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A N  E M B E D D I N G  T H E O R E M  A N D  T H E  H A R N A C K  

INEQUALITY F O R  NONLINEAR SUBELLIPTIC  EQUATIONS 

Luca Capogna 

Donatella Danielli 

and 

Nicola Garofalo* 

Department of Mathematics, Purdue University, West Lafayette, IN  47907 

1. Introduction 

Let XI , .  . . , X, be Coo vector fields in Rn  satisfying Hormander's con- 

dition for hypoellipticity [HI: 

rank Lie[Xl,. . . , X,] = n, 

at every point x E Rn.  Denote by X,' the formal adjoint of Xi. The linear 
m 

operator I: = XfXj  is the subelliptic Laplacian associated to the vector 
j= 1 

fields XI ,  . . . , X,. Since the appearance of Hormander's fundamental work 

[HI, the study of properties of solutions of Lu = 0 has received increasing 

attention, see [B], [RS], [FP], [S], [J], [JS], [KSl] ,  [KS2], [CGL]. A large 

*Supported by the NSF, Grant 9104023-DMS 

Copyright 1993 by Marcel Dekker, Inc 
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1766 CAPOGNA, DANIELLI, AND GAROFALO 

part of this development has been related to some fundamental properties of 

a metric, which is naturally associated to the vector fields X I , .  . . , X,, see 

[NSW]. Concerning linear equations, there exists nowadays a rather satis- 

factory picture. On the other hand, the consideration of problems related 

to the geometry of CR manifolds, see [JLl],  (JL21, [GL], suggests that a 

corresponding nonlinear theory should be developed. An important moti- 

vating example is given by the energy functional in the subelliptic Sobolev 

embedding. Given an open set U c Rn, and a function u E C1(U), denote 

by DLu = (XI U,  . . . , X,u) the subelliptic gradient of u. For 1 < p < co we 

consider the functional 

0 

and define S1jP(U) to be the completion of C,'(U) in the norm generated by 

Jp. The Euler equation of Jp is 

We call the operator in (1.1) the ~ubel l ip t ic  p L a p l a c i a n .  Critical points 

of Jp are (weak) solutions of (1.1), and vice-versa. In the linear case (p = 2), 

the Harnack inequality for nonnegative solutions of (1.1) follows either from 

the work of Jerison [J] and Lemma 3.2 in this paper, or from the work of 

Kusuoka and Stroock [KSl] .  

In this paper, we propose to study a general class of nonlinear subelliptic 

equations, whose prototype is constituted by (1.1) above. Our objectives 

are: a) To establish an optimal embedding result of Sobolev type for the 
0 

subelliptic spaces S1+; b) To prove a Harnack type inequality for nonnegative 

solutions. From b) the Holder continuity of solutions with respect to the 

(XI, . . . , X,)-control distance will follow. To generalize equation (1.1) we 
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NONLINEAR SUBELLIPTIC EQUATIONS 1767 

consider measurable functions A : Rn x R x Rm -+ Rm, f : Rn x R x Rm R, 

and suppose that A = (Al , .  . . ,A,). We assume that A;, i = 1,. . . , m ,  

and f ,  satisfy the following structural conditions: There exist p E (1, m), 

cl 2 0, and measurable functions f l ,  f 2 ,  f3,g2, g3, h3 on R n ,  such that for 

a.e. x E R n ,  u E R and C E Rm 

Given C m  vector fields X I , .  . . , Xm in R n ,  satisfying Hormander's con- 

dition for hypoellipticity, we consider the equation 

(1.2) must be interpreted in a suitable weak sense. Given an  open set 

U c Rn, denote by SIJ'(U) the completion of C1(U) in the norm 

A function u E Lr,,(U) is said to belong to S;;,P(U) if cpu E S1*J'(U) for 

every cp E C,'(U). Let u E s:;:(u). We say that u is a (weak) solution to 
0 

(1.2) if for every cp E S1lP(U) 

I" f (2, U,  X1u, .. a ,  X ~ U ) ( P ~ X .  

