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1 Introduction

The aim of this paper is to study bounded critical points of the following general
functional from the calculus of variations

(1.1) E(u) =
∫

Rn

Φ(u,Du) dx,

whose Euler-Lagrange equation is

(1.2) div Φσ(u,Du) = Φξ(u,Du).

Using compactnessmethods based on the translation invariance of the equation
(1.2), and a priori estimates inC1 norm, we prove various properties of bounded
entire solutions of (1.2), such as a sharp inequality for the gradient, energy mono-
tonicity and optimal growth, Liouville type results, and one-dimensional symmetry.
An important role in this program is played by the function

(1.3) P = P (x;u) = < Φσ(u(x), Du(x)), Du(x) > − Φ(u(x), Du(x)),

which incorporates basic analytic and geometric information onu itself. To explain
this point let us notice that when the level sets ofu are hyper-planes, then

(1.4) u(x) = g(< a, x >),

for someg : R → R, and some vectora ∈ R
n, with |a| = 1. If, in addition,Φ is

spherically symmetric inσ, i.e., if we can write

(1.5) Φ(ξ, σ) =
1
2
G(ξ, |σ|2),
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for some functionG = G(ξ, s), then it is easy to recognize that the functionP intro-
duced in (1.3) is constant, see Proposition 4.2. Vice-versa, the constancy ofP (·;u)
hides geometric information on the level sets{x ∈ R

n | u(x) = t} of the solution
u, such as the property of being surfaces of zero mean curvature. A basic feature
of the functionP is that it satisfies a maximum principle, which becomes optimal
(in the sense thatP becomes constant) for a distinguished geometric configuration
of u, namely (1.4). Such result has important connections with the beautiful theory
of isoparametric surfaces developed by E. Cartan [C], see also [Tho].

On a bounded entire solution of the model equation∆u = F ′(u), one has
P = (1/2)|Du(x)|2 − F (u(x)). In this case L. Modica in [M2] first established
the following important property ofP

(1.6) |Du(x)|2 ≤ 2F (u(x)), x ∈ R
n,

under the hypothesisF ≥ 0. Gradient estimates of entire solutions of uniformly
elliptic equations have a long history, which for obvious reasonswewill not attempt
to describe. The first contributions more closely connected to (1.6), but with dif-
ferent assumptions, are contained in two pioneering papers by Serrin [Se1], [Se2],
and in one by Peletier and Serrin [PS].

Using ideas different from those in [M2], the non-positivity ofP was general-
ized in [CGS] to the case

(1.7) Φ(ξ, σ) =
1
2
G(|σ|2) + F (ξ),

whereG = G(s) is a non-linearity which includes models as diverse as thep-
Laplacian and the minimal surface operator, see (2.12) and (2.13) below. In this
situation, the function introduced in (1.3) becomes

(1.8) P = Gs(|Du|2) |Du|2 − 1
2
G(|Du|2) − F (u),

and one of themain results in [CGS] stated thatP ≤ 0 on a bounded entire solution
of (1.2). It was also shown in [CGS] that, if suchP attains its upper bound at one
point, then in factP ≡ const, and moreoveru is one-dimensional, i.e., of the type
(1.4). This latter result provided evidence in favor of the following by now famous
conjecture of E. De Giorgi [DG, Open question 3, p. 175]:Letu ∈ C2(Rn) be an
entire solution of

(1.9) ∆u = u3 − u,
such that|u| ≤ 1. If

(1.10)
∂u

∂xn
> 0 in R

n

holds, then the level sets ofu are hyper-planes, i.e.,u must be of the type(1.4), at
least ifn ≤ 8.

The limitation in the dimension is suggested by the deep connection with the
Bernstein problem in the theory of minimal surfaces, see [DG], [BDG], [M1],
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[AAC], and Sect. 4. It is worth noting that the abovementioned “evidence in favor”
in [CGS], is however in discrepancy with the conjecture, in that it establishes the
one-dimensional symmetry irregardless of the dimension of the ambient space. The
following family of explicit solutions of (1.9) has long been known

(1.11) u(x) = ua,λ(x) = tanh

(
< a, x >√

2
+ λ

)
, x ∈ R

n,

wherea ∈ R
n is such that|a| = 1, andλ ∈ R. Therefore, the conjecture of De

Giorgi implicitly states that, at least ifn ≤ 8, under the monotonicity hypothesis
(1.10), a boundedentire solution of (1.9)must be of the formua,λ, for some|a| = 1,
andλ ∈ R.

De Giorgi’s conjecture, and some variants of it, have received considerable
attention over the past few years. The first result goes back to a pioneering paper
of L. Modica and S. Mortola [MM], in which the authors proved that in dimension
n = 2 the conjecture is true, under the additional hypothesis that the level sets
of u constitute an equi-Lipschitzian family of curves. A complete solution in the
two-dimensional case was only given in 1998, in a beautiful paper by Ghoussoub
and Guy [GG]. In fact, these authors proved the conjecture true not just for the
Ginzburg-Landau model, but for the equation∆u = F ′(u), with F ∈ C2(R).

A modified version of the conjecture, known asGibbons’ conjecture[Ca],
contains the additional assumption thatu(x′, xn) tend to its extremum values as
xn → ∓∞, butuniformly inx′ ∈ R

n−1. Such conjecture has been independently
answered in the affirmative in every dimension, andwith very different approaches,
in the recent papers by Berestycki, Hamel and Monneau [BHM], and by Barlow,
Bass and Guy [BBG]. Again, there is a discrepancy between De Giorgi’s and
Gibbons’ conjectures, since the latter has been established irregardless of the di-
mension. Under a similar assumption of uniform limit at infinity, but for equations
in a cylinder, a positive answer for the degenerate model (2.12) has been given by
Farina [F1] using rearrangement techniques, see also the paper by Brock [Bro], for
a prior related result of one-dimensional symmetry. For a stronger version of the
Gibbons’ conjecture, one should also consult the recent paper by Farina [F2].

A new major development in the problem proposed by De Giorgi has recently
come with the work of L. Ambrosio and X. Cabré. In their beautiful paper [AC]
the authors have proved the conjecture true inR

3. In fact, [AC] contains a positive
answer to a stronger form of the conjecture, see Theorem 10.1. The double-well
potential for the Ginzburg-Landau model with two equal wellsF (u) = 1

4 (1 −
u2)2, for which F ′(u) = u3 − u, satisfies the requirements in Theorem 10.1,
with m = −1, M = 1, thus the conjecture follows forR3. Subsequently, in
the joint work with Alberti [AAC], the authors have succeeded in removing the
additional assumptionson thenon-linearityF (u) inTheorem10.1, thusestablishing
the validity of the conjecture inR3 for the equation∆u = F ′(u), whereF (u) is
an arbitrary function inC2(R), see Theorem 10.3.

The aim of this paper is to generalize various results in [CGS], [BCN], [GG],
[AC], and [AAC], to equations of the general type (1.2). A distinctive aspect of
our results is that they do not distinguish between Laplace equation, and the two
important, yet very different, models given by the the minimal surface operator,
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and by thep-Laplacian. In addition to this, the general setting in which we work
clarifies for the first time the role of invariance under the action of the orthogonal
groupO(n). Aswewill see, such invariance pays no role in low dimension (n = 2),
whereas, whenn ≥ 3, it becomes important, or remains irrelevant, depending on
the situation at hand. The paper is composed of ten sections. A short description
can be obtained by glancing at the titles of the sections.

After this paper was accepted for publication we received the preprint [F3] by
A. Farina, in which the author obtains a one-dimensional symmetry result inR

2, for
equations having energy as in (1.7). This result implies the validity of De Giorgi’s
conjecture in the plane, and within its more restricted range, it provides a very
interesting independent proof of our Theorem 7.1.

2 Structural assumptions

In this section we list the general structural hypothesis for this paper. Since we are
not interested in the weakest regularity requirements onΦ we assume that

Φ ∈ C3(R × (Rn \ {0})) ∩ C1(R × R
n),

(although, inmost cases, theweaker requirementΦ ∈ C2(R×(Rn\{0}))∩C1(R×
R
n) would suffice). The functionΦ will be supposed normalized as follows

(2.1) Φσi
(u, 0) = 0, i = 1, ..., n.

Since we want to include the very diverse models (2.12) and (2.13) below, we
will list two separate sets of structural hypothesis, (H 1) and (H 2).

(H 1) There existp > 1, ε ≥ 0, and for everyC > 0 there exist constantsc1, c2 > 0
such that for anyξ ∈ R, with |ξ| ≤ C, and everyσ, ζ ∈ R

n \ {0}, one has
(2.2) c1 |σ|2 (ε + |σ|)p−2 ≤ Φ(ξ, σ) − Φ(ξ, 0) ≤ c2 (ε + |σ|)p.

(2.3) |Φσ(ξ, σ)| ≤ c2 (ε + |σ|)p−1.

(2.4) |Φξ(ξ, σ)| ≤ c2 (1 + |σ|)p.

(2.5) c1 (ε + |σ|)p−2 |ζ|2 ≤ < Φσσ(ξ, σ)ζ, ζ > ≤ c2 (ε + |σ|)p−2 |ζ|2,
whereΦσσ denotes the Hessian matrix ofΦ.

(H 2) For everyC > 0 there exist constantsc1, c2 > 0 such that for everyξ ∈ R,
with |ξ| ≤ C, for any σ ∈ R

n, and everyζ ′ = (ζ, ζn+1) ∈ R
n+1 which is

orthogonal to the vector(−σ, 1) ∈ R
n+1, one has

(2.6) Φ(ξ, σ) − Φ(ξ, 0) ≥ c1
√

1 + |σ|2.

(2.7) |Φσ(ξ, σ)| ≤ c2.
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(2.8) |Φξ(ξ, σ)| ≤ c2

(2.9) c1
|ζ ′|2√

1 + |σ|2 ≤ < Φσσ(ξ, σ)ζ, ζ > ≤ c2
|ζ ′|2√

1 + |σ|2

Remark 2.1.We emphasize that whenΦ has the special structure (1.7), then the
following weaker regularity hypothesis suffices: In the case (H 1) we assumeG ∈
C3(R \ {0})∩C1(R),F ∈ C2(R), whereas in case (H 2) we supposeG ∈ C3(R),
F ∈ C2(R). It is then clear that the results in this paper do include the special case
of the non-linear Poisson equation∆u = F ′(u), with F ∈ C2(R).

It is important to note that either whenε > 0 in (H 1) (and even when(H 1)
holds withε = 0, butp ≥ 2), or when(H 2) is in force, we can actually assume,
and will do so, thatΦ ∈ C3(R × R

n), since the gradient ofΦ with respect toσ
has in such cases no singularity atσ = 0. Such hypothesis will become effective
after Remark 9.3, for the remaining part of Sect. 8, and also for sections nine and
eleven.

