If
Du(zy) = 0, then we must hav&'(u(x1),0) = G*, and Theorem 4.10 implies
u = u(z). In particular,Du = 0 and thereforeP(z; u) = 0 in R™. If, instead,
Du(z1) # 0, then by continuityinf (,, gy |Du| > 0 for someR > 0. On the
other hand, Theorem 4.8 guarantees tRat 0, whereas by the definition ot
we haveP(x1;u) = 0. Theorem 4.7 then shows thB{x; u) = 0in B(z1, R). In
conclusion, we have proved thatis open, and thugl = R™. This gives

2 |Dul? Gs(u, |Dul?) = G(u,|Dul?) — G, in R"™.
Using (4.17), we re-write the latter identity as follows
(4.44) W(u,|Du*) = G(u,0) — G* = F(u) — G“ in R",

where, as in the proof of Theorem 4.3, we havedét, 0) = F(u). If we assume

u Z const (whenu = const there is nothing to prove), the proof of Proposition
4.11 implies that we must haveu(x) # 0 for everyz € R™, and therefore by the
regularity theoryu € Cfof(R”). Denoting byH (¢,-) = ¥(¢,-)~! the inverse of
(¢, ) (see the discussion following (4.17)), we obtain from (4.44)

(4.45) IDul? = H(u, F(u) — G*) & h(u) in R".

We now considerf : R x (0,00) — R x (0,00) defined byf(¢,s) =
(&,¥(¢, s)). Thanks to the properties @f, the functionf is invertible, with
f~t(n,t) = (n, H(n,t)). The regularity hypothesis ahimply that¥ € C?(R x
(0,00)) (we stress that the non-vanishing @t allows to restrict the attention to
the “good” regions = |Du|? > 0). Since

1 0 B .
P (&, s) %(5,3)) = ¥,(&,5) > 0,

we conclude thaf and f~! areC? diffeomorphisms. This implies, in particular,
thath(¢) = H(E, F(€) — G*) isin C%(R). The inverse function theorem gives

1 0
Jacg1(&,t) = (Hg(g,t) Ht(f,t))’

det Jacs(€,s) = det (
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with

(446)  H(EW(Es) = — W;(f)) Hy(6,W(E,5) = — @

Using the above considerations, and (4.44), (4.46), we conclude
(4.47) h'(u) = He(u, F(u) — G") + Hy(u, F(u) — G*)
= H&(u7 Lp(ua |Du|2)) + Ht(ua W(’Uﬁ ‘DU"Q))

F'(u) — W(u, | Duf?)
(u.[DuP)

We now sety = ) (u), where) is to be determined. One has
(4.48) |Dv|? = YV'(u)*|Dul?, Av = Y'(u) |Dul? + V' (u) Au.

The first equation in (4.48), along with (4.45), suggests that we chydse
such a way that

(4.49) |Dv|* = V'(u)? h(u) = 1.

This is clearly possible if we tak¥ € C?(R) as follows

£ £ 1
Y = / o VAGFO a0

whereu, is a number arbitrarily fixed in the range @f We note explicitly that, in
view of (4.45), the functiot is strictly positive. Differentiating the second equality
in (4.49), we also find

(4.50) V' (u) hu) + %y’(u) W(u) = 0.

At this point we notice that the fadt(-; «) = 0, and (4.38), imply

uijuiuj

Au = .
“ = Dup

This identity, and (4.25), give

F'(u) — We(u, IDuf?)

1
A _
YT T W (u, |Duf?)

Thanks to the latter equation, to (4.45), and to (4.47), we finally obtain for the
second equation in (4.48)

Av = Y'(u) h(u) + %y’(u) W) =0 in RY,
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where in the last equality we have used (4.50). In view of Liouville theorem, the
harmonicity andy, and (4.45), allow to conclude that

v(z) =<a,z> + 0,
for somea € R™, with |a| = 1, andg € R. The invertibility of ) implies that
u(@) = Y (u(2)) = Y H(<az> +P),

thusu is of the type (1.4), withy(s) = Y ~1(s + 3). This completes the proofO

5 Energy monotonicity

In this section we establish an important monotonicity property of the energy of
a bounded entire solution to (1.2). It should be emphasized that the derivation of
such property relies on a deep a priori quantitative information, namely the non-
negativity of the relative’-function expressed by Theorem 4.8 and Corollary 4.9.
We denote byp* the number

(5.1) $" = min {(15(5,0) | iﬂgf u < & < sup u}
n o
For everyr > 0 we consider the energy afinthe ballB, = {x € R" | |z| <
r}
(5.2) E(r) :/ [@(u, Du) — @] dx.
B,

Theorem 5.1. Let u be a bounded entire solution {&@.2) in R™, n > 2, with @
having the forn(1.5). The function/ () = 71="E(r) is increasing on(0, ). In
particular, one has