It is worth noting that the choice 

Aj(x,u , ( )  = Aj(<) = J C I P - ~ C ~ ,  j = 1 , .  , m f E 0, 

makes (1.1) just a special case of (1.2). Given the structural conditions (S),  
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1768 CAPOGNA, DANIELLI, AND GAROFALO 

in order for definition (1.3) to  be well posed one needs to specify the relevant 

integrability assumptions on the functions f,, gi, hi. A distinctive feature 

of o u r  results is the optimal choice of the Lebesgue spaces, to which the 

functions fi, g i ,  hi in (5') are required to  belong. This follows from the sharp 

exponents in the Sobolev type embedding 

We recall that a piecewise C1 curve -y : [O,T] -+ R n  is said to be sub- 

unitary if for every ( € Rn and t € (0, T)  

Given two points x, y E R n ,  the (Xi,. . . , X,)-control distance from x to y 

is defined as follows: 

(1.5) d(x, y) = inf{T > OlThere exists a subunitary -y : [0, T] -t R n ,  

with ~ ( 0 )  = x, r(T) = y). 

-For x E Rn and R > 0, let B(x,R) = {y E Rn(d(x,y) < R). An 

important consequence of the work in [FP], [NSW] is the existence, for any 

bounded set U c Rn, of positive constants, C ,  Ro and Q, such that 

for every x E U, R 5 & and 0 < t < 1. We call the number Q in (1.6) 

the homogeneow dimension relative to U. We mention that (1.6) plays a 

pervasive role in the results of this paper; Also, the following estimates of 
m 

the fundamental solution of L = X/X,, found by A. Sanchez Calle [S], 
j= 1 
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NONLINEAR SUBELLIPTIC EQUATIONS 1769 

are important to  us. Let r (x ,  y )  denote the (positive) fundamental solution 

of L. Then, there exists C > 0 such that: 

see also [NSW]. 

An outline of the paper is as follows. In section 2 we prove the following 

embedding theorem of Sobolev type. Suppose BR = B(x, R) is a ball in the 

metric (1.5) of sufficiently small radius and consider the subelliptic Sobolev 
0 

space SIJ'(BR). Let x E U cc Rn and denote by Q  the homogeneous 

dimension relative to U .  Theorem 2.3 asserts that, if 1 < p  < Q ,  then 
0 

Q p  . Furthermore, we have for u E S1 lP (B~)  + LQ(BR) for 1 < q 5 - 
Q - P 

~ ~ P ( B R )  

for some C = C(U, XI, . . . , X, ) > 0. (1.9) and a standard partition of the 

unity argument imply (1.4) for any U CC Rn. 

The ideas involved in the proof of the above result have a classical flavor. 

Our approach relies on some subelliptic representation formulas. Of course, 

(1.6), (1 .7 ) ,  and (1.8) play an important role throughout. We should mention 

that in the proof of Theorem 2.3 interpolation is not used. In a classical 

fashion, we reduce the proof to the study of the mapping properties of a 

suitable fractional integration operator, see (2.6) and Theorem 2.7. For the 

latter, we adapt to our context a nice idea, due to Hedberg [He], for the 

classical Hardy-Littlewood-Sobolev theorem. We mention that (1.4) extends 

previous results of Folland and Stein [FS], [F], relative to Sobolev spaces on 



D
ow

nl
oa

de
d 

B
y:

 [P
ur

du
e 

U
ni

ve
rs

ity
] A

t: 
17

:2
0 

9 
N

ov
em

be
r 2

00
7 

1770 CAPOGNA, DANIELLI, AND GAROFALO 

nilpotent groups. If r is the number of commutators necessary to span Rn, 

then a result of Rothschild and Stein [RS] gives ~ ' I P ( U )  L, &?J'(u). Here, 
1 

i i ' i l p ( ~ )  denotes the usual Sobolev space of fractional order -. By Sobolev's 
r 

1 1 1  
embedding theorem, &)J'(u) - Lq(U), with - = - - - . In general, 

9 P rn 
however, the exponent q thus determined is much smaller than the number 

Qp/(Q - p) in Theorem 2.3. When p = q, (1.9) is contained in Jerison's 

Poincark inequality [J]. We mention that a different proof of (1.9), based on 

an adaptation of Jerison's work on the Poincarl? inequality, has been found 

by Lu [L]. 