Remark 2.2.Assume(H 2). For everyσ ∈ R
n the choiceζ ′ = (σ, |σ|2) in (2.9)

gives

(2.10) c1 |σ|2
√

1 + |σ|2 ≤ < Φσσ(ξ, σ)σ, σ > ≤ c2 |σ|2
√

1 + |σ|2.
This inequality,whenused in theproof of Lemma6.1, guarantees the conclusion

< σ,Φσ(ξ, σ) > ≥ Φ(ξ, σ) − Φ(ξ, 0).

From the latter and from (2.6) we obtain

(2.11) < σ,Φσ(ξ, σ) > ≥ c1
√

1 + |σ|2,
which gives the structural assumption (2.3) in [LU2] withµ1 = c1 andµ2 = 0.

The basic models for (H 1) and (H 2) are, respectively,

(2.12) Φ(ξ, σ) =
1
p

(
ε2 + |σ|2)p/2 + F (ξ), 1 < p <∞, ε ≥ 0,

and

(2.13) Φ(ξ, σ) =
√

1 + |σ|2 + F (ξ),

with corresponding Euler-Lagrange equations

div
(
(ε2 + |Du|2)(p−2)/2 Du

)
= F ′(u), 1 < p <∞,

and

div

(
Du√

1 + |Du|2

)
= F ′(u).
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When (H 1) holds, by anentire (weak) solutionto (1.2) we mean a function
u ∈ W 1,p

loc (Rn) such that for everyφ ∈W 1,p
o (Rn) with compact support

(2.14)
∫

Rn

< Φσ(u,Du), Dφ > dx +
∫

Rn

Φξ(u,Du) φ dx = 0.

If, instead, (H 2) is in force, then an entire solution to (1.2) will be a function
u ∈ C2(Rn) which satisfies the equation in the classical sense.

3 The analysis of the ode

In this section we analyze the ordinary differential equation associated with (1.2),
namely

(3.1) (Φσ(u, ux))x = Φξ(u, ux).

We assume that

Φσσ(ξ, σ) > 0 for every (ξ, σ) ∈ R × (R \ {0}),

see (2.5). It will be useful in the sequel to also have the expression of (3.1) in
non-variational form, at those pointsx ∈ R whereux(x) �= 0

(3.2) Φξσ(u, ux) ux + Φσσ(u, ux) uxx = Φξ(u, ux).

We introduce the function

(3.3) P = P (x;u) = Φ(u, ux) − ux Φσ(u, ux).

Lemma 3.1. There exists a numberPo such that ifu is a solution to(3.1), and if
moreoverux(x) �= 0 for everyx ∈ R when (H 1) holds withε = 0, then

P (x;u) ≡ Po.

Proof. If either (H 1) holds withε > 0, or (H 2) is valid, then the regularity theory
of ode’s guarantee thatu ∈ C2(R). The same conclusion is true whenε = 0 in
assumption (H 1), butux(x) �= 0 for everyx ∈ R. Differentiating (3.3) with respect
to x we find

Px = Φξ(u, ux) ux + Φσ(u, ux) uxx − Φξσ(u, ux) u2x
− Φσσ(u, ux) uxx ux − Φσ(u, ux) uxx
= [Φξ(u, ux) − Φξσ(u, ux) ux − Φσσ(u, ux) uxx] ux = 0,

where in the last equality we have used (3.2). ��
Remark 3.2.It is worth observing that the assumptionux �= 0 in the statement of
Lemma 3.1 has only been made to give a sense to the quantityΦσσ(u, ux). Such
assumption is clearly not needed when the equation is non-degenerate atux = 0,
as it is the case for (H 1) withε > 0, or for (H 2).
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Lemma 3.3. Letu be a bounded solution to(3.1)satisfyingux > 0 in R and set

A = inf
R

u, B = sup
R

u.

One has

Φ(A, 0) = Φ(B, 0), Φξ(A, 0) = Φξ(B, 0) = 0,

and
Φ(ξ, 0) > Φ(A, 0) = Φ(B, 0) ξ ∈ (A,B).

Furthermore, ∫
R

{Φ(u, ux) − Φ(B, 0)} dx < ∞.

Proof. Lemma 3.1 implies

(3.4) Φ(u, ux) − ux Φσ(u, ux) ≡ Po.

SinceA = limx→−∞ u(x), B = limx→∞ u(x), and moreover the bounded-
ness ofu forces

(3.5) lim
x→±∞

ux(x) = 0,

we conclude from (3.4), (3.5)

(3.6) Φ(A, 0) = Po = Φ(B, 0).

Observe next that

(3.7) σ Φσ(ξ, σ) − [Φ(ξ, σ) − Φ(ξ, 0)] > 0, (ξ, σ) ∈ R × (0,∞).

The proof of (3.7) follows noting that the function

(3.8) Ψ(ξ, σ) = σ Φσ(ξ, σ) − [Φ(ξ, σ) − Φ(ξ, 0)]

satisfiesΨ(ξ, 0) = 0 and that furthermore

Ψσ(ξ, σ) = σ Φσσ(ξ, σ) > 0, (ξ, σ) ∈ R × (0,∞).

Once this is known we obtain from (3.4), (3.6)

Φ(u, 0) − Φ(A, 0) = Φ(u, 0) + ux Φσ(u, ux) − Φ(u, ux) > 0,

where in the last inequality we have used (3.7). An analogous inequality holds if
we replaceΦ(A, 0) with Φ(B, 0). This provesΦ(ξ, 0) > Φ(A, 0) = Φ(B, 0) for
ξ ∈ (A,B). For every fixedξ ∈ R let us denote by

H(ξ, ·) = Ψ(ξ, ·)−1
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the inverse function ofΨ(ξ, ·). Re-writing (3.4) as

Ψ(u, ux) = Φ(u, 0) − Φ(B, 0),

we obtain

(3.9) ux = H(u, Φ(u, 0) − Φ(B, 0)).

If we consider the functionf : R
2 → R

2 defined byf(ξ, σ) = (ξ, Ψ(ξ, σ)),
thenf is one-to-one and continuous, and oneeasily sees that its inversef−1(η, z) =
(η,H(η, z)) is also continuous. In particular, the function(η, z) → H(η, z) is
continuous. From this observation and from (3.9) we infer that in addition to (3.5)
one has in fact

(3.10) lim
x→±∞ ux(x) = 0.

Furthermore, (3.9) implies the existence of a constantM =M(||u||L∞(R)) > 0
such that

|ux(x)| ≤ M, x ∈ R.

Using (3.10), the equation (3.1), and themean-value theorem, oneeasily obtains

Φξ(A, 0) = Φξ(B, 0) = 0.

Finally, (3.4) and (3.6) give

∫
R

{Φ(u, ux) − Φ(B, 0)} dx

=
∫

R

ux Φσ(u, ux) dx

therefore to estimate the energy it suffices to control the latter integral. For every
ζ > 0 one has

∫ ζ

−ζ

ux(x) Φσ(u(x), ux(x)) dx =
∫ u(ζ)

u(−ζ)
Φσ(t, ux(u−1(t)) dt

≤
∫ B

A

Φσ(t, ux(u−1(t))) dt ≤ (B − A)
(

max
(ξ,σ)∈[A,B]×[−M,M ]

Φσ(ξ, σ)
)

Letting ζ → ∞ we reach the conclusion

∫
R

ux Φσ(u, ux) dx ≤ (B − A)
(

max
(ξ,σ)∈[A,B]×[−M,M ]

Φσ(ξ, σ)
)
< ∞.

��
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4 Higher-dimensional analysis of theP -function

Before proving the main results in this section we develop some preparatory con-
siderations. We have the following basic result, see [U], and also [To], [DB] and
[Le].

Theorem 4.1. Assume(H 1), and letu be a bounded entire solution to(1.2). There
exist positive numbersM,α andγ depending only onn, the parametersp, ε in the
structural assumptions(H 1), and on||u||∞ = ||u||L∞(Rn), such that

(4.1) ||Du||∞ ≤ M,

and

(4.2) |Du(x) − Du(y)| ≤M R−γ

( |x− y|
R

)α

for everyxo ∈ R
n, R > 0, and anyx, y ∈ BR(xo) = {ξ ∈ R

n | |ξ − xo| < R}.
For bounded entire solutions of (1.2), with the structural assumptions (H 2),

interior a priori bounds for the gradient have been obtained under additional re-
quirements on the energy functionΦ. For the special model (2.13) withF ≡ 0, the
following celebrated result of Bombieri, De Giorgi and Miranda [BDM] holds:Let
u be aC2 solution of the minimal surface equation in a ballB(x,R) ⊂ R

n, n ≥ 2,
then

|Du(x)| ≤ C1 exp
[
C2

supy∈B(x,R) (u(y) − u(x))
R

]
,

for appropriate positive numbersC1, C2 depending only onn. See also [K] for
a simpler proof based of the maximum principle. It follows that bounded entire
solutions of the minimal surface equation have bounded gradient. For a detailed
description of conditions under which it is possible to obtain similar a priori bounds
of the gradient for (1.2) with (H 2), we refer the reader to [LU2], p.691-94, where
even themoregeneral setting (7.11) is treated, andalso to thesubsequentwork [Si1].
For our purposes it will be important to know that there exist situations in which
bounded entire solutions have bounded gradient and we will always work within
this framework. This means that when (H 2) is in force we will alwaysa priori
assume the existence of a constantM > 0, depending onn, and on||u||∞, such
that (4.1) hold. Under these circumstances the equation (1.2) becomes uniformly
elliptic. We can thus appeal to the classical Schauder estimates, see [LU1], [GT],
to conclude thatu ∈ C2,γ

loc (Rn) and that (4.2) is valid also.
For the structural hypothesis (H 1), withε = 0, it is well known that the optimal

regularity of weak solution is expressed by Theorem 4.1. If, however, in an open
setΩ ⊂ R

n we have

(4.3) inf
Ω

|Du| > 0,

then appealing to the regularity theory for non-degenerate quasi-linear equations
[LU1] one infers that actuallyu ∈ C2,β

loc (Ω), for someβ ∈ (0, 1) depending on
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||u||∞, on the structural constants, and on the quantity in the left-hand side in (4.3).
If either (H 1) and (4.3) hold, or we are in the situation (H 2), we are thus allowed
to take second derivatives of the solutionu. Observe that ifuk = Dku, then in a
classical fashion one recognizes that in weak form the linear equation satisfied by
uk in Ω is

∫
Ω

< Φσσ(u,Du) D(uk), Dφ > dx = −
∫
Ω

< Φξσ(u,Du), Dφ > uk dx

(4.4)

−
∫
Ω

< Φξσ(u,Du), D(uk) > φ dx −
∫
Ω

Φξξ(u,Du) uk φ dx,

whereφ is a test function inΩ. Hereafter, we adopt the summation convention over
repeated indices. The latter equation can be re-written as follows

(4.5) (aij (uk)i)j = [Φξξ − div Φξσ] uk,

with aij given by

(4.6) aij = aij(ξ, σ) = Φσiσj
(ξ, σ).