/ [®(u, Du) — &“] de > E(1)r" ! forevery r > 1.
B,

Proof. Keeping in mind (1.5), we see that up to an irrelevant multiplicative factor
of 2

n—1

I'(ry = — / [G(u,|Dul?) — G"] dx

rn

r

1

rn—

(5.3) + - /E)B [G(u,|Dul?) — G"] do,

whereG" is the number introduced in Corollary 4.9. The computation of the bound-
ary integral in the right-hand side of (5.3) is obtained by an appropriate version of

Rellich identity. In the case in which (H 1) holds with= 0, the latter should be
supplemented by an approximation argument based on the elliptic regularization
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of (1.2) and on the boundaxy™® regularity in [L]. We leave it to the reader to
provide the by now classical details. We only give the final product

(5.4)
! n
o [ [elDu) — @] dr = I [ (GG DuR) - 6] da
2 2 2 ou\? )
- Gs(u, |Du®|) dz — e /aB,. (877) G (u, |Du?|) do.

Inserting (5.4) into (5.3), we conclude

') = /OB (gf;)z G.(u, | Du?]) do

1
+ e [G(u,\Du\Z) - G* — 2|Duf? Gs(u,|Du2|)] dx
B

The boundary integral in the right-hand side of the above equality is non-
negative. Invoking Corollary 4.9 we infer that also the second integral is non-
negative, thus reaching the conclusifr) > 0. This completes the proof of the
theorem. O

Remark 5.2.For the non-linear Poisson equatidn = F’(u), L. Modica obtained

the monotonicity of the energy in [M3] as a consequence of (1.6). Such result
was subsequently extended in [CGS] to quasi-linear equations having the special
structure (1.7).

We have seen in Lemma 3.3 that bounded entire solution of the ordinary dif-
ferential equation (3.1) always have finite energy. This is not the casemwbe?.
For instance, the two-parameter family of entire solutions (1.11) for the Ginzburg-
Landau model (1.9) clearly have infinite energRifiwith n > 2. Indeed, Theorem
5.1 implies that the only situation in which the energy is finite is the trivial one.

Theorem 5.3. Assumé1.5), and letu be a bounded entire solution (&.2)in R™,
withn > 2. If

gu) / [@(u, Du) — ] dw < o,

thenu = const.

Proof. Considerthe normalized enerfft) introduced above. Sinden,._,q+ I(r)
= 0, Theorem 5.1 guarantees thigi) > 0 for » > 0. Suppose thaf (u) < oo,
then

1 E(u)

0 < o /B [@(u, Du) — @“] dz < ] = 0,

asr — oo. The monotonicity of (r) forces the conclusion

/ [@(u, Du) — &"] dz = 0.

™
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We now observe that

&(u, Du) — &% = [@(u, Du) — &(u,0)] + [@(u,0) — P]
> P(u, Du) — P(u,0)

and the latter differenceis 0, thanks to (2.2), or to (2.6). Henck(u, Du) — " =
0 in R™. In view of Corollary 4.9 we reach the conclusién, = 0, which gives
u = const. O

6 Optimal energy growth

In this section we show that under certain conditions the inequality in the conclusion
of Theorem 5.1 can be reversed. The result includes equations of the general type
(1.2), and there is no need to assume the more restricted structure (1.5). Its proof is
based on an adaptation of a simple, yet ingenious idea due to Ambrosio ar@ Cabr
in the case of Laplace equation [AC]. We begin with an elementary lemma which
plays an important role in the sequel.

Lemma 6.1. For every¢ € R ando € R™ consider the function

V(¢ 0) =<0,9:(§,0) > — [B(§,0) — 2(&,0)],

which, up to the multiplicative factdr/2, coincides with that introduced if#.11)
One has

v(S,0) = 0,

with equality holding only i = 0.

Proof. One has?(¢,0) = 0 for every¢ € R. To prove the lemma it is enough to
show that the origin is the only critical point &f(¢, -) and that furthermore this
function is strictly increasing in every direction. This follows at once if we show
that

<0,¥(§0)>> 0, (§,0) € R x (R™\ {0}).

The latter inequality is a consequence of the convexity of the fundtiaith
respect to the variable. We have in fact if (H 1) holds

(6.1) <0, W, (8,0) >= Y By (& 0)0i0; > 1 (e + |o])P 2|0 > 0,
‘ﬁj

where, in the second to the last inequality, (2.5) has been used. On the other hand,
when (H 2) is in force, we obtain from (2.10)

(6.2) < 0,U,(£,0) > =< Pye(&,0)0,0 >> ¢ |o)* /1 + |02 > 0.
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Theorem 6.2. Letu be abounded entire solution {b.2)satisfying(1.10) Suppose
in addition that

(6.3) lim wu(2’,2,) = sup u = B.

Ty —>00 R™

There exists a constait > 0, depending om, on ||u||~, and on the structural
parameters in either (H 1) or (H 2), such that

E(r) = / [®(u, Du) — &(B,0)] doz < Cr" 1, forevery r > 0.
B,

Proof. As in [AC], we define for every = (2/, x,,) € R™, and\ € R,
(6.4) uMz) = u(x',z, +N).