Section 3 of the paper is devoted to the proof of the Harnack inequality 

for nonnegative solutions of (1.2), see Theorem 3.1. The relevant integrability 

assumptions on the functions f i ,  g,, hi in (S) are stated in (i)-(iii) at the 

beginning of the section. As mentioned above, the choice of the Lebesgue 

classes is optimal for Theorem 3.1 to hold. An example is provided by the 

model case of the Heisenberg group Hn. Consider the function u(z,t) = 

log 1 log[()t14 + t2 ) i ] ( ,  with ( z ,  t)  E Hn. Then u belongs to the Folland- 
0 

Stein space S112(U), with U = {(z,t)  E Hn( 1zI4 + t2 < e-4). Furthermore, 

it is a nonnegative solution of AH-u = V u  in U, with V E L%(u). This 

example shows that the assumption f2 E Lf,,, with s > Q l p ,  in (ii) of section 

3, is optimal for the local boundedness of solutions to (1.2), see Theorem 

3.4. Similar examples prove the optimality of the other requirements in (i)- 

(iii). As a consequence of Theorem 3.1, we prove that solutions of (1.2) 

are Holder continuous with respect to the (XI,. . . , X,)--control distance 

(1.5), see Theorem 3.35. Our results constitute a generalization of a classical 

work of Serrin [Se] concerned with quasi-linear degenerate elliptic equations. 

Similarly to  the results in [Se], our proof relies on a suitable adaptation of 

Moser's iteration technique [MI. This is made possible by the embedding 

results in section 2, the existence of suitable cut-off functions, see Lemma 

3.2, and the Poincark inequality in [J]. 
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NONLINEAR SUBELLIPTIC EQUATIONS 1771 

We finally mention that the results in sections 2 and 3 have suitable 

extensions to equations for which the dependence in the x variable is allowed 

to degenerate with respect to the metric d(x, y). The precise statements of 

the theorems and their proofs will appear elsewhere. 

2. Subelliptic Embedding Theorems of Sobolev Type 

The main theme of this section will be the use of some representation 

formulas, which generalize those established in [CGL]. By means of these 

formulas we are able to represent, in a classical fashion, an arbitrary smooth 

function in terms of a fractional integral involving its subelliptic gradient, 

see Proposition 2.4. We are thus led to study fractional integration on spaces 

of homogeneous type. The main result in this context is Theorem 2.7. By 

the latter, and by Proposition 2.4, we obtain the Sobolev type embedding 

Theorem 2.3. 

We begin with a consequence of the work in [NSW], which plays a 

pervasive role in the results of this section. 

PROPOSITION 2.1. Given a bounded set U  c Rn there exist Q 2 n, 

Ro > 0 and C > 0, such that for evely x E U ,  R 5 Ro and 0 c t < 1 

Proof: By Theorem 1 in [NSW] we have for every x E U ,  and R < &, 

where A ( x ,  R) is a polynomial function in R with positive coefficients de- 

pending on x. Recalling that the degree of the polynomial function A(x, R) 

is between n and the number Q(x) = lim log A(x' r ) ,  we obtain for 0 < t < 1 
r-o logr 

Define now Q = Q(U) = supQ(x). From the latter estimate, Proposi- 
zEU 

tion.2.1 follows. I 
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1772 CAPOGNA, DANIELLI, AND GAROFALO 

Remark: We explicitly observe that (2.2) implies that for any U CC Rn 

there exist C > 0 and & > 0 such that for any x E U and 0 < R 5 Ro 

We have the following 

THEOREM 2.3 (SOBOLEV EMBEDDING THEOREM). Let U C Rn be a 

bounded open set and denote by Q the homogeneous dimension relative to 

U .  Let 1 < p  < Q. Then there exist C > 0 and Ro > 0 such that for any 

x E U, BR = B(x,R), with R 5 &, we have 

0 Q for any u E S1>P(B~) .  Here, 1 5 K 5 - 
Q - P '  

The proof of Theorem 2.3 is based on the following representation result. 

PROPOSITION 2.4. Let D C Rn by a C1 domain and let u E C,'(D). 