In the sequel it will be useful to have (1.2) also in the non-variational form

(4.7) aij uij = Φξ − < Φξσ, Du >,

which makes clearly sense when either (H 1) and (4.3) hold, or (H 2) is in force.
We now let

(4.8) Λ = Λ(ξ, σ) =
ahk σh σk

|σ|2 , (ξ, σ) ∈ R × (Rn \ {0})

and set

(4.9) dij = dij(ξ, σ) =
aij(ξ, σ)
Λ(ξ, σ)

.

We note explicitly that

(4.10) dij(u,Du) ui uj = |Du|2.
Guided by the analysis of the ode in Sect. 2 we introduce the functionΨ :

R × R
n → R defined by

(4.11) Ψ(ξ, σ) = 2 < σ,Φσ(ξ, σ) > − 2 [Φ(ξ, σ) − Φ(ξ, 0)] ,

and consider the quantity

P = P (x;u)
def
= 2 < Du,Φσ(u,Du) > − 2 Φ(u,Du)(4.12)

= Ψ(u,Du) − 2 Φ(u, 0).
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In the remainder of this section we suppose thatΦ(ξ, σ) has the structure (1.5).
We lets = |σ|2 so that (1.5) gives
(4.13) Φσ(ξ, σ) = Gs(ξ, |σ|2) σ.

The equation (4.7) presently takes the form

(4.14) aij uij =
1
2
Gξ − Gξs |Du|2,

with

(4.15) aij(ξ, σ) = 2 Gss(ξ, |σ|2) σi σj + Gs(ξ, |σ|2) δij .
For the function in (4.8) we have

(4.16) Λ = Λ(ξ, s) = 2 sGss(ξ, s) +Gs(ξ, s) > 0 (ξ, s) ∈ R×(0,∞).

The last inequality is nothing but a reformulation of the ellipticity of the matrix
aij = Φσiσj

which is guaranteed by (2.5), (2.9). We obtain from (4.11)

(4.17) Ψ = Ψ(ξ, s) = 2 s Gs(ξ, s) − G(ξ, s) + G(ξ, 0).

Since

(4.18) Ψ(ξ, 0) = 0,

and

(4.19) Ψs = 2 s Gss + Gs = Λ,

we conclude from (4.16) that must be

(4.20) Ψ(ξ, s) > 0 (ξ, s) ∈ R × R
+.

If we letF (ξ) = G(ξ, 0), then we can write the non-linear quantityP in (4.12)
as follows

(4.21) P = 2 Gs(u, |Du|2) |Du|2 − G(u, |Du|2) = Ψ(u, |Du|2) − F (u).

It is obvious that ifu ≡ const, then the same is true forP . The next proposition
motivates the introduction of the functionP and also the subsequent development
in this section.

Proposition 4.2. Letu be a non-constant entire solution to(1.2), withΦ satisfying
(1.5). If

u(x) = g(< a, x >),

for someg ∈ C2(R) anda ∈ R
n with |a| = 1, and if when (H 1) holds withε = 0

one hasg′(t) �= 0 for everyt ∈ R, then theP -function relative to such au is
identically constant.
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Proof. We observe that

(4.22) ui = g′(< a, x >) ai, uij = g′′(< a, x >) ai aj .

By the assumption ong, we know thatDu(x) �= 0 for everyx ∈ R
n when (H

1) holds withε = 0. Therefore, using (4.22) and (4.15), the equation (4.14) now
becomes

{
2 Gss(g, (g′)2) (g′)2 + Gs(g, (g′)2)

}
g′′ + Gξs(g, (g′)2) (g′)2(4.23)

=
1
2
Gξ(g, (g′)2),

where we have omitted the argument< a, x > of g, g′, g′′. Letting t =< a, x >,
andσ = s in (4.23), we conclude thatg is a solution to (3.1) withΦ(ξ, σ) =
(1/2)G(ξ, σ2). By Lemma 3.1 we infer thatP (x;u) ≡ const. ��

Theorem 4.3. Assume(1.5), and letu be a bounded entire solution to(1.2)such
that

inf
Ω

|Du| > 0

in a bounded open setΩ ⊂ R
n. The following differential inequality holds inΩ

for the functionP in (4.21)

n∑
ij=1

Di (dij(u,Du) DjP ) +
n∑

i=1

Bi DiP ≥ |DP |2
2 Λ |Du|2 .

Here,

Bi =
Gs Gξs − Gξ (|Du|2 Gss + Gs)

Gs Λ
Diu,

where all the functions entering in the right-hand side of the latter equation are
evaluated in(u, |Du|2) .

Remark 4.4.We stress that although we assumed thatΦ is of classC3, in the
expression ofBi only second partial derivatives ofG appear. Third derivatives do
appear in the calculations needed in the proof on Theorem 4.3, but they eventually
cancel.

Proof. Differentiating (4.21) with respect toxi and using (4.19) gives

Pi = Ψξ ui + 2 Ψs uki uk − F ′ ui.(4.24)

= 2 Λ uki uk + [Ψξ − F ′] ui

The following expression will be useful

(4.25) < Du,DP > = 2 Λ uij ui uj + [Ψξ − F ′] |Du|2.
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In the sequel,aij will be a short notation foraij(u,Du). Similarly, we will
write dij , instead ofdij(u,Du). One has from (4.24)

(dij Pi)j = 2 (aij (uk)i)j uk + 2 aij uki ukj
(4.26)

+ dij uij (Ψξ − F ′) + dij,j ui (Ψξ − F ′) + dij ui (Ψξ − F ′)j .

Using (4.14), and differentiating (4.17) with respect toξ, we obtain

dij uij (Ψξ − F ′) =
1
Λ

(
1
2
Gξ − Gξs |Du|2

)
(4.27)

(Ψξ − F ′) = − 1
2Λ

(Ψξ − F ′)2 .

Inserting (4.5) and (4.27) in (4.26), we find

(dij Pi)j = 2 aij uki ukj − 1
2Λ

(Ψξ − F ′)2(4.28)

+ 2 (Φξξ − div Φξσ) |Du|2
+ dij,j ui (Ψξ − F ′) + dij ui (Ψξ − F ′)j .

We next estimate from below the term2aijukiukj . The equation (4.15) gives

(4.29) 2 aij uki ukj = 4 Gss uki ukj ui uj + 2 Gs uki uki.

Schwarz inequality implies

(4.30) uki uki ≥ uki ukj ui uj
|Du|2

Substituting (4.30) in (4.29), one finds

2 aij uki ukj ≥ 2 Λ
|Du|2 uki ukj ui uj .

We now employ (4.24) in the latter inequality, obtaining

2 aij uki ukj ≥ 2 Λ
|Du|2

Pk − (Ψξ − F ′) uk
2 Λ

Pk − (Ψξ − F ′) uk
2 Λ

(4.31)

=
|DP |2

2 Λ |Du|2 +
(Ψξ − F ′)2

2 Λ
− (Ψξ − F ′)

Λ |Du|2 < Du,DP > .

Substitution of (4.31) in (4.28) gives

(dij Pi)j +
(Ψξ − F ′)
Λ |Du|2 < Du,DP >(4.32)

≥ |DP |2
2 Λ |Du|2 + 2 (Φξξ − div Φξσ) |Du|2 + dij,j ui (Ψξ − F ′)

+ dij ui (Ψξ − F ′)j .
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The proof of the theorem will be completed if we show that for some vector

field
→
C

R
def
= 2 (Φξξ − div Φξσ) |Du|2 + dij,j ui (Ψξ − F ′)(4.33)

+ dij ui (Ψξ − F ′)j = <
→
C,DP > .

First, we have

dij ui (Ψξ − F ′)j = dij ui uj (Ψξξ − F ′′) + dij ui Ψξσk
ukj

=
(
2 |Du|2 Gξξs − Gξξ

) |Du|2 + dij ui Ψξσk
ukj .(4.34)

From

Ψξσk
=
(
4 |Du|2 Gξss + 2 Gξs

)
uk ,

and (4.15), we find

dij ui ukj Ψξσk
=
(
4 |Du|2 Gξss + 2 Gξs

)
uij ui uj .

Substituting the latter expression in (4.34), noting that

2 (Φξξ − div Φξσ) |Du|2 = Gξξ |Du|2 − 2 Gξs ∆u

− 2 Gξξs |Du|2 − 4 Gξss uij ui uj

and that (4.17) gives

Ψξ − F ′ = 2 s Gξs − Gξ,

we conclude

(4.35) R = 2Gξs

[|Du|2 ∆u − uij ui uj
]

+ dij,j ui (2 |Du|2 Gξs − Gξ).

The second main step in the proof of (4.33) is the computation of the term
dij,j ui. Since the latter is very long, and the details are rather tedious and uninfor-
mative, we only give the final outcome

(4.36) dij,j ui =
2 Gss

Λ

[|Du|2 ∆u − uij ui uj
]
.

Once the latter equation is substituted in (4.35) one has

(4.37) R = − 2
Λ

(Gξ Gss + Gs Gξs)
(|Du|2 ∆u − uij ui uj

)
.

At this point we use the equation (4.14) to obtain

|Du|2 ∆u − uij ui uj =
1
2Gξ −Gξs|Du|2

Gs
|Du|2 − Λuij ui uj

Gs
.
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Finally, (4.25) gives

Λuij ui uj =
1
2
< Du,DP > −

(
Gξs|Du|2 − 1

2
Gξ

)
|Du|2,

and therefore we find

(4.38) |Du|2 ∆u − uij ui uj = − 1
2Gs

< Du,DP > .

Using the latter equation in (4.37) we conclude

(4.39) R =
Gξ Gss + Gs Gξs

GsΛ
< Du,DP >,

which establishes (4.33) and completes the proof . Finally, the specific form of the

vector field
→
B = (B1, ..., Bn) in the statement of the theorem follows from (4.39)

and from (4.32). ��
Remark 4.5.The reader should notice the appearance of the geometric quantity

(4.40) |Du|2 ∆u − uij ui uj
in the expressions (4.35), (4.36), (4.37), and in the directional derivative (4.38) of
P with respect toDu. We will return to this observation in the proof of Proposition
4.11.

Remark 4.6.In [PP] Payne and Philippin considered quasi-linear equations

div A(u, |Du|2) = B(u, |Du|2),
which are not necessarily the Euler-Lagrange equation of an elliptic integrand, and
derived maximum principles for some appropriateP -functions. Due to the greater
generality, however, the relevantP and theconditionsunderwhich the latter satisfies
anelliptic differential inequality are rather implicitly given.Ourpresentation (which
is inspired to an idea introduced in [GL], see also [CGS] and [GS]) is somewhat
different from that in [PP].

Theorem 4.7. Assuming(1.5), letu be a bounded entire solution to(1.2)such that

inf
Ω

|Du| > 0,

in a certain connected, bounded open setΩ ⊂ R
n. If there existsxo ∈ Ω such that

P (xo;u) = sup
x∈Ω

P (x;u),

thenP ≡ P (xo;u) in Ω.

