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Abstract

In this paper we obtain the jump (or Rankine-Hugoniot) condition
at the interphase for solutions in the sense of distributions to the one
phase Stefan problem ut = ∆(u − 1)+. We do this by approximating
the free boundary with level sets, and using methods from the theory
of bounded variation functions. We show that the spatial component
of the normal derivative of the solution has a trace at the free bound-
ary that is picked up in a natural sense. The jump condition is then
obtained from the equality of the n-density of two different disintegra-
tions of the free boundary measure. This is done under an additional
condition on the n-density of this measure. In the last section we show
that this condition is optimal, in the sense that its satisfaction depends
on the geometry of the initial data.

1 Introduction

The purpose of this paper is to obtain the jump condition at free boundary
points for a nonnegative solution (in the sense of distributions) u ∈ L1

loc(Rn×
(0, T )) to the one phase Stefan problem

ut −∆(u− 1)+ = 0. (1.1)

From the work in [Ko], [AnKo],[Ko1], [Ko2] we know that

t(x) =

{
inf{t : u(x, t) > 1}
T if u(x, T−) ≤ 1

is a well defined and measurable function. The free boundary

F = ∂({(u− 1)+ > 0})
∗Math subject classification: 35K65, 35R35



is composed of the graph G of this function t(x), plus segments {x0}×(t0, t1),
x0 ∈ Rn, parallel to the t-axis. The measure

λ =
∂

∂t
(u− (u− 1)+) = div x,t(∇(u− 1)+,−(u− 1)+) (1.2)

is supported on the set F , and is carried by a countably rectifiable subset S
of F , see [Ko2] and [KoMo]. In addition, Ln({x ∈ Rn : t(x) jumps at x} = 0,
and the disintegration

λ = (1− uI(x))+ δt(x)(t) dx (1.3)

holds (see [Ko2]). At Hn-a.e. point of S, F has a measure theoretic normal
and an approximate tangent plane. As usual, we will denote by Fred the
reduced free boundary, i.e. the subset of points of F at which

lim
r→0

Ln+1(Cr ∩ {(u− 1)+ > 0})
Ln+1(Cr)

> 0,

lim
r→0

Ln+1(Cr \ {(u− 1)+ > 0})
Ln+1(Cr)

> 0,

and a measure theoretical normal exists. Here we are using the variant
of Hausdorff measure in which coverings are composed of cylinders Cr =
Br(x0)× (t0− r, t0 + r), and Ln stands for n dimensional Lebesgue measure.
We recall that for any r > 0, λ(Cr) ≤ Ln(Br) = cnr

n, and that for Hn-
a.e. (x, t) ∈ Fred one has that θn = limr→0

λ(Cr)
rn exists and is positive.

Our main result shows that the classical jump condition at the free
boundary for the Stefan problem (1.1)

−∇(u− 1)+(x0, t0+) · νx = (1− uI(x))+νt

holds in a suitable (and natural) density sense. Here we write νx and νt,
respectively, for the components of the normal to the free boundary at (x0, t0)
in the space and time variables. In order to state the result precisely, we
need to introduce the notion of trace of the spatial gradient on the reduced
free boundary.

Definition 1.1. Let ν(x, t) = (νx, νt)(x, t) be the measure theoretic normal
to Fred ∩ R at (x,t) pointing into the diffusive region {(u − 1)+ > 0}. We
define the trace of (∇(u− 1)+, 0) · ν at the point (x0, t0) ∈ Fred by

L(x0, t0) = lim
r→0

λ(Cr)
Per ({(u− 1)+ > 0}, Cr)

, (1.4)

where Cr is as above.
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Troughout the paper we will work in a bounded open cylinder R ⊂
IRn × (0, T ) with the property that there exists α > 0 such that

α < θn(x, t) = lim
s→0

λ(Cs(x, t))
sn

(1.5)

for all (x, t) ∈ Fred ∩ R. Assumption (1.5) is in some sense optimal, as we
will discuss in Section 4.