For every x E D we have 

PROOF. It follows from that of Proposition 2.1 in [CGL], with minor mod- 

ifications. I 

Let now BR = B(x,R) be as in Theorem 2.3. For u E C,'(BR) and 

x E BR we obtain from Proposition 2.4 

Using (1.8), we have for some constant C > 0 and any x E BR 
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NONLINEAR SUBELLIPTIC EQUATIONS 1773 

We now introduce for 0 < CY 5 Q the operator of fractional integration 

Using (2.6) we can rewrite (2.5) as follows 

The proof of Theorem 2.3 will be a direct consequence of this estimate 

and of the following 

THEOREM 2.7. Let U c Rn and Q be as in Theorem 2.3. Assume 

1 < p  < oo. Then, I ,  maps LP(BR) continuously into L q ( B ~ ) ,  with 0 < 
1 1 0  - - -  5 V .  Moreover, there exist C > 0 and RQ > 0 such that for any 
P  Q 
so E U ,  BR = B(x0, R), with R _< RQ, we have 

for every f E LP(BR). When p = 1 one must have 

1 1  cr 
Remark: We note explicitly that the case - - - = - forces the restric- 

P 9  Q 
Q Q tion 1 < p < -. When p = -, I, does not map LP(BR) into Lm(BR). 
CY CY 

There is, however, an end-point result analogous to Trudinger's Euclidean 

inequality, see [D2]. 



D
ow

nl
oa

de
d 

B
y:

 [P
ur

du
e 

U
ni

ve
rs

ity
] A

t: 
17

:2
0 

9 
N

ov
em

be
r 2

00
7 

1774 CAPOGNA, DANIELLI, AND GAROFALO 

l l c r  
PROOF OF THEOREM 2.7. We start with the case 0 _< - - - < - and 

P q Q  
suitably adapt the approach in [GT] based on Young's convolution theorem. 

1 1 1  
Let r 2 1 be defined by 1 - - = - - -. We claim that for a fixed x E BR, 

" P q  

the function y = h(x, y) is in Lr(BR) and, in fact, 
IB(x, 4x7 Y))l 

To see this we proceed as follows. Let x E BR. Then, B(x,2R) > BR,  

so that 

(2 - R p r  ' IB(x, 2-kR)Ir-l 
(by Proposition 2.1) 

k=O 

CY the series being convergent, since a r  > Q(r - 1) is equivalent to - 1 

7 1 
r Q > I - - =  

1 1  --- . Observing that, by (2.2), IB(x, R)I1-r 5 C(B(x, 2R)11-' 5 ClB~l l - ' ,  
P  q  
we finally obtain the claim. We then write for f E LP(BR) 

Holder's inequality gives for x E BR 
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NONLINEAR SUBELLIPTIC EQUATIONS 

Integration of this inequality yields 

where in the latter inequality we have used the above claim. Recalling that 
1 

1 - - = 1 - il we conclude that Theorem 2.7 holds. 
T P 9  

1 1  a Q 
Next, we study the case --- = - Recall that now must be 1 < p < -. 

P Q Q' a 
We follow an idea in [He]. Set f E 0 in Bg. For any x E BR and 0 < E < R 

where 

We estimate first Ii(f)(x). 

where in the latter inequality we have used (2.2). The above gives 
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1776 CAPOGNA, DANIELLI, AND GAROFALO 

1 
where M f (x)  = sup - 

z E B  l B l  k I f  (y)ldy denotes the Hardy-Littlewood maximal 

operator with respect to the metric balls B. Next, we estimate Iz(f)(x).  

We observe that for any x E BR B(x,2R) > BR. Therefore, by Holder's 

inequality we obtain 

We now choose Lo E N such that 2 " ~  > R 2 2k0-1e. Then, 

where in the latter inequality we have used (2.2). By Proposition 2.1 we 

infer 

I B ( x , ~ ~ E ) ~  2 C ~ - ( ~ O - ~ ) Q  P ( x ,  R)L 

Substitution in the above yields 
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NONLINEAR SUBELLIPTIC EQUATIONS 

R Q 
Recalling that 2k0 5 2-, and noting that Q(pl  - 1 )  > a p t  since a < -, 

E P 
we finally obtain from ( 2 . 9 )  and (2 .10)  

Since by (2.2) we have for any x E BR, 

by ( 2 . 8 )  and (2 .11)  we finally obtain 

Minimizing the right-hand side with respect to s yields 

pQ . The conclusion of the proof of Theorem 2.7 where, we recall, q = - 
Q - p c u  

will follow by the ~p-cont inu i t~  of the Hardy-Littlewood maximal operator 

in a space of homogeneous type, see [CW] or [C] .  I 

Remark: With the constant R in the right-hand side replaced by the 

larger constant IBRI~IQ, Theorem 2.3 was announced in [D2]. 