Similarly to the proof of Theorem 4.8, we exploit the translation invariance of
(1.2) to infer that for every € R the functionu? is also a bounded entire solution
of (1.2) (satisfyingu* < B), i.e.,

(6.5) div &, (u*, Du) = &¢(u*, Dut).
As in (4.1) we have
(6.6) ||DuM|oe < M forevery \cR.

Thanks to (1.10), (6.3), we have presently

A
(6.7) lim »*(z) = B, Ou

e W(l’) > 0, I’ER .

Consider now for a fixed balB, the energy of.* in B,

(6.8) E(r;ut) = /B [®(u*, Dut) — &(B,0)] da.

s

If we are under the hypothesis (H 1), then using the fact#hatatisfies (6.5)
one finds

d ooy A oy Jut
d)\E(T7U)_/19T D¢ (v, Du™) X dx

+ / < &, (u*, Dur), D <8u>‘> > dz
B, ’ ’ O

= / < &, (u*, Dur),n > a—UAdJ
9B, ’ ’ 1))

Y

— M)P1L = d
C2 (E+ ) /(’)BT a)\ g,
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where in the last inequality we have used the second equation in (6.7) and the
structural assumption (2.3). We conclude for every > 0

E(r; ) — E(r;u)

“w
:/ —Eru“ )dp > —02(6+M)p_1/ * Ou

dp do
du aB, Jo 3#

= [u - u/\]d )
OB,

and therefore

(6.9) E(r;u) < 205-1|[ul|Cr™ "t + E(r;u?) = C' "1 + E(r;ul).
If instead (H 2) holds, then we use (2.7) to obtain

d dur
— F > — —d
o i) =~ /83 ax o

which again gives the estimate (6.9), but with a different constant. It is at this point
that the assumption (6.3), or equivalently the first equation in (6.7), is used to prove
that

(6.10) lim E(r;u) = 0.

A—00

To see this we multiply (6.5) (with replaced by:*) by (u* — B) and integrate
by parts onB,. to obtain

/ < &, (u*, DuM), Dur > dx
By

= / (u* — B) < $,(ur, Dur),n > do — / @¢(u, Du)(u* — B) da.
OB

r

Passing to the limit a8 — +oo, using the uniform boundednesswof and of
Du?, as well as the continuity @b, and®¢, we obtain by dominated convergence

(6.11) lim < @y(ur, Dur), Dur > dx = 0
A—+oo B,

We now invoke Lemma 6.1, and the left-hand side of (2.2) in case (H 1), or
(2.6) when (H 2) holds, to conclude from (6.11)

. A oAy A _
)\Erfoo . [®(u, Dut) — &(ut,0)] dz = 0.

Since by dominated convergence

. A . .
)\Erfoo . [®(ut,0) — &(B,0)] dz = 0,

we obtain (6.10). With this result in hands we finally have from (6.9)
(6.12) E(r) = E(r;u) < Cr" L.
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7 A generalized version of a conjecture of De Giorgi irR?2

In this section we prove that in the plane the conjecture of De Giorgi admits an
affirmative answer for the general class of variational equations (1.2), without any
restriction on the integrand(u, Du).

Theorem 7.1. Letu be a bounded entire solution {&.2)in R2, and suppose that

9
(7.1) 67;‘2(9017952) > 0.

There exists a functiop € C?(R) such thatu(z) = g(a1z; + asz2) for some
a = (ay,as) witha? + a2 = 1.

Proof. Let us assume for the moment that the dimensi@arbitrary and consider
a bounded entire solution to (1.2) satisfying (1.10). Sibre(z:) # 0 for every
x € R™, by the regularity theory we know thate Cﬁ;(’f(R”). We consider for a
fixedk =1, ...,n — 1, the function

Dku

¢ = D,u

and notice that letting/w = D,,u one has

(7.2) w D¢ = Dyu D(Dyu) — Dyu D(Dyu).
We observe that, thanks to (4.1), we have

(7.3) w(¢? = (Dpu)? < M.
To simplify the notation we let henceforth

(7.4) B(x) def Dyo(u(z), Du(z)),

and note that this matrix is symmetric and, thanks to (2.5) or (2.9), positive definite.
We re-write equation (4.5) as follows

(7.5) div (B(z) D(uk)) = [Pee — div Peo| uy, k=1,..,n.
It is then easy to recognize from (7.2) and (7.5) that
(7.6) div (w B(z) D) = 0.
Having observed (7.6), the proof follows by a variation on the theme of the

classical Caccioppoli inequality, noted in [BCN]. Let € CS°(R™), such that
0<a<l,suppa C {|z| <2} anda = 1on|z| < 1. Lettingag(z) = a(x/R),
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we choose the test functioh = a%( in the weak form of (7.6) obtaining in a
standard fashion

(7.7) / % w < B(x) D¢, D¢ > dx <
1/2
2 (/ akw < B(z) D¢, D¢ > dx) X

(/ w(? < B(x) Dag, Dag > d:r) 1/2.
Suppose now that there exist> 0, independent of > 0, such that
(7.8) / w (% < B(z) Dag, Dag > dx < C.
This would imply for everyR > 0
/ a%w < B(z) D(, D¢ >dx < 4C,
hence, by monotone convergence,
/ w < B(x) D¢, D¢ > dx < 0.