Proof. It is a direct consequence of Theorem 4.3 and of the maximum principle for
quasi-linear uniformly elliptic equations, see [GT]. ��
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Thenext thoremprovidesanapriori pointwiseestimateof thegradient of aweak
solution to (1.2). It generalizes the results of L. Modica [M2], and of Caffarelli,
Segala and one of us [CGS],mentioned in the introduction. Since its proof is similar
to that of Theorem 1. in [CGS], we omit it, referring the reader to that source.

Theorem 4.8. Let u be a bounded entire solution to(1.2), with Φ given by(1.5).
WithΨ as in(4.17), under the hypothesis thatG(ξ, 0) ≥ 0 for everyξ ∈ R one has

Ψ(u(x), |Du(x)|2) ≤ G(u(x), 0), x ∈ R
n.

The following result is an immediate consequence of Theorem 4.8.

Corollary 4.9. Letu be a bounded entire solution to(1.2), withΦ as in(1.5). If

Gu = min

{
G(ξ, 0) | inf

Rn
u ≤ ξ ≤ sup

Rn

u

}
,

then

(4.41) 2 |Du|2 Gs(u, |Du|2) ≤ G(u, |Du|2) − Gu.

Proof. It is enough to observe that if we letΘ(ξ, σ) = (1/2)[G(ξ, |σ|2) − Gu],
thenΘσ = Φσ, andΘξ = Φξ, thereforeu is also a solution to

div Θσ(u,Du) = Θξ(u,Du).

Moreover,Θ(ξ, σ) satisfies the same structural assumptions, (H 1) or (H 2), of
the functionΦ(ξ, σ). SinceΘ(ξ, 0) = (1/2)[G(ξ, 0) − Gu] ≥ 0, the conclusion
follows from Theorem 4.8. ��

The next theorem of Liouville type can be easily derived fromTheorem 4.8. For
its proof we refer the reader to that of Theorem 1.8 in [CGS], see also the preceding
paper by Modica [M2]. In connection with Theorem 4.10, we cite the remarkable
recent paper [SZ], in which the authors establish results of Liouville type, different
from Theorem 4.10, for non-linear equations of the form (2.12).

Theorem 4.10. Suppose thatΦ is as in (1.5), and when (H 1) holds andp ≥ 2
assume that ifG(ξo, 0) = Gu, then

G(ξ, 0) − Gu = O(|ξ − ξo|p) as ξ → ξo.
Let u be a bounded entire solution to(1.2). If there existsxo ∈ R

n such that
G(u(xo), 0) = Gu, thenu ≡ const. in R

n.

The next result is dual to Proposition 4.2.

Proposition 4.11. Letu �≡ const. Under the hypothesis of Theorem 4.10, assume
thatP (u;x) ≡ 0, i.e.,

(4.42) 2 |Du|2 Gs(u, |Du|2) ≡ G(u, |Du|2) − Gu, in R
n,

then the level sets ofu

Lu(t) = {x ∈ R
n | u(x) = t}

are embedded(n− 1)-dimensional manifolds of zero mean curvature.
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Proof. Weclaim that itmust beDu(x) �= 0 for everyx ∈ R
n. If in fact there existed

x1 ∈ R
n such thatDu(x1) = 0, then (4.42) would giveG(u(x1), 0) = Gu. But

then, Theorem 4.10 would implyu ≡ u(x1), against the assumptionu �≡ const.
Let nowt ∈ [A,B],whereA = infRn u,B = supRn u, besuch thatLu(t) �= Ø.

The non-vanishing ofDu implies thatLu(t) is an embedded(n−1)−dimensional
orientable manifold. The mean curvatureH = H(x) at a pointx ∈ Lu(t) is given
by the formula

(4.43) ± (n− 1) H = div

(
Du

|Du|
)

=
1

|Du|3
[|Du|2 ∆u − uij ui uj

]
.

According to (4.38), the vanishing ofP implies that of the right-hand side of
(4.43). This concludes the proof. ��

Proposition 4.11 displays the close connection between the analytic properties
of theP -function and the geometric properties of the levels sets ofu. Typically,
the constancy ofP implies that the non-critical level sets ofu are isoparametric
surfaces. This aspect has already been exploited in the past in several contexts, see
[Ka] for a survey. For instance, in the exteriorp-capacitary problem, a fine analysis
of the asymptotic properties of the relevantP -function in [GS], led to establish
the spherical symmetry of the capacitary potential and of thefree boundary. One
of the important ingredients there was A.D. Alexandrov’s characterization of the
spheres as the only smooth, compact embedded surfaces inR

n having constant
mean curvature. In the conjecture of De Giorgi the role of Alexandrov’s theorem
is played by the following Liouville type theorem for the minimal surface equation
established byBernstein (N = 2), Fleming (different proof, stillN = 2), DeGiorgi
(N = 3), Almgren (N = 4), Simons (N ≤ 7): Every entire solution of the minimal
surface equation inRN is an affine function provided thatN ≤ 7, see, e.g., [G],
[B] [Si2]. In the celebrated work [BDG] it was proved that the Bernstein property
fails if N ≥ 8. In fact, the authors showed that:If N ≥ 8 there exist complete
minimal graphs inRN+1 which are not hyper-planes.

The role of the dimension in the Bernstein problem suggests that a possible
attack to the conjecture ofDeGiorgi should ultimately rely on the theory ofminimal
surfaces. Here is the heuristic argument. Letu be a bounded entire solution to (1.9)
satisfying (1.10). If we consider a non-critical level setLu(t) of u, then by the
implicit function theorem there existsφt : R

n−1 → R such thatx = (x′, xn) ∈
Lu(t), if and only ifxn = φt(x′). If one could prove thatφt is an entire solution of
the minimal surface equation inRN , withN = n− 1, then the Bernstein property
would imply

φt(x′) = c1x1 + ... + cn−1xn−1 + β

if N = n − 1 ≤ 7, i.e.,n ≤ 8. Sinceu(x′, φt(x′)) = t, this would lead to the
conclusionDku = −ckDnu for k = 1, ..., n − 1, and thereforeu would have to
be of the type (1.4).

Despite its obvious appeal, such heuristic argument hides some serious obsta-
cles. Proposition 4.11 suggests that one should look at the relevantP -function, and
try to establish its constancy. However, our next result Theorem 4.12 evidentiates a



468 D. Danielli, N. Garofalo

discrepancy between the conjecture of De Giorgi and the corresponding properties
of theP−function. Irregardless of the dimension, if the latter becomes zero at one
single point, then it must be identically zero, and, furthermore,u must be one-
dimensional. The next result extends Theorem 5.1 in [CGS] to the more general
setting of this paper. Due to the fact that the energy functionΦ also depends onu,
its proof does not follow straightforwardly from the former.

Theorem 4.12. Assuming thatΦ satisfy the hypothesis of Theorem 4.10, consider
a bounded entire solutionu of (1.2). If for onexo ∈ R

n equality holds in(4.41),
then we must haveP (·;u) ≡ 0, and, furthermore,u must be of the type(1.4).

Proof. We begin by considering the set

A = {x ∈ R
n | P (x;u) = 0},

which, thanks to the continuity ofP is closed, and non-empty, sincexo ∈ A.
We claim thatA is also open, and thereforeA = R

n. To see this letx1 ∈ A. If
Du(x1) = 0, then we must haveG(u(x1), 0) = Gu, and Theorem 4.10 implies
u ≡ u(x1). In particular,Du ≡ 0 and thereforeP (x;u) ≡ 0 in R

n. If, instead,
Du(x1) �= 0, then by continuityinfB(x1,R) |Du| > 0 for someR > 0. On the
other hand, Theorem 4.8 guarantees thatP ≤ 0, whereas by the definition ofA
we haveP (x1;u) = 0. Theorem 4.7 then shows thatP (x;u) ≡ 0 in B(x1, R). In
conclusion, we have proved thatA is open, and thusA = R

n. This gives

2 |Du|2 Gs(u, |Du|2) ≡ G(u, |Du|2) − Gu, in R
n.

Using (4.17), we re-write the latter identity as follows

(4.44) Ψ(u, |Du|2) ≡ G(u, 0) − Gu = F (u) − Gu in R
n,

where, as in the proof of Theorem 4.3, we have letG(u, 0) = F (u). If we assume
u �≡ const (whenu ≡ const there is nothing to prove), the proof of Proposition
4.11 implies that we must haveDu(x) �= 0 for everyx ∈ R

n, and therefore by the
regularity theoryu ∈ C2,α

loc (Rn). Denoting byH(ξ, ·) = Ψ(ξ, ·)−1 the inverse of
Ψ(ξ, ·) (see the discussion following (4.17)), we obtain from (4.44)

(4.45) |Du|2 ≡ H(u, F (u) − Gu)
def
= h(u) in R

n.

We now considerf : R × (0,∞) → R × (0,∞) defined byf(ξ, s) =
(ξ, Ψ(ξ, s)). Thanks to the properties ofΨ , the functionf is invertible, with
f−1(η, t) = (η,H(η, t)). The regularity hypothesis onΦ imply thatΨ ∈ C2(R ×
(0,∞)) (we stress that the non-vanishing ofDu allows to restrict the attention to
the “good” regions = |Du|2 > 0). Since

det Jacf (ξ, s) = det
(

1 0
Ψξ(ξ, s) Ψs(ξ, s)

)
= Ψs(ξ, s) > 0,

we conclude thatf andf−1 areC2 diffeomorphisms. This implies, in particular,
thath(ξ) = H(ξ, F (ξ) −Gu) is inC2(R). The inverse function theorem gives

Jacf−1(ξ, t) =
(

1 0
Hξ(ξ, t) Ht(ξ, t)

)
,



Properties of entire solutions 469

with

(4.46) Hξ(ξ, Ψ(ξ, s)) = − Ψξ(ξ, s)
Ψ(ξ, s)

, Ht(ξ, Ψ(ξ, s)) = − 1
Ψ(ξ, s)

.

Using the above considerations, and (4.44), (4.46), we conclude

h′(u) = Hξ(u, F (u) −Gu) + Ht(u, F (u) −Gu)(4.47)

= Hξ(u, Ψ(u, |Du|2)) + Ht(u, Ψ(u, |Du|2))

=
F ′(u) − Ψξ(u, |Du|2)

Ψs(u, |Du|2) .

We now setv = Y(u), whereY is to be determined. One has

(4.48) |Dv|2 = Y ′(u)2 |Du|2, ∆v = Y ′′(u) |Du|2 + Y ′(u)∆u.

The first equation in (4.48), along with (4.45), suggests that we chooseY in
such a way that

(4.49) |Dv|2 = Y ′(u)2 h(u) ≡ 1.