Theorem 1.1. Let ν be the measure theoretic normal to the reduced free
boundary pointing into the diffusive region, and let

νt(x, t) = ν(x, t) · (0, · · · , 0, 1)

stand for its time component. For Hn a.e. (x, t) ∈ Fred ∩R,

L(x, t) = lim
r→0

λ(Cr)
rn

= (1− uI)+(x)νt(x, t). (1.6)

The proof of Theorem 1.1 relies on approximating the free boundary by
level sets and BV theory techniques. These are available to us because we
work in an Euclidean setting, where all directions (including time) weigh
equally in the Hausdorff measure. Our paper is close in scope to [We2],
where the author studies the structure of the free boundary in the space
variables for a.e. level of t. He does this instead by means of parabolic blow
up techniques. In view of Section 4 of this paper, our conditions are general,
since they solely depend on the initial data. In addition, no mushy region
is allowed in [We2]. Other related work can be found in [ChFr], [ChFr2] in
the context of divergence measure fields, and in [DeOWe] where the authors
study entropy solutions for multidimensional conservation laws.

The one phase Stefan problem with a mushy zone (1.1) also bears some
relation to the one phase premixed flame free boundary problem{

ut −∆u = 0 in {u > 0},
u = 0, |∇u| = 1 on ∂{u > 0}.

(1.7)

This problem was first studied by Caffarelli and Vázquez in [CaV]. Later,
the existence of solutions to (1.7) satisfying the free boundary condition
|∇u| = 1 on ∂{u > 0} in a pointwise sense has been proved, under suitable
density assumptions on the set {u ≡ 0}, in [CaLeWo] and [Da]. If u is a
solution to (1.1), and the initial datum uI does not take values in the open
interval (0, 1), then v = (u − 1)+ is a solution to (1.7). If instead we allow
initial data uI for (1.1) that take on values in the interval (1− η, 1) for some
0 < η < 1, we may construct data with a region Ω = {uI ≡ 1} surrounded by
a region {uI < 1}. Once a region {u(x, t) > 1} evolves so to reach {uI ≡ 1}
at time t0, the latter region admitting an inner tangent x-ball, then by the
maximum principle the free boundary crosses Ω instantaneously, and Ω×{t0}
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becomes part of the free boundary F , but the measure λ will not charge the
set Ω0 × {t0}.

The paper is organized as follows. In Section 2 we prove various measure
theoretic properties of the set {(u−1)+ > 0}, including the locally finiteness
of its perimeter. In addition, we obtain an alternative expression of the free
boundary measure λ (a variant of one obtained in [Ko2]). With this in hand,
in Section 3 we prove Theorem 1.1. In Section 4 we show that condition
(1.5) is actually optimal, in the sense that the size and distribution of the
exceptional set depend, except on a set of Hn measure zero, only on the
initial data.

2 Finite Perimeter of level sets near regular free
boundary points

In this section we prove various measure theoretic properties of the set {(u−
1)+ > 0}. In particular we show that it has locally finite, positive perimeter.
We also give an integral representation of the free boundary measure λ.
We begin by recalling that since (u − 1)+ satisfies the heat equation in
{(x, t) : (u−1)+(x, t) > 0}), and the heat operator is hypoelliptic, (u−1)+ ∈
C∞({(x, t) : (u− 1)+(x, t) > 0}).

Proposition 2.1. For any (x0, t0) ∈ Fred,

lim sup
(x,t)→(x0,t0)

|∇(u− 1)+(x, t)| > 0

.

Proof. Assume lim(x,t)→(x0,t0) |∇(u − 1)+(x, t)| = 0. From the continuity of
(u− 1)+ (see [DiB], [AnKo]) we immediately obtain

lim
r→0

(∫
−

Br(x0)×{t0−r}
+
∫
−

Br(x0)×{t0+r}

)
(u− 1)+ dx = 0.

Approximate χCr(x0,t0) with the increasing sequence

ϕk(x, t) = χ[t0−r,t0+r](t) ψk(|x− x0|), (2.1)

where we choose

ψk(s) =

{
1 in Br− 1

k
(0),

0 in (Br(0))c,

and ψk(s) is continuous and linear for r − 1
k ≤ s ≤ r. Then, using (1.2) and
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polar coordinates, we obtain

λ(Cr) = lim
k→∞

(λ, ϕk)

= lim
k→∞

ck

∫ r

r− 1
k

∫
(∂Bs(x0))×(t0−r,t0+r)

−∇(u− 1)+ · ν dHn ds

+

(∫
Br(x0)×{t0−r}

−
∫

Br(x0)×{t0+r}

)
(u− 1)+ dx

where ν stands for the inner unit normal. On the other hand, given ε > 0,

lim
k→∞

ck

∫ r

r− 1
k

∫
(∂Bs(x0))×(t0−r,t0+r)

|∇(u− 1)+| dHn ds ≤
∫

∂latCr

ε dHn,

for all sufficiently small r, whence limr→0
λ(Cr)

rn = 0 follows. We are using
the notation ∂latCr for (∂Bs(x0))× (t0 − r, t0 + r). We have thus reached a
contradiction, and the proof is complete. 2

Proposition 2.2. The set {(u− 1)+ > 0} has finite perimeter in R.