Using this information and noting that the first integral in the right-hand side
of (7.7) is actually performed on the sg® < |z| < 2R}, we would finally obtain
letting R — oo in (7.7)

/ w < B(x) D¢, D¢ > dx = 0.

The strict positivity ofv and the local ellipticity of the matri8(x) (remember
(4.3)) finally give D¢ = 0, which is like saying thaDyu = ¢, D,u, for some
constantc,. Repeating the same argument for every 1,...,n — 1 we would
conclude that

u(z) = glerzy + a2 + oo + Cno1Tpn—1 + Tp)

for some functiory € C?(R). To complete the proof of the theorem we are thus
left with establishing (7.8). When = 2 the latter inequality is a consequence of
the structural assumptions, of the boundedned3wfand of the crucial fact that
|Br| = cR2. If (H 1) holds one has in fact from (2.5) and (7.3)

(7.9) / wC¢? < B(z) Dag, Dag > dz

< C'z/ |Dul?(e + [Du|)P~2| Dag|*dx
Bar

C

< —2/ (e + |Dul)Pdx < C(e+ M)P.
R Bar
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In the case (H 2) we proceed slightly differently. Observing that the vector
(Dag, < Du,Dagp >) € R*!
is orthogonal to the vectdr Du, 1), and that
|(Dag, < Du, Dag >)[* < (1 + |Dul’) |Dag/?,

we obtain from (2.9)

(7.10) / w¢? < B(x) Dag,Dag > dx

) / |Dul? \/1 + |Du|? |Dag|? dz
Bar

3
< —= de < C.
R? Bar

IN

a

Remark 7.2.The idea of studying the function (7.2) in connection with the conjec-
ture of De Giorgi was first introduced in [MM] (see also [BCN], [GG] and [AC]),
except that in [MM] the approach was different from the one outlined above based
on an idea of Caffarelli, Berestycki and Nirenberg [BCN]. It is clear that the above
simple proof of the conjecture is possible thanks to the special role played by the
volume of the ball inR?, namely| Br| < ¢R?. In dimension higher than two the
stronger growth of the volume of the balls at infinity poses a serious obstruction.

Remark 7.3.Itwould be of interest to extend Theorem 7.1 to generalized variational
equations. By this we mean equations of the type

(7.11) div A(u, Du) = B(u, Du)

with regularity and structural assumptions.4mndB similar to those made above

for the equation (1.2), but no other hypothesis otherwise, i.e., without assuming that
A(&,0) =D,(§,0)andB(§,0) = P¢(&, o), for some functiord(&, o). However,

if one allows dependence dbw in the right-hand side of (7.11), then a difficulty
arises in the above arguments.

We close this section by noting an interesting corollary of Theorem 7.1 and of
the results in Sect. 2.

Theorem 7.4. Let u be a bounded entire solution {@.2) in R? satisfying(7.1),
and let®" be as in(5.1). There exists a constaat > 0, depending om|u||. and
on the structural parameters in either (H 1) or (H 2), such that for every 1

/ [@(u, Du) — @“] de < C'r.
B

We do not give the details of the proof of Theorem 7.4 since it follows directly
from Theorem 7.1 and from the finiteness of the energy established in Lemma 3.3.
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8 A weaker form of the generalized conjecture of De Giorgi inR3

The aim of this section is to provide, similarly to Theorem 7.1, a general positive
answer inR? to the problem proposed by De Giorgi, but when an additional as-
sumption is introduced. Namely, that the entire solutiotrends to its extremum
values along its direction of monotonicity. It is worth noting that, interestingly,
similarly to the case of two variables, the invariance of the energy (1.5) under the
action ofO(3) is not needed.

Theorem 8.1. Letu be a bounded entire solution {@.2)in R? satisfying(1.10)
Suppose that

(8.1)

lim w(2’,23) = inf u def A, lim w(z’,23) = sup u “l B
T3—>—00 R3 T3—>00 R3

If one has
(8.2)  @(£,0) > min{®(A,0),d(B,0)}, forevery ¢ € (A, B),

thenw is of the typg1.4).

Proof. We assume without loss of generality thatn {#(A4,0),P(B,0)} =
&(B,0). Theorem 6.2 gives (now = 3)

E(r) = / [®(u, Du) — ®(B,0)] dv < Cr?, for every r > 0.

The latter inequality, together with the assumption (8.2), implies
(8.3) / [®(u, Du) — ®(u,0)] dz < Cr? for every r > 0.