3. Harnack Inequality a n d  t h e  Regularity of Solutions 

Throughout this section U C Rn will denote a given bounded open set, 

with relative homogeneous dimension Q = Q ( U )  > 0. Moreover, we assume 
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1778 CAPOGNA, DANIELLI, AND GAROFALO 

1 < p _< Q. We state the relevant integrability requirements on the functions 

f;, g;, hi in the structural assumptions (S) for the equation (1.2): 

(i) gz, 93 E Li,,(U), with r = - i f p < Q , a n d r > -  i f p = ~ ;  
P -  1 Q - 1  

Q 
(ii) fi, f3 ,  h~ E Lioc(U), with s > -; 

P 
(iii) fl E Li,,(U), with t > Q. 

Q 
Assumptions (ii) and (iii) allow to write, for some 0 c E < 1, s = - 

p - E '  

t = -  . From now on, the letter r will only be used with this meaning. 
I - &  
The main result of this section is the following 

THEOREM 3.1 (HARNACK INEQUALITY). Let u E s:;,P(u) be a nonneg- 

ative solution to the equation (1.2). Then, there exist C > 0 and & > 0 

such that.for any BR = B(x, R), with B(x,4R) C U, and R 5 Ro, 

Here, 

with r ,  s as in (i), (ii) above. 

Essential to the proof of Theorem 3.1 are the subelliptic cut-off functions 

found in [CGL]. For the sake of completeness we reproduce the proof of their 

existence. 

LEMMA 3.2. There exists Ro > 0 such that given a metric ball 

B(x,t)  cc U, with t < & and 0 < s < t, there exists a function + E 
C 

C,OO(B(x,t)) such that 0 5 2C, 5 1, + 1 in B(x,s)  and IDL+( 5 -. 
t - s  

Here, C > 0 is a constant independent of s and t. 

Proof: Let h E Cr((0 ,a t ) )  be such that 0 5 h < 1, h E 1 on 0 , [ ,:I 
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NONLINEAR SUBELLIFTIC EQUATIONS 1779 

C 
and lh'l I =. Here, a > 0 is as in Lemma 2.20. Recall the definition of 

the function - F(x,  R) after (2.19). Set $(y) = h 

Lemma 2.20 one sees that 2C, E Cr(B(x , t ) ) ,  and $J G 1 on B(x, s).  Denoting 
d F 

F1(x, R) = -(x, R), we have 
d R 

In the latter inequality we have used the fact that E(x, R) is a polyno- 

mial function. Next, we observe that (1.7) and (2.2) give 

Applying F(x,  .) to this inequality we obtain 

Substituting in (3.3) and using (1.8) we conclude 

This proves Lemma 3.2. I 

Our next result concerns the local boundedness of weak solutions of 

(1.2). We begin by observing that the structural assumptions (S)  and (i)- 

(iii) above imply that (x, u, C) I+ (A(x, u, C)( belongs to L ~ ~ ( u ) ,  whereas 

, if p < Q, and is in (x,u, I )  I+ f(x,u,[) is in L,?(u), with K = - Q - P 
L : ~ ' ( u )  for some a > 0, when p = Q. In view of this observation we now 

0 

modify the definition of a weak solution to allow test functions Q E S1lP(U). 
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We have 

THEOREM 3.4. Suppose that u E s:;:(u) is a weak solution to (1.2) in 

U .  Then, there exist C > 0 and & > 0 such that for any BR = B(x,  R) for 

which B(s,4R) C U ,  and R 5 Ro, we have 

Here, K(R) is as in Theorem 3.1. 