Proof. From (1.5) it follows that Hn | ∂{(u− 1)+ > 0} and λ are mutually
absolutely continuous on R. In particular, ∂{(u − 1)+ > 0} ∩ Cr is Hn-
measurable, with

Hn(∂{(u− 1)+ > 0} ∩R) <∞.

Then χCr∩{(u−1)+>0} ∈ BV (R), and

Per ({(u− 1)+ > 0}, R) <∞.

2

Proposition 2.3. Per ({(u− 1)+ > 0}, R) > 0.

Proof. Since by the Radon-Nikodyn theorem R ∩ ∂{(u − 1)+ > 0} is Hn-
measurable with Hn(R ∩ ∂{(u − 1)+ > 0}) < ∞, by [Ma, 15.19] for almost
all (x0, t0) ∈ ∂{(u− 1)+ > 0}∩R there exists a unique approximate tangent
plane to ∂{(u− 1)+ > 0} at (x0, t0). Let η(x0, t0) be the measure theoretic
normal to ∂{(u− 1)+ > 0} at (x0, t0). Then

lim
r→0

Ln+1(Cr ∩ {(u− 1)+ > 0} ∩ {(x, t) : (x− x0, t− t0) · η(x0, t0) > 0})
Ln+1(Cr)

=
1
2

and

lim
r→0

Ln+1(Cr ∩ {(u− 1)+ = 0} ∩ {(x, t) : (x− x0, t− t0) · η(x0, t0) < 0})
Ln+1(Cr)

=
1
2
.
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It follows that for small enough r so that Cr ⊂ R,

min{Ln+1 [Cr ∩ {(u− 1)+ > 0}] ,

Ln+1 [Cr\{(u− 1)+ > 0}]} > 1
4
Ln+1(Cr),

whence by the relative isoperimetric inequality,

Per ({(u− 1)+ > 0}, Cr) > 0.

2

Lemma 2.1. There exists a constant MR such that

Per ({(u− 1)+ < ε}, R) ≤MR,

for all sufficiently small ε.

Proof. From the continuity of (u− 1)+(x, t), we know that

χ{(u−1)+<ε}∩R → χ{(u−1)+=0}∩R

a.e., and in L1, as ε → 0. Pick ϕ ∈ C1
0 (R,Rn), such that |ϕ| ≤ 1. By the

dominated convergence theorem,

| lim
ε→0

∫
χ{(u−1)+<ε} divϕ dx| = |

∫
χ{(u−1)+=0} divϕ dx|

= |
∫

Fred{(u−1)+=0}∩R
ϕ · ν dHn| ≤ Per ({(u− 1)+ > 0}, R).

Therefore, for small enough ε > 0,

|
∫
χ{(u−1)+<ε} divϕ dx| ≤ Per ({(u− 1)+ > 0}, R) + 1 = MR.

For each such fixed ε, take the supremum of the left-hand side over all
ϕ ∈ C1

0 (R,Rn) such that ‖ϕ‖L∞ ≤ 1 to get

Per ({(u− 1)+ < ε}, R) ≤MR

for all small enough ε. 2

Remark 2.1. With the same strategy one also proves that

lim
ε→0

∫
∂{(u−1)+<ε}∩Cr

ϕ · ν dHn =
∫

∂red{(u−1)+=0}∩Cr

ϕ · ν dHn,

for any Cr ⊂ R and ϕ ∈ C1
0 (Cr,Rn), and that the same formula holds

replacing Cr by R.
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Proposition 2.4. Let (x0, t0) ∈ Fred ∩ R, and consider cylinders Cr =
Cr(x0, t0). For a. e. 0 < r < r0 such that Cr0 ⊂ R,

λ(Cr) = − lim
ε→0

∫
∂{(u−1)+<ε}∩Cr

(∇(u− 1)+, 0) · νε dHn

= lim
ε→0

∫
∂{(u−1)+<ε}∩Cr

|∇(u− 1)+|2

|D(u− 1)+|
dHn,

(2.2)

where D(u− 1)+ = (∇(u− 1)+, ∂
∂t(u− 1)+) and νε is the inward normal to

the set {(u− 1)+ < ε}.