B,

This is precisely what is needed to implement the argument in the proof of
Theorem 7.1. In fact, one only needs to prove the existencéuf0 independent
of R such that
(8.4) / w(¢? < B(x)Dag,Dagr > dx < C,

where B(z) is the matrix-valued function defined in (7.4). Returning to (7.9) we
now find, when (H 1) holds,

/ w¢? < B(z)Dag, Dag > dx

< cz/ |Du|2(e—|—|Du|)p*2|DaR|2dm
Bar

< % / |Dul? (e + | Du|)P~2dx
R* Bar
c o/

< = [@(u, Du) — &(u,0)]dx < C,
R Bar
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where in the second to the last inequality we have used (2.2), and in the last the
crucial estimate (8.3) has been employed. This establishes (8.4) and completes the
proof of the theorem in this case. If, instead, (H 2) is in force, then proceeding as in
(7.10), and using (2.6) and (8.3) (recall that we are assuming that bounded entire
solutions have bounded gradient) we obtain

(8.5) / w¢? < B(x) Dag,Dag > dx

< e / |Du|? \/1+ |Du|? |Dag|? dx
Bar

< < [@(u, Du) — &(u,0)]dz < C.
R? J Bar
This finishes the proof. O

Remark 8.2.Theorem 8.1 generalizes an analogous result in [AC] concerning the
equationAu = F'(u).

9 Lowering the dimension
In the sequel we consider an energy functloa: ¢(¢, o)s satisfying the structural

hypothesis (H 1) or (H 2). Given suckbave introduce the functio@ : RxR"~! —
R defined by

b, 0) = D(&,01,.y001) = D, 01,...,0,_1,0).

It is not difficult to check that the functio@ verifies the same assumptions of
@, (H 1) or (H2), butinR x R*”~1. We have the following basic lemma.

Lemma 9.1. Let v be a bounded entire solution 1d.2) satisfying(1.10) The
function

9.1) u(z') = lim  w(@,z,),

Tp—+00
is a bounded entire solution iR™~! of the equation
(9.2) divmlgg/(ﬂ, Dm/ﬂ) = 55 (ﬂ, szﬂ),

i.e., one has for every € C°(R" 1)

(9.3) s < &4/ (U, Dpt), Dy > da’ + /R’ B D¢(u, Dyu) ndx’ = 0.

A similar statement holds for the functiaz’) = lim,, oo (@', zp).
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Proof. We only give the proof foti. Consider the one-parameter family of functions
u* defined in (6.4). Thanks to (1.10) we have

(9.4) uMz) < ut(x) if A<p, forevery zeR™.
For every compact sét C R™ the Theorem of Dini and (9.4) guarantee that
(9.5) uMz) N Tr) as A — o

uniformly in x € K (we think ofw as a function of: variables, independent of
). The Hdlder estimates of the gradient, see (4.2) and the discussion following
Theorem 4.1, imply the existence@f« > 0, depending on, ||u|| ., the structural
constants in (H 1) or (H 2), and did, such that

|Du*(z) — Dury)| < C |z —y|?, forevery z,y € K, X € R.

We infer the existence of a sub-sequefie&’ } ;< which converges uniformly
on K in C'* norm tou. Considering the sequence of compact $6fs= {r € R" |
|z|] < m} ~ R™, by a diagonal process it is possible to extract a sub-sequence
{tm }men Of {u*}xer, Which converges i’! norm on compact subsetsRf. In
the sequel, abusing the notation for the sake of brevity, when we write

(9.6) =, Du — Dyu, as \— oo,

we really mean that the convergence is for the sub-sequengk,.cx of {u*}aer
constructed as above. This being said, one can easily see that (9.4) and (9.6) imply
the following

9.7 w@,z,) — u(z), Du(a',2,) — Dpu(z’) as x, — oo,

uniformly on compact subsets & ! (again, (9.7) must be interpreted as tak-
ing place on an appropriate sub-sequence). Using this information we can show
thatw satisfies (9.3). Given in fact a functione C2°(R"~!) one takesy(z) =

ay ()¢ (zn) in (2.14), wher€)y, € C°(R),0 < ¢y < 1,supply C [N, 2A+2],
(y=1lon[A+1,2X+1],|¢4| < 2,anday = [, (adx,. The resulting equation is

0= / Sxln) / < Dy (u(r!, xn), Du(x’, z,)), Den(x’) > da’ dx.,
R Q) Rn—1

1
b [ G [ e e ), DU ) ) d
ay Jr Rr—1

i /]R C/\C(f\n) /Rn—l De(u(, wn), Du(a', xp)) 1(a') da’ dn
I(n

) + II(\) + ITI(N).
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To estimate the first term we proceed as follows
I =
/ () / < Dy (u(r’, xn), Du(x’, x,))
R Q) Rn—1
— &, (u(z"), Dpi(z")), Dpm(z') > da’ dx,,
+ / S (@n) / < &, (@), Dy(a’)), Don(z’) > da’ dz,
R (65 JRn—1

= I'(\) + I"(V).

Clearly,
I"\) = / < @, (u(x'), Dpti(z')), D) > da’.
Rn—l
If we denoteK = suppn C R*!, then

O /K B (u(e 2,), Dule’, 2,))

— Do (U(a'), Dorti(2'))| | Dyrm(a’)| da’

and the right-hand side tends to zero\as> oo in view of (9.7).

