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In this paper Besov spaces with respect to a non-negative Borel
measure µ are introduced. These spaces play a fundamental role in
the study of boundary value problems in classical analysis. Let µ be a
non-negative Borel measure supported on a closed set F ⊆ Rn. Assume
1 ≤ p <∞, 0 < β < 1, and s > 0; then the Besov space Bp

β(F, dµ) is
introduced as the set of all f ∈ Lp(F, dµ) such that the semi-norm
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is finite. Here B(x, r) are the usual (open) balls in Rn with respect
to the Carnot-Carathéodory metric d(x, y) corresponding to a sys-
tem X = {X1, . . . , Xm} of C∞ vector fields satisfying the finite rank
condition. The Besov space Bp

β(F, dµ) is normed in the usual way, i.e.

‖f‖Bp
β(F,dµ) = ‖f‖Lp(F,dµ) +N

p
β(f, F, dµ).

The authors then state trace and extension theorems of the follow-
ing type. Assume that, in addition, the measure µ with supp µ =
F, µ(F ) > 0, satisfies some (upper) growth conditions of Ahlfors
type (relating s and µ); then for sufficiently small β and balls B0
there is a number σ > 0 such that ‖f‖Bp

β(F,dµ) ≤ C ‖f‖L1,p(σB0,dx), where
L1,p(Ω, dx) denotes the first-order subelliptic Sobolev spaces related to
the system X. Furthermore, when Ω is an (ε, δ)-domain and supp µ⊆
∂Ω, conditions are given such that there is a linear and bounded
trace operator Tr: L1,p(Ω, dx)→ Bp

β(∂Ω, dµ). Conversely, for 1 ≤ p <

∞, sufficiently small s > 0 and F = suppµ compact with |F | = 0,
there is a bounded linear extension operator E from Bp

1− s
p
(F, dµ) into

L1,p(Ω, dx). Further interesting consequences for trace and extension
operators are derived. There is also an embedding theorem of Sobolev
type, Bp

β(Ω, dµ) ⊂ Lq(Ω, dµ). This is followed by some important ex-
amples of such settings as described above (concerning the particular
underlying domain and µ) where the geometric setting is that of
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Carnot groups. Finally, there is a short discussion on the subelliptic
Neumann problem.
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