Proof. First note that for any 0 < ε,

λ(Cr) = λ(Cr ∩ {(u− 1)+ < ε}),

since (u − 1)+ solves the heat equation in Cr ∩ {(u − 1)+ > ε}, and using
(1.2). Then

λ(Cr) = − lim
ε→0

∫
Cr∩∂{(u−1)+<ε}

(∇(u− 1)+,−(u− 1)+) · ν dHn

− lim
ε→0

∫
{(u−1)+<ε}∩∂Cr

(∇(u− 1)+,−(u− 1)+) · ν dHn

= − lim
ε→0

I1 − lim
ε→0

I2.

(2.3)

Now,

I2 =
∫

∂latCr∩{0<(u−1)+<ε}
∇(u− 1)+ ·

x− x0

|x− x0|
dHn

−
∫
{0<(u−1)+<ε}∩(Br(x0)×{t0+r})

(u− 1)+ dx

+
∫
{0<(u−1)+<ε}∩(Br(x0)×{t0−r})

(u− 1)+ dx+ = I21 + I22 + I23.

By the continuity of (u− 1)+, |I22| ≤ εLn(Br(x0)) whence I22→ 0 as ε→ 0.
The same reasoning shows that I23 → 0 as ε→ 0.

To see that limε→0 I21 = 0, let us first note that ∇(u − 1)+ is defined
pointwise at Hn a.e. point of ∂Br(x0))×(t0−r, t0 +r) : Since {(u−1)+ > 0}
has finite perimeter in R, ∂{(u− 1)+ > 0} is (countably) n−rectifiable in R.
Using a general version of the coarea formula (e.g. theorem 2.93 in [AmFuP]),
we see that Hn ((∂{(u− 1)+ > 0}) ∩ (∂lat(Cr))) = 0. But this is the set of
points at which ∇(u− 1)+ is not continuous.

Since ∇(u − 1)+ ∈ L2
loc(Rn × (0, T )) and again using the continuity of

(u− 1)+,

I21 ≤
∫

(∂latCr)∩{0<(u−1)+<ε}
|∇(u− 1)+| dHn
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≤ ‖∇(u− 1)+‖L2(∂latCr∩{0<(u−1)+<ε}) [Hn(∂latCr)]
1
2 <∞,

and
|∇(u− 1)+| χ{0<(u−1)+<ε}(x, t) → 0

Hn a.e. on ∂latCr as ε→ 0.
By the dominated convergence theorem it follows that

lim
ε→0

∫
∂latCr

|∇(u− 1)+| χ{0<(u−1)+<ε} dHn = 0.

for a.e. 0 < r ≤ r0.
Next, write I1 in (2.3) as

I1 =
∫

Cr∩∂{(u−1)+<ε}
(∇(u− 1)+, 0) · ν dHn

+
∫

Cr∩∂{(u−1)+<ε}
−(u− 1)+νt dHn = I11 + I12

where νt = ν · (0, . . . , 0, 1). We use Lemma 2.1 to bound I12:

|I12| ≤ εPer ({(u− 1)+ < ε}, Cr) ≤ ε Mr ≤ εMR

whence for a.e. r > 0 we have

λ(Cr) = lim
ε→0

∫
Cr∩∂{(u−1)+<ε}

|∇(u− 1)+|2

|D(u− 1)+|
dHn. (2.4)

2

3 Traces and the jump condition

In this section we show that the trace of the spatial component of the normal
derivative of (u− 1)+ introduced in Definition 1.1 is picked up in the sense
of Gauss-Green’s theorem, and then prove our main result, Theorem 1.1.