Proof: Let x E U. Choose & > 0 sufficiently small so that B ~ R ~  = 

B(x, 4Ro)  C U and Theorem 2.3 holds for B4Ro We observe that for a fixed 

R < Ro and K = K(R) ,  the function 'ii = lul+ II satisfies Dru = Drii a.e. 

in U. Moreover, the assumptions (S) may be rewritten as follows 

M x ,  u, <)I 5 CI KIP-I + 52 PIP-' 
(3) lf(x1 U ,  C)I r f l  lclP-' + L I ~ I P - ~  

4 5 ,  u, 0 C 1 KIP - f ;  PIP1 

with& = g2+  K1-Pg3, and T2 = f2 + K1-Pf3 + K-Ph3. 

We observe explicitly that, with these choices, we have for any R 5 & 

Following [Se] we define for e > K and q 5 1 

Also, with /3 = pq - p + 1, we let 
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By the chain rule one can prove that F(c) ,  G(u) E s~;,P(u). Let now 
0 

7 E C ~ ( B Z ~ ) ,  0 5 q < 1, and define cp = qPG(u). Then, cp 'E SIJ'(U). 

Setting v = F ( c )  we obtain from (1.3) and (5) 

Holder's inequality yields 

To estimate the terms containing f l ,  T2 in (3.5)' suppose at first 1 < p < 
Q Q and let K = - 1 1 1  

so that --  - = - Since fi  E L,?, (?IDrvl)P-' E 
Q - P '  P KP Q '  

L~,!P-' we see that the factor gv in the product fl(r7v)(qlDLvl)P-' belong to 
1 p - 1  1 - E  1 E 1-E E E 1 -E  E LP, ,with-=1----=-+-=- +-+-=-+-. 
Q P Q KP Q KP KP Q KP P 

Therefore, Hiilder's inequality gives 

- 1 

If p = Q, we let 5 = Q (1 + &) and observe that 5 < Q. Using 
- 

the fact (q1 DrvI)P-' E LC-', and arguing as for (3.7), we conclude with 
- Q K =  - 

Q - F 
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At this point we use Sobolev embedding Theorem 2.3 to estimate the 

last integrals in the right hand sides of (3.7), (3.8). We obtain 

where C = C(U) > 0 is as in Theorem 2.3. Substitution in (3.7) yields 

When p = Q, from (3.8) and Theorem 2.3 we obtain an estimate similar 

to (3.9), but with p in the right hand side replaced by p. Since < p, 

a routine application of Holder's inequality allows to conclude that (3.9) 

holds also when p = Q. By analogous arguments we can estimate the terms 

conia'ining T2, g2 in the right hand side of (3.5). One proves 
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Using (3.6) and (3.9)-(3.11) in (3.5), we obtain the following inequality 

In the above, all norms are in the Lebesgue spaces, thus, e.g., llull; = 

lu lulP The exponents t ,  s, r for f l ,  f2 and 5 are as in (i)-(iii). We 

now recall the following numerical lemma [Se]: Let z > 0, and suppose 
N 

ro 5 x a i z p i ,  with oi > 0, and 0 < pi < a. Then, z 5 CX:, a?. 
i= 1 

Here, = a - pi, and C > 0 only depends on N ,  cu and Pi. Using this 

lemma in the above inequality we obtain after some elementary, but lengthy, 

computations 

Observing that PqP-' 5 (p + 1)qP we finally obtain 
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Q We recall that K = -. In the case p = Q, (3.13) holds with p and 
Q - P  - 

4! 
K in the left hand side replaced by 9 = Q/(1+ €129)  and il= -- (recall 

Q - P  
?< P). 

At this point we specialize the choice of the cut-off function q in (3.13). 