This is clearly possible if we takeY ∈ C2(R) as follows

Y(ξ) =
∫ ξ

uo

1√
h(τ)

dτ =
∫ ξ

uo

1√
H(τ, F (τ) −Gu)

dτ,

whereuo is a number arbitrarily fixed in the range ofu. We note explicitly that, in
view of (4.45), the functionh is strictly positive. Differentiating the second equality
in (4.49), we also find

(4.50) Y ′′(u) h(u) +
1
2

Y ′(u) h′(u) ≡ 0.

At this point we notice that the factP (·;u) ≡ 0, and (4.38), imply

∆u ≡ uijuiuj
|Du|2 .

This identity, and (4.25), give

∆u ≡ 1
2
F ′(u) − Ψξ(u, |Du|2)

Ψs(u, |Du|2) .

Thanks to the latter equation, to (4.45), and to (4.47), we finally obtain for the
second equation in (4.48)

∆v = Y ′′(u) h(u) +
1
2

Y ′(u) h′(u) ≡ 0 in R
n,
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where in the last equality we have used (4.50). In view of Liouville theorem, the
harmonicity andv, and (4.45), allow to conclude that

v(x) = < a, x > + β,

for somea ∈ R
n, with |a| = 1, andβ ∈ R. The invertibility ofY implies that

u(x) = Y−1(v(x)) = Y−1(< a, x > + β),

thusu is of the type (1.4), withg(s) = Y−1(s+ β). This completes the proof.��

5 Energy monotonicity

In this section we establish an important monotonicity property of the energy of
a bounded entire solution to (1.2). It should be emphasized that the derivation of
such property relies on a deep a priori quantitative information, namely the non-
negativity of the relativeP -function expressed by Theorem 4.8 and Corollary 4.9.
We denote byΦu the number

(5.1) Φu = min
{
Φ(ξ, 0) | inf

Rn
u ≤ ξ ≤ sup

Rn

u

}
.

For everyr > 0we consider the energy ofu in the ballBr = {x ∈ R
n | |x| <

r}

(5.2) E(r) =
∫
Br

[Φ(u,Du) − Φu] dx.

Theorem 5.1. Let u be a bounded entire solution to(1.2) in R
n, n ≥ 2, with Φ

having the form(1.5). The functionI(r) = r1−nE(r) is increasing on(0,∞). In
particular, one has∫

Br

[Φ(u,Du) − Φu] dx ≥ E(1) rn−1 for every r ≥ 1.

Proof. Keeping in mind (1.5), we see that up to an irrelevant multiplicative factor
of 2

I ′(r) = − n− 1
rn

∫
Br

[
G(u, |Du|2) − Gu

]
dx

+
1
rn−1

∫
∂Br

[
G(u, |Du|2) − Gu

]
dσ,(5.3)

whereGu is the number introduced inCorollary 4.9. The computation of the bound-
ary integral in the right-hand side of (5.3) is obtained by an appropriate version of
Rellich identity. In the case in which (H 1) holds withε = 0, the latter should be
supplemented by an approximation argument based on the elliptic regularization
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of (1.2) and on the boundaryC1,α regularity in [L]. We leave it to the reader to
provide the by now classical details. We only give the final product

1
rn−1

∫
∂Br

[
G(u, |Du|2) − Gu

]
dσ =

n

rn

∫
Br

[
G(u, |Du|2) − Gu

]
dx

(5.4)

− 2
rn

∫
Br

Gs(u, |Du2|) dx − 2
rn−1

∫
∂Br

(
∂u

∂η

)2

Gs(u, |Du2|) dσ.

Inserting (5.4) into (5.3), we conclude

I ′(r) =
∫
∂Br

(
∂u

∂η

)2

Gs(u, |Du2|) dσ

+
1
rn

∫
Br

[
G(u, |Du|2) − Gu − 2 |Du|2 Gs(u, |Du2|)

]
dx

The boundary integral in the right-hand side of the above equality is non-
negative. Invoking Corollary 4.9 we infer that also the second integral is non-
negative, thus reaching the conclusionI ′(r) ≥ 0. This completes the proof of the
theorem. ��
Remark 5.2.For the non-linear Poisson equation∆u = F ′(u), L.Modica obtained
the monotonicity of the energy in [M3] as a consequence of (1.6). Such result
was subsequently extended in [CGS] to quasi-linear equations having the special
structure (1.7).

We have seen in Lemma 3.3 that bounded entire solution of the ordinary dif-
ferential equation (3.1) always have finite energy. This is not the case whenn ≥ 2.
For instance, the two-parameter family of entire solutions (1.11) for the Ginzburg-
Landaumodel (1.9) clearly have infinite energy inR

n withn ≥ 2. Indeed, Theorem
5.1 implies that the only situation in which the energy is finite is the trivial one.

Theorem 5.3. Assume(1.5), and letu be a bounded entire solution to(1.2) in R
n,

with n ≥ 2. If

E(u)
def
=
∫

Rn

[Φ(u,Du) − Φu] dx < ∞,

thenu ≡ const.
Proof. Consider thenormalizedenergyI(r) introducedabove.Sincelimr→0+ I(r)
= 0, Theorem 5.1 guarantees thatI(r) ≥ 0 for r ≥ 0. Suppose thatE(u) < ∞,
then

0 ≤ 1
rn−1

∫
Br

[Φ(u,Du) − Φu] dx <
E(u)
rn−1 → 0,

asr → ∞. The monotonicity ofI(r) forces the conclusion∫
Br

[Φ(u,Du) − Φu] dx ≡ 0.
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We now observe that

Φ(u,Du) − Φu = [Φ(u,Du) − Φ(u, 0)] + [Φ(u, 0) − Φu]
≥ Φ(u,Du) − Φ(u, 0)

and the latter difference is≥ 0, thanks to (2.2), or to (2.6).Hence,Φ(u,Du) −Φu ≡
0 in R

n. In view of Corollary 4.9 we reach the conclusionDu ≡ 0, which gives
u ≡ const. ��

6 Optimal energy growth

In this sectionwe show that under certain conditions the inequality in the conclusion
of Theorem 5.1 can be reversed. The result includes equations of the general type
(1.2), and there is no need to assume the more restricted structure (1.5). Its proof is
based on an adaptation of a simple, yet ingenious idea due to Ambrosio and Cabré
in the case of Laplace equation [AC]. We begin with an elementary lemma which
plays an important role in the sequel.

Lemma 6.1. For everyξ ∈ R andσ ∈ R
n consider the function

Ψ(ξ, σ) = < σ,Φσ(ξ, σ) > − [Φ(ξ, σ) − Φ(ξ, 0)] ,

which, up to the multiplicative factor1/2, coincides with that introduced in(4.11).
One has

Ψ(ξ, σ) ≥ 0,

with equality holding only inσ = 0.

Proof. One hasΨ(ξ, 0) = 0 for everyξ ∈ R. To prove the lemma it is enough to
show that the origin is the only critical point ofΨ(ξ, ·) and that furthermore this
function is strictly increasing in every direction. This follows at once if we show
that

< σ, Ψσ(ξ, σ) > > 0, (ξ, σ) ∈ R × (Rn \ {0}).

The latter inequality is a consequence of the convexity of the functionΦ with
respect to the variableσ. We have in fact if (H 1) holds

(6.1) < σ, Ψσ(ξ, σ) > =
n∑
i,j

Φσiσj (ξ, σ) σi σj ≥ c1 (ε + |σ|)p−2 |σ|2 > 0,

where, in the second to the last inequality, (2.5) has been used. On the other hand,
when (H 2) is in force, we obtain from (2.10)

(6.2) < σ, Ψσ(ξ, σ) > = < Φσσ(ξ, σ)σ, σ >≥ c1 |σ|2
√

1 + |σ|2 > 0.

��



Properties of entire solutions 473

Theorem 6.2. Letubeaboundedentire solution to(1.2)satisfying(1.10). Suppose
in addition that

(6.3) lim
xn→∞ u(x

′, xn) = sup
Rn

u = B.

There exists a constantC > 0, depending onn, on ||u||∞, and on the structural
parameters in either (H 1) or (H 2), such that

E(r) =
∫
Br

[Φ(u,Du) − Φ(B, 0)] dx ≤ C rn−1, for every r > 0.

Proof. As in [AC], we define for everyx = (x′, xn) ∈ R
n, andλ ∈ R,

(6.4) uλ(x) = u(x′, xn + λ).

Similarly to the proof of Theorem 4.8, we exploit the translation invariance of
(1.2) to infer that for everyλ ∈ R the functionuλ is also a bounded entire solution
of (1.2) (satisfyinguλ ≤ B), i.e.,

(6.5) div Φσ(uλ, Duλ) = Φξ(uλ, Duλ).

As in (4.1) we have

(6.6) ||Duλ||∞ ≤ M for every λ ∈ R.

Thanks to (1.10), (6.3), we have presently

(6.7) lim
λ→+∞

uλ(x) = B,
∂uλ

∂λ
(x) > 0, x ∈ R

n.

Consider now for a fixed ballBr the energy ofuλ in Br

(6.8) E(r;uλ) =
∫
Br

[
Φ(uλ, Duλ) − Φ(B, 0)

]
dx.

If we are under the hypothesis (H 1), then using the fact thatuλ satisfies (6.5)
one finds

d

dλ
E(r;uλ) =

∫
Br

Φξ(uλ, Duλ)
∂uλ

∂λ
dx

+
∫
Br

< Φσ(uλ, Duλ), D
(
∂uλ

∂λ

)
> dx

=
∫
∂Br

< Φσ(uλ, Duλ), η >
∂uλ

∂λ
dσ

≥ − c2 (ε+M)p−1
∫
∂Br

∂uλ

∂λ
dσ,
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where in the last inequality we have used the second equation in (6.7) and the
structural assumption (2.3). We conclude for everyr, λ > 0

E(r;uλ) − E(r;u)

=
∫ λ

0

d

dµ
E(r;uµ) dµ ≥ − c2 (ε+M)p−1

∫
∂Br

∫ λ

0

∂uµ

∂µ
dµ dσ

= C

∫
∂Br

[u − uλ] dσ ,

and therefore

E(r;u) ≤ 2σn−1||u||∞Crn−1 + E(r;uλ) = C ′ rn−1 + E(r;uλ).(6.9)

If instead (H 2) holds, then we use (2.7) to obtain

d

dλ
E(r;uλ) ≥ − c2

∫
∂Br

∂uλ

∂λ
dσ,

which again gives the estimate (6.9), but with a different constant. It is at this point
that the assumption (6.3), or equivalently the first equation in (6.7), is used to prove
that

(6.10) lim
λ→∞

E(r;uλ) = 0.

To see this wemultiply (6.5) (withu replaced byuλ) by (uλ−B) and integrate
by parts onBr to obtain∫

Br

< Φσ(uλ, Duλ), Duλ > dx

=
∫
∂Br

(uλ −B) < Φσ(uλ, Duλ), η > dσ −
∫
Br

Φξ(uλ, Duλ)(uλ −B) dx.