We begin by observing that under assumption (1.5), by the Radon-
Nikodym theorem the trace L(x, t) introduced in (1.4) is defined at Hn

a.e.
(x, t) ∈ Fred ∩R, and

λ(Cr) =
∫

∂{(u−1)+>0}∩Cr

L(x, t) dHn. (3.1)

Proposition 3.1. For any ϕ ∈ C∞0 (R),∫
∂{(u−1)+>0}

L(x, t) ϕ(x, t) dHn = lim
ε→0

∫
∂{(u−1)+>ε}

ϕ(x, t)
|∇(u− 1)+|2

|D(u− 1)+|
dHn.
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Proof. Recall that by (1.3)

(λ, ϕ) =
∫

π(∂{(u−1)+>0}∩R)
(1− uI(x))+ϕ(x, t) dx,

where π : Rn × (0, T ) → Rn is the projection on the spatial coordinates.
Using (1.2) and since (u − 1)+ solves the heat equation in {(u − 1)+ > 0},
we have that (λ, ϕ) = (λ, ϕχ{(u−1)<ε}) for all ε > 0. and therefore

(λ, ϕ) = lim
ε→0

(λ, ϕχ{(u−1)+<ε}) =

lim
ε→0

∫
{(u−1)+<ε}

(∇(u− 1)+,−(u− 1)+) ·Dϕ dx dt

+ lim
ε→0

∫
∂{(u−1)+<ε}

ϕ(x, t)
|∇(u− 1)+|2

|D(u− 1)+|
dHn = L1 + L2.

By the dominated convergence theorem, and using that D(u − 1)+ ∈ L2
loc,

we obtain that L1 = 0 and thus∫
∂{(u−1)+>0}

ϕ(x, t)L(x, t) dHn = lim
ε→0

∫
∂{(u−1)+<ε}

ϕ(x, t)
|∇(u− 1)+|2

|D(u− 1)+|
dHn.

2

We now prove our main result.

Proof of Theorem 1.1. From (1.3), since t(x) has jumps at most at a null set
for Ln, for a.e. r > 0 it holds that λ(∂Br(x0) × (t(x0) − r, t(x0) + r)) = 0
and we can write

λ(Cr)
rn

=
1
rn

∫
∂{(u−1)+>0}∩Cr

L(x, t) dHn

=
1
rn

∫
Br(x0)

χπ(Fred∩Cr)(x)(1− uI(x))+ dx.

(3.2)

We want to let r tend to 0 in (3.2). Now, for Hn a.e. (x0, t0) ∈ Fred,

lim
r→0

∫
∂{(u−1)+>0}∩Cr

L(x, t) dHn

cnrn
=

lim
r→0

∫
∂{(u−1)+>0}∩Cr

L(x, t) dHn

Per ({(u− 1)+ > 0}, Cr)
lim
r→0

Per ({(u− 1)+ > 0}, Cr)
cnrn

= L(x0, t0),

where we have used (1.4), proposition 2.2, DeGiorgi’s rectifiability theorem
(see [AmFuP]), and the notation cnrn for Ln(Br).

9



Now write P (x0, t0) for the measure theoretic tangent plane to Fred at
(x0, t0). To obtain the other equality, we first note that since

1 > θn(x0, t0) > α

and
lim
r→0

Ln(π(P (x0, t0) ∩ Cr(x0, t0)))
Ln(Br(x0))

exists, this limit must be positive, and

lim
r→0

∫
π(P (x0,t0)∩Br(x0))(1− uI(x))+ dx

Ln(π(P (x0, t0) ∩Br(x0)))
= (1− uI(x0))+.

By Lebesgue’s differentiation theorem then, for Hn a.e. (x0, t0) ∈ Fred,

L(x0, t0) = (1− uI(x))+νt(x0, t0) (3.3)

where (νx(x0, t0), νt(x0, t0)) is the outer unit normal to ∂{(u − 1)+ > 0} at
(x0, t0). Notice that |νt(x0, t0)| expresses the ratio of the measure of the
portion of the (measure theoretic) tangent plane to Fred at (x0, t0) in Cr to
Ln(B(x0, r)). 2

Remark 3.1. If the free boundary is Lipschitz, we explicitely observe that
(1.6) coincides with the classical jump condition

−∇(u− 1)+(x0, t0) · νx = (1− uI(x))+νt,

where we write νx and νt, respectively, for the components of the normal to
the free boundary at (x0, t0) in the space and time variables.