For 1 < a < b < 2 we choose q E C,OD(BbR), with q E 1 on BaR, and 

ID~rll 5 Such a function exists in virtue of Lemma 3.2. We draw ( b -  a )R '  
from (3.13) if p < Q 

If p = Q we obtain instead 

where j5 and 2 are as above. We now observe explicitly that, in (3.14), 

I B ~ ~ I * - )  = 1 ~ 2 ~ 1 6 .  Similarly, using the above definitions of g, 2, one 

( 1). At this point we let f2 -+ m in the recognizes that -- - - = - 
K P  P Q 2Q- 

definition of F. Consequently, v = F(c) tends to P monotonically. By the 

monotone convergence theorem we thereby obtain from (3.14), (3.15) 

-- 
In (3.16) we have let 8 = K and r = 1, if 1 < p < Q, whereas 0 = = 

Q 
2 9  E - a n d 7  = -- 

2Q 
1, if p = Q. At this point, by Moser's iteration technique 

& 
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we easily infer from (3.16) 

Recalling now that E = lul + K = lul + K(R), the conclusion of the 

theorem follows. I 

In the context of Lebesgue spaces the assumptions in (ii) and (iii) above 

are optimal for the local boundedness of solutions of (1.2). Nonetheless, for 
Q 1 < p < Q, in the borderline cases s = - and t = Q in (ii) and (iii) we 
P 

still have a Caccioppoli type inequality (see (3.12) above) in the small, or for 

lower order terms with sufficiently small norms. This fact is of interest in 

questions of existence and regularity of solutions of equations with critical 

growth. 

We are now ready to give the 

Proof of Theorem 3.1: We assume without loss of generality u 2 a > 0 

in U .  With K = K(R)  as in the statement of Theorem 3.1, welet T i  = u+ K. 

For 71 E C ? ( B 2 ~ )  we choose Q = t7Pii1tl-P as a test function in (1.3). This 

is possible since, in virtue of Theorem 3.4, iT is bounded in BZR. Denoting 

v = logc, from (1.3) and (3) in the proof of Theorem 3.4, we obtain 

In what follows we assume for simplicity 1 < p < Q. The case p = Q is 

dealt with by easy modifications, as in the proof of Theorem 3.4. 
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We now specialize the choice of 17 E C,D"(B2R) in (3.17) using Lemma 
,-I 
b 

3.2. We take q r 1 on BR,  with IDcql 5 -. With this choice, a routine use 
R 

Q of Holder's inequality, and of the assumptions (i)-(iii), yields with r; = - 
Q - P  

and finally 

Inserting (3.18)-(3.21) in (3.17) yields 
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At this point we use the numerical lemma recalled in the proof of The- 

orem 3.4, obtaining 

Estimating the right hand side of (3.23) would present a serious dif- 

ficulty if Proposition 2.1 were not available. In the Euclidean context the 

measure of a ball of radius R is like Rn,  and the proof of Theorem 3.1 can 

be reduced, by a rescaling, to the case R = 1, see [Se]. In the present subel- 

liptic context, appealing to Proposition 2.1 we obtain R 5 C I B R I & .  This 
1 I 

estimate, Theorem I., and the fact - + - = allow to infer from (3.23) 
K P  Q P' 

where C = C(p) > 0. Recall now that from (ii), (iii) T2'2; fl respectivdly 
Q for some0 < E < 1. belong to L;,, and L;,,, with s = -, t = - 

P-& 1 - E )  

Also, as in the proof of Theorem 3.4, we have 11T211L,(B2R) 5 11 f211L,(B,R) + 
~ I B R I - ' ,  ~ ~ Z ~ ~ I ~ L ~ ( B Z J Z )  5 I I S ~ \ ~ L ~ ( B ~ R )  + 

These estimates, together with Holder's inequality and Theorem I., give 

Inserting these inequalities in (3.24) we obtain 
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Jerison's Poincark inequality [J] and (3.25) finally give 

dEm! C* = C*(U, lI~2ll~~(~),Ilf2Il~~(u),Ilflll~~(u)) > 0. 

By the John-Nirenberg theorem for spaces of homogeneous type, see 

e.g. [Bu], we infer the existence of po > 0 and C > 0 such that 

To complete the proof we need the following estimates: 

for some constant C > 0 independent of u. Inequality (3.27) is a particular 

case of the following 

LEMMA 3.29. Let u > 0 be a weak solution of (1.2), and define ii as in 

the proofs of Theorem 3.1 and 3.4. Then, for every cu > 0 there exist C > 0 

and R o  > 0 such that, given BR = B(x ,  R), with B(x,4R) C U and R 5 Ro, 

we have 
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Proof: An easy modification of the proof of Theorem 3.4 yields a con- 
1 

stant C > 0 such that, for any numbers a, b, with - < a < b 5 1, we 
2 - 

have 

C 
(3.30) ess SUP 7i 5 ( 1  (np>t. 