Passing to the limit asλ→ +∞, using the uniform boundedness ofuλ and of
Duλ, as well as the continuity ofΦσ andΦξ, we obtain by dominated convergence

(6.11) lim
λ→+∞

∫
Br

< Φσ(uλ, Duλ), Duλ > dx = 0.

We now invoke Lemma 6.1, and the left-hand side of (2.2) in case (H 1), or
(2.6) when (H 2) holds, to conclude from (6.11)

lim
λ→+∞

∫
Br

[
Φ(uλ, Duλ) − Φ(uλ, 0)

]
dx = 0.

Since by dominated convergence

lim
λ→+∞

∫
Br

[
Φ(uλ, 0) − Φ(B, 0)

]
dx = 0,

we obtain (6.10). With this result in hands we finally have from (6.9)

(6.12) E(r) = E(r;u) ≤ C rn−1.

��
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7 A generalized version of a conjecture of De Giorgi inR2

In this section we prove that in the plane the conjecture of De Giorgi admits an
affirmative answer for the general class of variational equations (1.2), without any
restriction on the integrandΦ(u,Du).

Theorem 7.1. Letu be a bounded entire solution to(1.2) in R
2, and suppose that

(7.1)
∂u

∂x2
(x1, x2) > 0.

There exists a functiong ∈ C2(R) such thatu(x) = g(a1x1 + a2x2) for some
a = (a1, a2) with a21 + a22 = 1.

Proof. Let us assume for themoment that the dimensionn is arbitrary and consider
a bounded entire solution to (1.2) satisfying (1.10). SinceDu(x) �= 0 for every
x ∈ R

n, by the regularity theory we know thatu ∈ C2,α
loc (Rn). We consider for a

fixedk = 1, ..., n− 1, the function

ζ =
Dku

Dnu

and notice that letting
√
ω = Dnu one has

(7.2) ω Dζ = Dnu D(Dku) − Dku D(Dnu).

We observe that, thanks to (4.1), we have

(7.3) ω ζ2 = (Dku)2 ≤ M.

To simplify the notation we let henceforth

(7.4) B(x)
def
= Φσσ(u(x), Du(x)),

and note that this matrix is symmetric and, thanks to (2.5) or (2.9), positive definite.
We re-write equation (4.5) as follows

(7.5) div (B(x) D(uk)) = [Φξξ − div Φξσ] uk, k = 1, ..., n.

It is then easy to recognize from (7.2) and (7.5) that

(7.6) div (ω B(x) Dζ) = 0.

Having observed (7.6), the proof follows by a variation on the theme of the
classical Caccioppoli inequality, noted in [BCN]. Letα ∈ C∞

o (Rn), such that
0 ≤ α ≤ 1, supp α ⊂ {|x| ≤ 2}, andα ≡ 1 on|x| ≤ 1. LettingαR(x) = α(x/R),
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we choose the test functionφ = α2
Rζ in the weak form of (7.6) obtaining in a

standard fashion ∫
Rn

α2
R ω < B(x) Dζ,Dζ > dx ≤(7.7)

2
(∫

Rn

α2
Rω < B(x) Dζ,Dζ > dx

)1/2

×
(∫

Rn

ωζ2 < B(x) DαR, DαR > dx
)1/2

.

Suppose now that there existC > 0, independent ofR > 0, such that

(7.8)
∫

Rn

ω ζ2 < B(x) DαR, DαR > dx ≤ C.

This would imply for everyR > 0∫
Rn

α2
R ω < B(x) Dζ,Dζ > dx ≤ 4 C,

hence, by monotone convergence,∫
Rn

ω < B(x) Dζ,Dζ > dx < ∞.

Using this information and noting that the first integral in the right-hand side
of (7.7) is actually performed on the set{R ≤ |x| ≤ 2R}, we would finally obtain
lettingR→ ∞ in (7.7)∫

Rn

ω < B(x) Dζ,Dζ > dx = 0.

The strict positivity ofω and the local ellipticity of the matrixB(x) (remember
(4.3)) finally giveDζ ≡ 0, which is like saying thatDku = ckDnu, for some
constantck. Repeating the same argument for everyk = 1, ..., n − 1 we would
conclude that

u(x) = g(c1x1 + c2x2 + ...+ cn−1xn−1 + xn)

for some functiong ∈ C2(R). To complete the proof of the theorem we are thus
left with establishing (7.8). Whenn = 2 the latter inequality is a consequence of
the structural assumptions, of the boundedness ofDu, and of the crucial fact that
|BR| = cR2. If (H 1) holds one has in fact from (2.5) and (7.3)∫

Rn

ωζ2 < B(x) DαR, DαR > dx(7.9)

≤ c′2

∫
B2R

|Du|2(ε+ |Du|)p−2|DαR|2dx

≤ C

R2

∫
B2R

(ε+ |Du|)pdx ≤ C(ε+M)p.
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In the case (H 2) we proceed slightly differently. Observing that the vector

(DαR, < Du,DαR >) ∈ R
n+1

is orthogonal to the vector(−Du, 1), and that

|(DαR, < Du,DαR >)|2 ≤ (
1 + |Du|2) |DαR|2,

we obtain from (2.9)∫
Rn

ωζ2 < B(x) DαR, DαR > dx(7.10)

≤ c2

∫
B2R

|Du|2
√

1 + |Du|2 |DαR|2 dx

≤ C

R2

∫
B2R

dx ≤ C.

��
Remark 7.2.The idea of studying the function (7.2) in connection with the conjec-
ture of De Giorgi was first introduced in [MM] (see also [BCN], [GG] and [AC]),
except that in [MM] the approach was different from the one outlined above based
on an idea of Caffarelli, Berestycki and Nirenberg [BCN]. It is clear that the above
simple proof of the conjecture is possible thanks to the special role played by the
volume of the ball inR2, namely|BR| ≤ cR2. In dimension higher than two the
stronger growth of the volume of the balls at infinity poses a serious obstruction.

Remark 7.3.Itwouldbeof interest toextendTheorem7.1 togeneralizedvariational
equations. By this we mean equations of the type

(7.11) div A(u,Du) = B(u,Du)

with regularity and structural assumptions onA andB similar to those made above
for the equation (1.2), but no other hypothesis otherwise, i.e., without assuming that
A(ξ, σ) = Φσ(ξ, σ) andB(ξ, σ) = Φξ(ξ, σ), for some functionΦ(ξ, σ). However,
if one allows dependence onDu in the right-hand side of (7.11), then a difficulty
arises in the above arguments.

We close this section by noting an interesting corollary of Theorem 7.1 and of
the results in Sect. 2.

Theorem 7.4. Let u be a bounded entire solution to(1.2) in R
2 satisfying(7.1),

and letΦu be as in(5.1). There exists a constantC > 0, depending on||u||∞ and
on the structural parameters in either (H 1) or (H 2), such that for everyr > 1∫

Br

[Φ(u,Du) − Φu] dx ≤ C r.

We do not give the details of the proof of Theorem 7.4 since it follows directly
from Theorem 7.1 and from the finiteness of the energy established in Lemma 3.3.
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8 A weaker form of the generalized conjecture of De Giorgi inR3

The aim of this section is to provide, similarly to Theorem 7.1, a general positive
answer inR3 to the problem proposed by De Giorgi, but when an additional as-
sumption is introduced. Namely, that the entire solutionu tends to its extremum
values along its direction of monotonicity. It is worth noting that, interestingly,
similarly to the case of two variables, the invariance of the energy (1.5) under the
action ofO(3) is not needed.

Theorem 8.1. Letu be a bounded entire solution to(1.2) in R
3 satisfying(1.10).

Suppose that

(8.1)

lim
x3→−∞ u(x

′, x3) = inf
R3
u

def
= A, lim

x3→∞ u(x
′, x3) = sup

R3
u

def
= B.

If one has

(8.2) Φ(ξ, 0) ≥ min{Φ(A, 0), Φ(B, 0)}, for every ξ ∈ (A,B),

thenu is of the type(1.4).

Proof. We assume without loss of generality thatmin {Φ(A, 0), Φ(B, 0)} =
Φ(B, 0). Theorem 6.2 gives (nown = 3)

E(r) =
∫
Br

[Φ(u,Du) − Φ(B, 0)] dx ≤ C r2, for every r > 0.

The latter inequality, together with the assumption (8.2), implies

(8.3)
∫
Br

[Φ(u,Du) − Φ(u, 0)] dx ≤ C r2, for every r > 0.

This is precisely what is needed to implement the argument in the proof of
Theorem 7.1. In fact, one only needs to prove the existence ofC > 0 independent
of R such that

(8.4)
∫

Rn

ω ζ2 < B(x)DαR, DαR > dx ≤ C,

whereB(x) is the matrix-valued function defined in (7.4). Returning to (7.9) we
now find, when (H 1) holds,∫

Rn

ω ζ2 < B(x)DαR, DαR > dx

≤ c2

∫
B2R

|Du|2(ε+ |Du|)p−2|DαR|2dx

≤ C

R2

∫
B2R

|Du|2 (ε+ |Du|)p−2dx

≤ C

R2

∫
B2R

[Φ(u,Du) − Φ(u, 0)] dx ≤ C,
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where in the second to the last inequality we have used (2.2), and in the last the
crucial estimate (8.3) has been employed. This establishes (8.4) and completes the
proof of the theorem in this case. If, instead, (H 2) is in force, then proceeding as in
(7.10), and using (2.6) and (8.3) (recall that we are assuming that bounded entire
solutions have bounded gradient) we obtain

∫
Rn

ωζ2 < B(x) DαR, DαR > dx(8.5)

≤ c2

∫
B2R

|Du|2
√

1 + |Du|2 |DαR|2 dx

≤ C

R2

∫
B2R

[Φ(u,Du) − Φ(u, 0)] dx ≤ C.

This finishes the proof. ��

Remark 8.2.Theorem 8.1 generalizes an analogous result in [AC] concerning the
equation∆u = F ′(u).

9 Lowering the dimension

In the sequel we consider an energy functionΦ = Φ(ξ, σ)s satisfying the structural
hypothesis (H1) or (H2).GivensuchaΦwe introduce the functionΦ : R×R

n−1 →
R defined by

Φ(ξ, σ′) = Φ(ξ, σ1, ..., σn−1) = Φ(ξ, σ1, ..., σn−1, 0).

It is not difficult to check that the functionΦ verifies the same assumptions of
Φ, (H 1) or (H 2), but inR × R

n−1. We have the following basic lemma.

Lemma 9.1. Let u be a bounded entire solution to(1.2) satisfying(1.10). The
function

(9.1) u(x′)
def
= lim

xn→+∞ u(x
′, xn),

is a bounded entire solution inRn−1 of the equation

(9.2) divx′Φσ′(u,Dx′u) = Φξ(u,Dx′u),

i.e., one has for everyη ∈ C∞
o (Rn−1)

(9.3)
∫

Rn−1
< Φσ′(u,Dx′u), Dx′η > dx′ +

∫
Rn−1

Φξ(u,Dx′u) η dx′ = 0.