To evaluatelI(\) we proceed as fof()\), but use the fact that, due to the
support properties af}, the integral inz,, is actually performed on the sgt, A +
UM+ 1,2) + 2], anda; ' < A™! — 0asA — oc. Letting A — oo in the
resulting equation one hdd(\) — 0. Finally, proceeding similarly td()), one
obtains

II1I(N) — D¢ (u(z'), D)) n(z') da’.
Rn—1
This completes the proof of (9.3). O

Remark 9.2.The idea of dimensional reduction via the stability properties of the
functionsu, @ was introduced in [BCN].

Remark 9.3.To proceed in the analysis we will need to know that the Hessian
matrix @, has continuous entries. Henceforth in this section we thus assume that
@ € C3(R x R™). As already mentioned in Remark 2.1 such hypothesis is natural
whene > 0in (H 1), orfor (H 2). Itis also consistent with some important situations

in which there is degeneracy in the gradient, such as (2.12)pwitl2. The model
(2.12) with1 < p < 2 is however excluded.

In the sequel we continue to denote tya bounded entire solution to (1.2)
satisfying (1.10). Let € CS°(R™) and setll = supp ¢. If 2 C R™ is a bounded
open set such thdt” C (2, then (4.3) holds ii2. Therefore, there exists € (0,1)
which depends om, ||u||;~®n), £2, the bound in (4.3), and on the structural
constants in (H 1) or (H 2), such thate C?#(£2). The functionv = D,u is
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a positive solution to (4.4). We will indicate witB = B(z) the matrix-valued
function defined in (7.4). For what follows it will be convenient to introduce the
guantities

Letting

in (4.4), one obtains

Cdx =

< B(z) Dv,Dv >
n v2

< B(x) Dv,D¢ >
2]

Cdx—i—Q/ C<b,DC> dz + V 2 dx.

R™

Schwarz inequality gives

(9.8)0§/ < B(z) D¢, D¢ > da+2 | ¢ <b,DC> d:r+/ V(2 da.

n

Rn

This crucial inequality constitutes the starting point for the following dimension-
reduction arguments. We introduce the new quantities

B(@!) = (Boro (ala'), Dori(a')))

ij=1,n—1"
b(z') = Peor(u(a'), Dyru(a')),
V(a') = Pee(u(a’), Dpti(z")).

Lemma 9.4. For anyn € C°(R"~1) one has

0§/ <§(w’)Dn,Dn>dw’+2/ n <b,Dn> da’
Rn—1 Rn—1

9.9 + / V n?da'.
Rn—1

Proof. Letn € C3°(R™"1). With ¢, € C°(R) as in the proof of Lemma 9.1 we
let 3\ = [; (3 (2n)dz, and consider the test function
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in (9.8). Our aim is to show that, passing to the limitas> co in (9.8), produces
(9.9). We write

/n<B()D§DC>d;z:: Z/ By,0, (u, Du) Di¢ Di¢ da

1,7=1
n—1

+ 2 Z / ono; (U, Du) D¢ D¢ dr + / Dy, 5. (u, Du) (D,C)? da

= I()\) + II(N) + ITI(N).

One has

Itis clear that
(3 = / B0, (@(x'), Dyua’)) Dinfa’) Dyn(a') da.
Rn—l

In estimatingl’()\) we use the uniform convergence (9.7) on compact subsets

of R"~1, the support property @f,, and the continuity ob,,, to obtain/’(\) — 0
as\ — oo.

To estimatd I(\) andI1I(\) we proceed similarly to the proof of Lemma 9.1.
Using the support property gf and the observation thﬁ§1 < X~ !, we conclude
that/I(\), IT1(\) — 0, asA — oco. Summarizing, we have proved

/ < B(z) D¢,D¢ > dx — < B(z') Dn, Dn > da', A — 0.

Rn—1

By analogous arguments one treats the remaining two integrals in the right-hand
side of (9.8) concluding that

2 C<bDC> dx+/ V 2 dx
Rﬂ, n

%2/ n < b,Dn > dx’+/ Vn?da,
Rn—1 Rn—1
as\ — oo. This completes the proof of the lemma. O

Lemma 9.4 implies the following important result.
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Theorem 9.5. There exists) € C1(R"~1), ¢ > 0, such that

divy (B(x") Dytp + 1 b(2'))
(9.10) — <b(z), > —-V(E@)y <0 in R"~ 1,

Proof. Consider the linear equation &r*—!
(9.11) divy (B(z') Dyw + wb(z)) — <b(@),w> = V(2 )w = 0.