Be R (b - lBRl B ~ R  

The proof of the lemma now follows from (3.30) and an adaptation of 

an idea, due to  Dahlberg and Kenig. Without loss of generality we assume 

0 < cu < p and define 

By (3.30) we obtain 

e 
e 

ess s u p R  5 C (I/ l(i)p) 5 ( 1  (a].) .J (i) . 
B6 IBRI B  lBRl BR 

We are going to prove that there exists C > 0, independent of R, such that 
1 2 

J (i) 4 C. Assume J > 1. By (3.30) we have for - < s 5 - 
2 3 

This yields for 

P-" log J (a )  5 -[log C - Q log(b - a)  + log J(b)). 
P 
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For 8 > 1 to be suitably chosen, we let a = be in the above inequality 

and integrate on the interval 
db [( f) ' , l] with respect to - We arrive at 
b 

where in the last inequality we have used the assumption J > 1 and the (3 
fact that log J(p) is increasing. Choosing now 8 E (1, A) we conclude 

. - 

5 C2, for some C2 > 0. This proves the lemma. I 

To finish the proof of Theorem 3.1 we are left with proving (3.28). We 

c h o o s e p ' < l - p < O a n d s e t g =  + 
- 

< 0. Observe that by varying @ 
P 

on (-oo, 1 - p] ,  q ranges over (-co,O]. For q E CF(BZR), with 0 5 rl 5 1, 

let cp = r l p ~ ~ .  AS before, cp is an admissible test function for (1.3). From 

the latter, and from (3) above, we obtain after some computations similar 

to those in (3.5) 

(3.31) 

In the above inequality v = 3. At this point one proceeds as in the 

estimates (3.9)-(3.11) above, arriving to an inequality analogous to  (3.13). 

The only difference is that the factor qf  in the right hand side of (3.13) 

must be replaced by (1 + 1gl)f. Using Lemma 3.2, for 1 < a < b 5 2 choose 

q E C F ( B ~ R ) ,  with q 1 on B ~ R ,  and l D ~ v 1  5 
C 

We finally obtain 
( b  - a)R' 

from (3.31) 
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Q Recall that K = - 1 1  1 , so that - - - = -- Since v = @, taking 
Q - P  KP P Q '  

q-rooths in (3.32), and keeping in mind that q < 0, we have 

From (3.33), (3.28) follows by Moser's iteration procedure. M'e omit the 

standard details. The proof of Theorem 3.1 is thus completed. I 

As a consequence of Theorem 3.1 we prove that weak solutions of (1.2) 

are, in fact, Holder continuous with respect to the (XI,  . . . , X, )-control 

distance. For this we need to strengthen assumption (i) as follows: gz, g3 E 
Q L;,, with r > - for 1 < p  5 Q. In the sequel, we write r = Q 

P-  1 p - 1 - E '  
where E E ( 0 , l )  is the same as in the proof of Theorem 3.4. With this 

assumption and by (ii), Holder's inequality implies 

It is at this point that we use for the first time a bound from above of 

IBRI. We recall that, from (2.2), IB(x, R)I 5 C2A(x, R). Since the degree 

of the polynomial function A(x, a )  is 2 n, we have A(x, tR) < tnA(x, R). 

These considerations yield: lBRl = IB(x, R)( < CRn, for every x E U and 

R 5 &. We obtain from (3.34) h'(R) < CRY, for some 7 > 0, where 

C = C(U, I ~ ~ S ~ ~ L S ( U ) ,  11g311~r(u), I l h s l l ~ ~ ~ u ) )  > 0. We are now ready to state 

the following 

THEOREM 3.35. Let ti E s:;:(u) be a weak solution to (1.2), and s u p  

pose that ess supuIuI = M < 00. Then, there e i s t  C > 0 and 0 < IY < 1, 
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depending on U and M, such that 

ess sup I ~ x )  - 4 s ) l  , 
r , v E U  4 5 ,  Y)" 

By means of Theorem 3.1, and of the important observation K ( R )  < 
CRY, this result follows by a step by step imitation of a by now classical 

argument. We omit the details. 
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