A similar statement holds for the functionu(x′)
def
= limxn→−∞ u(x′, xn).
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Proof. Weonly give theproof foru. Consider theone-parameter family of functions
uλ defined in (6.4). Thanks to (1.10) we have

(9.4) uλ(x) < uµ(x) if λ < µ, for every x ∈ R
n.

For every compact setK ⊂ R
n the Theorem of Dini and (9.4) guarantee that

(9.5) uλ(x) ↗ u(x′) as λ→ ∞

uniformly in x ∈ K (we think ofu as a function ofn variables, independent of
xn). The Ḧolder estimates of the gradient, see (4.2) and the discussion following
Theorem4.1, imply theexistenceofC,α > 0, dependingonn, ||u||∞, thestructural
constants in (H 1) or (H 2), and onK, such that

|Duλ(x) − Duλ(y)| ≤ C |x− y|α, for every x, y ∈ K,λ ∈ R.

We infer the existence of a sub-sequence{uλj }j∈N which converges uniformly
onK inC1 norm tou. Considering the sequence of compact setsKm = {x ∈ R

n |
|x| ≤ m} ↗ R

n, by a diagonal process it is possible to extract a sub-sequence
{um}m∈N of {uλ}λ∈R, which converges inC1 norm on compact subsets ofR

n. In
the sequel, abusing the notation for the sake of brevity, when we write

(9.6) uλ → u, Duλ → Dx′u, as λ→ ∞,

we really mean that the convergence is for the sub-sequence{um}m∈N of {uλ}λ∈R

constructed as above. This being said, one can easily see that (9.4) and (9.6) imply
the following

(9.7) u(x′, xn) → u(x′), Du(x′, xn) → Dx′u(x′) as xn → ∞,

uniformly on compact subsets ofRn−1 (again, (9.7) must be interpreted as tak-
ing place on an appropriate sub-sequence). Using this information we can show
thatu satisfies (9.3). Given in fact a functionη ∈ C∞

o (Rn−1) one takesφ(x) =
α−1
λ η(x

′)ζλ(xn) in (2.14),whereζλ ∈ C∞
o (R),0 ≤ ζλ ≤ 1,supp ζλ ⊂ [λ, 2λ+2],

ζλ ≡ 1 on [λ+ 1, 2λ+ 1], |ζ ′λ| ≤ 2, andαλ =
∫

R
ζλdxn. The resulting equation is

0 =
∫

R

ζλ(xn)
αλ

∫
Rn−1

< Φσ′(u(x′, xn), Du(x′, xn)), Dx′η(x′) > dx′ dxn

+
1
αλ

∫
R

ζ ′λ(xn)
∫

Rn−1
Φσn(u(x′, xn), Du(x′, xn)) η(x′) dx′ dxn

+
∫

R

ζλ(xn)
αλ

∫
Rn−1

Φξ(u(x′, xn), Du(x′, xn)) η(x′) dx′ dxn

= I(λ) + II(λ) + III(λ).
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To estimate the first term we proceed as follows

I(λ) =∫
R

ζλ(xn)
αλ

∫
Rn−1

< Φσ′(u(x′, xn), Du(x′, xn))

− Φσ′(u(x′), Dx′u(x′)), Dx′η(x′) > dx′ dxn

+
∫

R

ζλ(xn)
αλ

∫
Rn−1

< Φσ′(u(x′), Dx′u(x′)), Dx′η(x′) > dx′ dxn

= I ′(λ) + I ′′(λ).

Clearly,

I ′′(λ) ≡
∫

Rn−1
< Φσ′(u(x′), Dx′u(x′)), Dx′η(x′) > dx′.

If we denoteK = supp η ⊂ R
n−1, then

|I ′(λ)| ≤ sup
λ≤xn≤2λ+2

∫
K

|Φσ′(u(x′, xn), Du(x′, xn))

− Φσ′(u(x′), Dx′u(x′))| |Dx′η(x′)| dx′

and the right-hand side tends to zero asλ→ ∞ in view of (9.7).
To evaluateII(λ) we proceed as forI(λ), but use the fact that, due to the

support properties ofζ ′λ, the integral inxn is actually performed on the set[λ, λ+
1] ∪ [2λ + 1, 2λ + 2], andα−1

λ ≤ λ−1 → 0 asλ → ∞. Lettingλ → ∞ in the
resulting equation one hasII(λ) → 0. Finally, proceeding similarly toI(λ), one
obtains

III(λ) →
∫

Rn−1
Φξ(u(x′), Dx′u(x′)) η(x′) dx′.

This completes the proof of (9.3). ��
Remark 9.2.The idea of dimensional reduction via the stability properties of the
functionsu, u was introduced in [BCN].

Remark 9.3.To proceed in the analysis we will need to know that the Hessian
matrixΦσσ has continuous entries. Henceforth in this section we thus assume that
Φ ∈ C3(R × R

n). As already mentioned in Remark 2.1 such hypothesis is natural
whenε > 0 in (H 1), or for (H 2). It is also consistent with some important situations
in which there is degeneracy in the gradient, such as (2.12) withp > 2. The model
(2.12) with1 < p < 2 is however excluded.

In the sequel we continue to denote byu a bounded entire solution to (1.2)
satisfying (1.10). Letζ ∈ C∞

o (Rn) and setK = supp ζ. If Ω ⊂ R
n is a bounded

open set such thatK ⊂ Ω, then (4.3) holds inΩ. Therefore, there existsβ ∈ (0, 1)
which depends onn, ||u||L∞(Rn), Ω, the bound in (4.3), and on the structural
constants in (H 1) or (H 2), such thatu ∈ C2,β(Ω). The functionv = Dnu is
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a positive solution to (4.4). We will indicate withB = B(x) the matrix-valued
function defined in (7.4). For what follows it will be convenient to introduce the
quantities

b(x)
def
= Φξσ(u(x), Du(x)),

V (x)
def
= Φξξ(u(x), Du(x)).

Letting

φ =
ζ2

v

in (4.4), one obtains

∫
Rn

< B(x) Dv,Dv >
v2

ζ2 dx =

2
∫

Rn

< B(x) Dv,Dζ >
v

ζ dx + 2
∫

Rn

ζ < b,Dζ > dx +
∫

Rn

V ζ2 dx.

Schwarz inequality gives

(9.8) 0 ≤
∫

Rn

< B(x)Dζ,Dζ > dx+2
∫

Rn

ζ < b,Dζ > dx+
∫

Rn

V ζ2 dx.

Thiscrucial inequality constitutes thestartingpoint for the followingdimension-
reduction arguments. We introduce the new quantities

B(x′) =
(
Φσ′

iσ
′
j
(u(x′), Dx′u(x′))

)
i,j=1,...,n−1

,

b(x′) = Φξσ′(u(x′), Dx′u(x′)),

V (x′) = Φξξ(u(x′), Dx′u(x′)).

Lemma 9.4. For anyη ∈ C∞
o (Rn−1) one has

0 ≤
∫

Rn−1
< B(x′) Dη,Dη > dx′ + 2

∫
Rn−1

η < b,Dη > dx′

+
∫

Rn−1
V η2 dx′.(9.9)

Proof. Let η ∈ C∞
o (Rn−1). With ζλ ∈ C∞

o (R) as in the proof of Lemma 9.1 we
let βλ =

∫
R
ζ2λ(xn)dxn and consider the test function

ζ(x) =
η(x′)ζλ(xn)√

βλ



Properties of entire solutions 483

in (9.8). Our aim is to show that, passing to the limit asλ→ ∞ in (9.8), produces
(9.9). We write

∫
Rn

< B(x) Dζ,Dζ > dx =
n−1∑
i,j=1

∫
Rn

Φσiσj
(u,Du) Diζ Djζ dx

+ 2
n−1∑
j=1

∫
Rn

Φσnσj
(u,Du) Dnζ Djζ dx +

∫
Rn

Φσnσn
(u,Du) (Dnζ)2 dx

= I(λ) + II(λ) + III(λ).

One has

I(λ) =∫
R

ζ(xn)2

βλ

∫
Rn−1

[
Φσiσj

(u(x′, xn), Du(x′, xn))

− Φσ′
iσ

′
j
(u(x′), Dx′u(x′))

]
Diη(x′)Djη(x′)dx′dxn

+
∫

R

ζ(xn)2

βλ

∫
Rn−1

Φσi′σj′ (u(x′), Dx′u(x′)) Diη(x′) Djη(x′) dx′ dxn

= I ′(λ) + I ′′(λ).

It is clear that

I ′′(λ) ≡
∫

Rn−1
Φσi′σj′ (u(x′), Dx′u(x′)) Diη(x′) Djη(x′) dx′.

In estimatingI ′(λ) we use the uniform convergence (9.7) on compact subsets
ofRn−1, the support property ofζλ, and the continuity ofΦσσ, to obtainI ′(λ) → 0
asλ→ ∞.

To estimateII(λ) andIII(λ)we proceed similarly to the proof of Lemma 9.1.
Using the support property ofζ ′λ and the observation thatβ

−1
λ ≤ λ−1, we conclude

thatII(λ), III(λ) → 0, asλ→ ∞. Summarizing, we have proved∫
Rn

< B(x) Dζ,Dζ > dx →
∫

Rn−1
< B(x′) Dη,Dη > dx′, λ→ ∞.

Byanalogous arguments one treats the remaining two integrals in the right-hand
side of (9.8) concluding that

2
∫

Rn

ζ < b,Dζ > dx +
∫

Rn

V ζ2 dx

→ 2
∫

Rn−1
η < b,Dη > dx′ +

∫
Rn−1

V η2 dx′,

asλ→ ∞. This completes the proof of the lemma. ��

Lemma 9.4 implies the following important result.
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Theorem 9.5. There existsψ ∈ C1(Rn−1), ψ > 0, such that

divx′
(
B(x′) Dx′ψ + ψ b(x′)

)
− < b(x′), ψ > − V (x′) ψ ≤ 0 in R

n−1.(9.10)

Proof. Consider the linear equation inRn−1

(9.11) divx′
(
B(x′) Dx′w + w b(x′)

) − < b(x′), w > − V (x′) w = 0.

On any bounded open setΩ ⊂ R
n−1 the Rayleigh quotient associated to (9.11)

is

R(η) =
1

||η||L2(Ω)

∫
Ω

[
< B(x′) Dη,Dη > + 2 η < b,Dη > + V η2

]
dx′.

The first Dirichlet eigenvalue is defined by

λΩ = inf
η∈W 1,2

o (Ω),η 	≡0
R(η).