On any bounded open s@tC R"~! the Rayleigh quotient associated to (9.11)
is

1

R = —
) ||77HL2(Q)

/ [<B(z') Dn,Dn> +2n<b,Dn> + V] do'.
7

The first Dirichlet eigenvalue is defined by

)\Q = inf R(T})
nEWS? (2),n20

Lemma 9.4 asserts that, > 0. Furthermore, by Theorem 8.38 in [GT] the
first Dirichlet eigenfunction)y, is strictly positive inf2. We follow the argument
in the proof of Theorem 1.7 in [BCN]. Letr andy r respectively denote the first
eigenvalue and eigenfunction for the bBlJ, = {z’ € R"~! | |2/| < R}, then one
has trivially0 < Ar+ < Ag < \; foreveryR* > R > 1. Normalizeyr so that
¥r(0) =1 for everyR > 1. By the Harnack inequality Theorem 8.20 in [GT] we
infer the existence of constant;, ez > 0 such that for every’ B;m
er < Ype(2') < Cr R* > R.

From elliptic theory we can thus find a sequeiRe — oo, and a function
¥ > 0inR"~1, such thatyr, — ¢ in C*° on every compact set. Furthermore,
since for eact? > 0 the corresponding eigenvalug; is > 0, we conclude thap
solves the differential inequality (9.10). O

Having obtained Theorem 9.5 we now prove the following.

Theorem 9.6. If n = 3, then either
(i) w = B, aconstant which satisfies
Pee(B,0) > 0,
or the functionz is one-dimensional, i.e.,

(i) u(z') = g(< c,2’ >) for someg € C?(R) with ¢ > 0 and some: € R?
such thafc| = 1.



Properties of entire solutions 485

Proof. We proceed as in the proof of Theorem 7.1, letting this timée:fer 1, 2
Diu
T

In what follows we write for simplicityy = D,u, for fixedk = 1 or 2, then

w = ¢? ¢ =

(9.12) wDC¢ = 1 Dv — v Dy.

Re-writing (9.10) in weak form one has for anye C°(R™~1),n > 0,

(9.13) — / < BDv, Dn > da’ < / Y < b, Dy > da’
Rn—1 R—1
+ / n < b,Dy > da’ + / Vpm dx’.
Rn—1 Rn—1

Onthe other hand, singds a bounded solution of (9.2), its derivatives- Dy
satisfy the linearized equation R* !, see (4.4),

(9.14) / < BDv,Dn >dx’' = — / v < b,Dn > dx’
Rn—1 Rn—1

—/ 77<5,Dv>d;v’—/ Voun da'
Rn—1 Rn—1

wheren € C°(R"~1) is arbitrary.
We now claim that (9.12), (9.13) and (9.14) imply the following crucial differ-
ential inequality

(9.15) /R W < BD¢,D(n¢) > da’ < 0,
forn € C(R™~1), withn > 0. To prove this claim we proceed as follows
/R’ v < BD¢,D(n¢) > da’
= /]R » Y < BDv, D(n¢) > da’ — / v < BDy, D(n¢) > dx’

Rn—1

= / < BDv, D(ny¢) > da’ — / < BDv, D(nu¢) > d’
Rn—1

Rnr—1

< —/ v<B,D<nwc>>dx'—/ <%, Do > qyc da’
Rn—l

Rn—1

+ / ¥ < b, D(nqu¢) > da’ + / <b,Dy > nuCdx’ = 0.
Rn—1 R

n—1

Once (9.15) is established we follow the argument in the proof of Theorem 7.1
(here, the fact that = 2 is used!) to conclude that

Diyu = ¢ 9, k=12

)
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If c; = ¢ =0, thenu = B (a constant) and we obtain from Lemma 9.4
/ < @415/ (B,0) Dy, Dy > da’ + ®ee(B,0) / n? dx’ > 0,
R2 R2

for everyn € C°(R?). Sincedg¢ (B, 0) = d¢¢(B,0), and the matrixd, . (B, 0)
is positive definite, the latter inequality impli€g: (B,0) > 0.

Ifinstead at least one, is not zero, then one clearly haér,, z2) = g(b1x1 +
boxo) With by, = (3 + ¢3)~'/2%¢;,, k = 1,2, and the positivity ofy impliesg’ > 0.
The proof is complete. O

10 A generalization of the theorem of Ambrosio and Cabeé in R3

In [AC] the authors have given a positive answer to the conjecture of De Giorgi for
n = 3. In fact, they have proved the stronger result.

Theorem 10.1 Ambrosio and Cal#). Let u be a bounded solution iR? of the
equation
Au = F'(u),

whereF € C?(R) and
F > min{F(m),F(M)} in (m, M)

for each pair of real numbers: < M satisfyingf”’(m) = F'(M) = 0, F"(m) >
0,F"”(M) > 0.If (1.10)holds, then the level sets afare planes, i.e. is of the
type(1.4).

The aim of this section is to establish the following generalization of Theorem
10.1.