4 On the subset of the free boundary where Θn > 0.

In this section we discuss the nature of the set of points x ∈ IRn such
that the density of the free boundary measure vanishes at (x, t(x)). From
the results in this section it will follow that condition (1.5) is optimal, in
the sense that it will be satisfied automatically if we impose conditions on
the initial datum, specifically on the regularity of (1 − uI)+(x), and on the
geometry of the boundary of the set {(1 − uI(x))+ > 0)}. In addition,
from the finite speed advance of the free boundary and since in the “mushy”
region {0 ≤ u ≤ 1}◦ the initial datum stays unchanged a.e., one can devise
initial data that are identically 1 on sets with boundaries that have outward
pointing cusps or angles, and are set a distance from each other, in such a way
that they are reached by the propagation of the diffusive zone at arbitrary
times. Such behavior is common in free boundaries arising in degenerate
parabolic equations (see e.g. [CaWo]).
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For simplicity, we state the lemmas in this ection for t = 0. By restating
them t = t0, with 0 < t0 < T, the results hold for t0 < t < T.

As usual, we denote by uI the absolutely continuous part (with respect
to Ln) of the initial trace. Questions about the size and geometry of sin-
gular sets of free boundaries have been addressed recently in the context of
variational free boundary problems by Weiss (see [We1]), and by Caffarelli,
Jerison, and Kenig (see [CaJKe]).

Lemma 4.1. Let

O = {x ∈ Rn : t(x) is continuous at x, and ∃ lim
r→0

∫
B(x)

(1− uI(y))+ dy > 0},

and
Z = {x ∈ Rn : lim

r→0

λ(Cr(x, t(x)))
rn

= 0}.

Then Z is a closed set relative to O.

Remark 4.1. We recall that λ(Z × (0, T )) = 0 (see [Ko2]. In addition,
in [KoMo] Korten and Moore remove the restriction of the free boundary
measure to the complement of the set Z defined above, required in [Ko2] for
the rectifiability of the free boundary measure λ to hold.

Proof of Lemma 4.1 . The proof is straightforward. Let {xk}k∈N be a se-
quence in O

⋂
Z such that limk→∞ xk = x ∈ O. Because x is a point of

continuity of t(x),

lim sup
k→∞

Cr(xk, t(xk)) = Cr(x, t(x)),

and
lim sup

k→∞
π(Cr(xk, t(xk)) = π(Cr(x, t(x)).

Then,

λ(Cr(x, t(x)))
rn

≤ |λ(Cr(x, t(x))− λ(Cr(xk, t(xk)))|
rn

+
λ(Cr(xk, t(xk)))

rn
≤ λ(Cr(x, t(x))∆Cr(xk, t(xk)))

rn

+
λ(Cr(xk, t(xk)))

rn
= A1 +A2.

Pick ε > 0.

A1 =
∫

π(Cr(x,t(x))∆Cr(xk,t(xk)))
(1− uI(y))+dy

≤ Ln(π(Cr(x, t(x))∆Cr(xk, t(xk)))) <
ε

2
rn

if k is chosen ≤ k0. For k = k0, A2 can be made < ε
z by choosing r small

enough. Here A∆B stands for the symmetric difference of the sets A and
B. 2
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Lemma 4.2. Let (x0, t0) ∈ ∂{(u− 1)+ > 0} such that there exists an inner
tangent n-ball in Rn × {t0}, Br+0(y0), to ∂{(u− 1)+ > 0} at (x0, t0). Then
the free boundary moves strictly outward at (x0, t0), i.e., (u(x0, t)− 1)+ > 0
for t > t0, and (x0, t0) is not an interior point of a “vertical” (i.e. , parallel
to the t-axis) segment at x0.

Proof. By the maximum principle, (u(x, t) − 1)+ is positive on ∂Br0(y0) ×
{t0}) \ {(x0, t0)}. Pick a positive function vt0(x), radially symmetric and
radially decreasing in Br(y0) with respect to the center y0, such that vt0(x) ≥
u(x, t0) in Br0(y). Set vt0(x) ≡ 0 on BC

r (y0). The solution v(x, t) to (1.1)
in Rn × (t0, T ) generated by vt0(x) is radially decreasing for all T > t > t0,
v(x, t) ≤ u(x, t) in Rn × (t0, T ), and the boundary of {(v(x, t) − 1)+ > 0}
expands in outward direction with strictly positive speed. 2
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