Lemma 9.4 asserts thatλΩ ≥ 0. Furthermore, by Theorem 8.38 in [GT] the
first Dirichlet eigenfunctionψΩ is strictly positive inΩ. We follow the argument
in the proof of Theorem 1.7 in [BCN]. LetλR andψR respectively denote the first
eigenvalue and eigenfunction for the ballB′

R = {x′ ∈ R
n−1 | |x′| < R}, then one

has trivially0 ≤ λR∗ ≤ λR ≤ λ1 for everyR∗ > R > 1. NormalizeψR so that
ψR(0) = 1 for everyR ≥ 1. By the Harnack inequality Theorem 8.20 in [GT] we
infer the existence of constantsCR, εR > 0 such that for everyx′ ∈ B′

R/2

εR ≤ ψR∗(x′) ≤ CR R∗ ≥ R.

From elliptic theory we can thus find a sequenceRk → ∞, and a function
ψ > 0 in R

n−1, such thatψRk
→ ψ in C1,δ on every compact set. Furthermore,

since for eachR > 0 the corresponding eigenvalueλR is≥ 0, we conclude thatψ
solves the differential inequality (9.10). ��

Having obtained Theorem 9.5 we now prove the following.

Theorem 9.6. If n = 3, then either

(i) u ≡ B, a constant which satisfies

Φξξ(B, 0) ≥ 0,

or the functionu is one-dimensional, i.e.,
(ii) u(x′) = g(< c, x′ >) for someg ∈ C2(R) with g′ > 0 and somec ∈ R

2

such that|c| = 1.
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Proof. We proceed as in the proof of Theorem 7.1, letting this time fork = 1, 2

ω = ψ2, ζ =
Dku

ψ
.

In what follows we write for simplicityv = Dku, for fixedk = 1 or 2, then

(9.12) ω Dζ = ψ Dv − v Dψ.

Re-writing (9.10) in weak form one has for anyη ∈ C∞
o (Rn−1), η ≥ 0,

−
∫

Rn−1
< BDψ,Dη > dx′ ≤

∫
Rn−1

ψ < b,Dη > dx′(9.13)

+
∫

Rn−1
η < b,Dψ > dx′ +

∫
Rn−1

V ψη dx′.

On theotherhand, sinceu is aboundedsolutionof (9.2), its derivativesv = Dku
satisfy the linearized equation inRn−1, see (4.4),∫

Rn−1
< BDv,Dη > dx′ = −

∫
Rn−1

v < b,Dη > dx′(9.14)

−
∫

Rn−1
η < b,Dv > dx′ −

∫
Rn−1

V vη dx′

whereη ∈ C∞
o (Rn−1) is arbitrary.

We now claim that (9.12), (9.13) and (9.14) imply the following crucial differ-
ential inequality

(9.15)
∫

Rn−1
ω < BDζ,D(ηζ) > dx′ ≤ 0,

for η ∈ C∞
o (Rn−1), with η ≥ 0. To prove this claim we proceed as follows∫
Rn−1

ω < BDζ,D(ηζ) > dx′

=
∫

Rn−1
ψ < BDv,D(ηζ) > dx′ −

∫
Rn−1

v < BDψ,D(ηζ) > dx′

=
∫

Rn−1
< BDv,D(ηψζ) > dx′ −

∫
Rn−1

< BDψ,D(ηvζ) > dx′

≤ −
∫

Rn−1
v < b,D(ηψζ) > dx′ −

∫
Rn−1

< b,Dv > ηψζ dx′

+
∫

Rn−1
ψ < b,D(ηvζ) > dx′ +

∫
Rn−1

< b,Dψ > ηvζ dx′ = 0.

Once (9.15) is established we follow the argument in the proof of Theorem 7.1
(here, the fact thatn = 2 is used!) to conclude that

Dku = ck ψ, k = 1, 2.
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If c1 = c2 = 0, thenu ≡ B (a constant) and we obtain from Lemma 9.4∫
R2
< Φσ′σ′(B, 0) Dx′η,Dx′η > dx′ + Φξξ(B, 0)

∫
R2
η2 dx′ ≥ 0,

for everyη ∈ C∞
o (R2). SinceΦξξ(B, 0) = Φξξ(B, 0), and the matrixΦσ′σ′(B, 0)

is positive definite, the latter inequality impliesΦξξ(B, 0) ≥ 0.
If instead at least oneck is not zero, then one clearly hasu(x1, x2) = g(b1x1 +

b2x2) with bk = (c21 + c22)
−1/2ck, k = 1, 2, and the positivity ofψ impliesg′ > 0.

The proof is complete. ��

10 A generalization of the theorem of Ambrosio and Cabŕe in R
3

In [AC] the authors have given a positive answer to the conjecture of De Giorgi for
n = 3. In fact, they have proved the stronger result.

Theorem 10.1 (Ambrosio and Cabré).Let u be a bounded solution inR3 of the
equation

∆u = F ′(u),

whereF ∈ C2(R) and

F ≥ min{F (m), F (M)} in (m,M)

for each pair of real numbersm < M satisfyingF ′(m) = F ′(M) = 0, F ′′(m) ≥
0, F ′′(M) ≥ 0. If (1.10)holds, then the level sets ofu are planes, i.e.,u is of the
type(1.4).

The aim of this section is to establish the following generalization of Theorem
10.1.

Theorem 10.2. Letu be a bounded entire solution to(1.2)in R
3 withΦ ∈ C3(R×

R
3) of the type(1.5). Suppose that

(10.1) Φ(ξ, 0) ≥ min{Φ(A, 0), Φ(B, 0)} ξ ∈ (A,B)

for each pair of real numbersA < B satisfying

Φξ(A, 0) = Φξ(B, 0) = 0,

and

Φξξ(A, 0) ≥ 0, Φξξ(B, 0) ≥ 0.

If
∂u

∂x3
> 0 in R

3,

then the level sets ofu are planes, i.e.,u is of the type(1.4).
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Proof. Let

A = inf
R3
u, B = sup

R3
u,

and setu(x′) = limx3→−∞ u(x′, x3), u(x′) = limx3→+∞ u(x′, x3). Clearly,u <
u in R

2 andA = infR2 u,B = supR2 u. We apply Theorem 9.6. If case(i) occurs,
thenu ≡ B and one hasΦξξ(B, 0) ≥ 0, whereas the equation givesΦξ(B, 0) = 0.
If instead case(ii) is verified, then due to the fact thatΦ(u, σ) = (1/2)G(u, |σ|2)
(the spherical symmetry ofΦ in σ plays a crucial role at this point) we infer that
the functiong satisfies the ode
(10.2)

Gξs(g, g′
2) (g′)2 +

(
Gs(g, g′

2) + 2 g′2 Gss(g, g′
2)
)
g′′ =

1
2
Gξ(g, g′

2),

andmoreoverg′ > 0 inR. Applying Lemma3.3withinfR2 u = A1 andsupR2 u =
B, we conclude that

Φ(A1, 0) = Φ(B, 0), Φξ(A1, 0) = Φξ(B, 0) = 0,

and that

Φ(ξ, 0) > Φ(A1, 0) = Φ(B, 0).

These properties, and theC2 smoothness ofξ → Φ(ξ, 0), also imply

Φξξ(B, 0) ≥ 0.

A similar analysis ofu proves that

Φξ(A, 0) = 0, and Φξξ(A, 0) ≥ 0.

According to (10.1) we concludeΦ(ξ, 0) ≥ min{Φ(A, 0), Φ(B, 0)}. Without
loss of generality we now assume thatmin{Φ(A, 0), Φ(B, 0)} = Φ(0, B).

As in the proof of Theorem 8.1, the final goal is to show that

E(r;u) =
∫
Br

[Φ(u,Du) − Φ(B, 0)] dx ≤ C r2, for everyr > 1.

If one considers the functionsuλ introduced in (6.4), then using the hypothesis
(1.10) one obtains, as in the proof of Theorem 6.2,

(10.3) E(r;u) ≤ C rn−1 + E(r;uλ).

The proof will be completed if we can show

(10.4) limλ→∞ E(R;uλ) ≤ C R2.

It is clear that ifu ≡ const = B, thenlimλ→∞ E(R;uλ) = 0. To prove (10.4),
in the caseu �≡ const, we use the uniform convergence inC1 norm on compact
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subsets ofRn of uλ to u, see (9.6). From the latter, and from (ii) of Theorem 9.6,
we obtain

lim
λ→∞

E(R;uλ) =
∫
Br

[
Φ(u(x′), Dx′u(x′)) − Φ(B, 0)

]
dx

≤ C R

∫
{x′∈R2||x′|≤r}

[
Φ(u(x′), Dx′u(x′)) − Φ(B, 0)

]
dx′

≤ C ′ R2
∫

R

[
Φ(g(t), g′(t)) − Φ(B, 0)

]
dt ≤ C ′′ R2,

where in the last inequality we have used the finiteness of the energy for the solution
g = g(t) of (10.2) deriving from Lemma 3.3. This completes the proof of the
theorem. ��

After this paper was completed we received from L. Ambrosio the preprint
[AAC] in which the authors use ideas from the calculus of variations to improve
on Theorem 10.1 by removing the extra assumptions on the non-linearityF . They
establish the following.

Theorem 10.3. Assume thatF ∈ C2(R). Letu be a bounded solution to∆u =
F ′(u) in R

3 satisfying(1.10), thenu must be of the type(1.4).

The proof of Theorem 10.3 is based on the observation that if the solutionu
were a local minimum, in a suitable sense, of the relative energy, then a simple
comparison argument would provide the improved energy growth∫

Br

[|Du|2 + F (u)
]
dx ≤ C rn−1, r > 1.

This observation was made in Lemma 1 in [CC]. The main new idea in [AAC]
consists in showing that the monotonicity assumption (1.10) does in fact imply the
local minimality ofu. Such implication is by no means trivial and it is based on the
construction of a so-calledcalibration associated to the energy functional. Such
notion is intimately connected to the theory of null Lagrangians, see [GH], chap.1,
sec.4, and chap.4, sec.2.6. Interestingly, although the authors work with the special
caseΦ(ξ, σ) = (1/2)|Du|2 + F (ξ), they carry the construction of the appropriate
calibration for general integrands of the calculus of variations, see Theorem 4.4
in [AAC]. Such construction relies explicitly on theP -function which we have
introduced in (1.3), and thanks to its generality covers the setting of the present
paper. Here is the main consequence.

Theorem 10.4. Letu be a bounded entire solution to(1.2)satisfying the assump-
tion (1.10), andu, u be as in(9.1). In a boundedC1 domainΩ ⊂ R

n consider the
energy functional associated with(1.1)

(10.5) E(v;Ω) =
∫
Ω

Φ(v,Dv) dx,
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and the class of functions

C,
Ω = {v ∈ C1(Ω) | u(x′) ≤ v(x) ≤ u(x′)

for every x = (x′, xn) ∈ Ω, v ≡ u on ∂Ω}.

The functionu minimizes the energy over the collectionC,
Ω , i.e.,

E(u;Ω) ≤ E(v;Ω), for every v ∈ C,
Ω .

Using Theorem 10.4, and the results in sections 3, 9 and 10, we can remove the
additional assumptions onΦ in Theorem 10.2, thus obtaining a generalization of
Theorem 10.3.
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