Theorem 10.2. Letu be a bounded entire solution (d.2)in R3 with® € C3(R x
R3) of the typg(1.5). Suppose that

(10.1)  @(£,0) > min{P(A,0),P(B,0)} §€ (A, B)
for each pair of real numberd < B satisfying

D¢(A,0) = D¢(B,0) =0,

and
Dee(A,0) > 0, Pee(B,0) > 0.
If
ou
— >0 in R3
8563 - ’

then the level sets afare planes, i.e.u is of the typg1.4).
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Proof. Let

A = inf u, B = sup u,
R3 R3

andset(z') = limg,—, oo u(z’, 23), W(2") = limy, 400 u(2’, z3). Clearly,u <
uinR? andA = infg: u, B = supg. u. We apply Theorem 9.6. If cagé) occurs,
thenw = B and one had,.(B,0) > 0, whereas the equation givés(B, 0) = 0.

If instead caséii) is verified, then due to the fact th@{u, o) = (1/2)G(u, |o|?)
(the spherical symmetry @ in o plays a crucial role at this point) we infer that
the functiong satisfies the ode

(10.2)

1
Ges(g,9") (9)? + (Gs(g,g'Q) +24"° GSS(Q;QIQ)) g’ = 3 Gelg,d),

and moreovey’ > 0inR. Applying Lemma 3.3 withnfg: @ = A; andsupg: @ =
B, we conclude that

$(A1,0) = &(B,0), De(A1,0) = P¢(B,0) = 0,

and that
@(570) > é(AlvO) = @(B,O)

These properties, and tii& smoothness of — &(&,0), also imply
Bee(B,0) > 0.
A similar analysis ofu proves that
P:(A,0) = 0, and  Pg(A,0) > 0.

According to (10.1) we conclud®(¢,0) > min{®(A,0), »(B,0)}. Without

loss of generality we now assume thatn{®(A,0), #(B,0)} = ¢(0, B).
As in the proof of Theorem 8.1, the final goal is to show that

E(r;u) = / [®(u, Du) — ®(B,0)] dv < Cr? for everyr > 1.
By

If one considers the functions' introduced in (6.4), then using the hypothesis
(1.10) one obtains, as in the proof of Theorem 6.2,

(10.3) E(ryu) < Cr" ' + E(r;ul).
The proof will be completed if we can show
(10.4) im0 B(R;ut) < C R%

Itis clear thatifz = const = B, thenlimy_, o, F(R;u*) = 0.To prove (10.4),
in the caser # const, we use the uniform convergencedf norm on compact
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subsets oR” of u* to 7, see (9.6). From the latter, and from (ii) of Theorem 9.6,
we obtain

A— 00

lim B(Rud) — /B [@(a(a’), Dyu(a')) — B(B,0)] du
CR

< [B(a(z'), Dyi(x')) — &(B,0)] da’

{z’ eR?||z’|<r}

C' R? /]R (@(g(t),d'(t)) — ¢(B,0)] dt < C" R?,

IN

where in the lastinequality we have used the finiteness of the energy for the solution
g = g(t) of (10.2) deriving from Lemma 3.3. This completes the proof of the
theorem. O

After this paper was completed we received from L. Ambrosio the preprint
[AAC] in which the authors use ideas from the calculus of variations to improve
on Theorem 10.1 by removing the extra assumptions on the non-linéarithiey
establish the following.

Theorem 10.3. Assume thaF’ € C?(R). Letu be a bounded solution tdu =
F’(u) in R3 satisfying(1.10), thenu must be of the typgl.4).

The proof of Theorem 10.3 is based on the observation that if the solution
were a local minimum, in a suitable sense, of the relative energy, then a simple
comparison argument would provide the improved energy growth

/ [[Dul* + F(u)] de < Cr™7 1, r> 1.

r

This observation was made in Lemma 1 in [CC]. The main new idea in [AAC]
consists in showing that the monotonicity assumption (1.10) does in fact imply the
local minimality ofu. Such implication is by no means trivial and it is based on the
construction of a so-calledalibration associated to the energy functional. Such
notion is intimately connected to the theory of null Lagrangians, see [GH], chap.1,
sec.4, and chap.4, sec.2.6. Interestingly, although the authors work with the special
cased(¢,0) = (1/2)|Dul? + F(€), they carry the construction of the appropriate
calibration for general integrands of the calculus of variations, see Theorem 4.4
in [AAC]. Such construction relies explicitly on thB-function which we have
introduced in (1.3), and thanks to its generality covers the setting of the present
paper. Here is the main consequence.

Theorem 10.4. Letu be a bounded entire solution {&.2) satisfying the assump-

tion (1.10) andw, u be as in(9.1). In a bounded>* domains2 C R” consider the
energy functional associated wifh.1)

(10.5) E(v; 02) = /Q &(v, Dv) duz,
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and the class of functions

¢ = {ve C'(Q) | u) < v(x) < u(a’)
forevery =z = (2',2,) € 2, v=u on 0£}.

The function: minimizes the energy over the collect'(oﬂg, i.e.,
E(u; 2) < E(v; ), forevery v e Cl,.

Using Theorem 10.4, and the results in sections 3, 9 and 10, we can remove the
additional assumptions oh in Theorem 10.2, thus obtaining a generalization of
Theorem 10.3.
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