HOMEWORK #38 - MA 504

PAULINHO TCHATCHATCHA

Chapter 5, problem 5. Suppose f is defined and differentiable for every x > 0, and
f'(x) = 0 as z — 4o00. Put g(z) = f(z + 1) — f(z). Prove that g(z) — 0 as x — +o0.

Solution.
Since f'(x) — 0 as x — +o00, for every € > 0, there exists M > 0 such that

If'(z)] <€ x> M.

By the Mean Value Theorem (thm 5.10), for every = there exists ¢ such that t < c <z +1
and
fl@+1) = f(z) = f'(o).
Hence
9@ =fle+1) = f@) =f () <e z=>M
Since € > 0 is arbitrary, we see that g(x) — 0 as z — +o0.

Chapter 5, problem 6. Suppose
(a) f is continuous for x > 0,
(b) f'(x) exists for x > 0,

(c) f(0) =0,
(d) f” is monotonically increasing.
Put

o) =17 w0

and prove that g is monotonically increasing.

Solution.

First of all, by theorem 5.3 (c), g is differentiable at every x > 0.

By theorem 5.10 (Mean Value Theorem), for every = > 0, there exists ¢,, 0 < ¢, < x, such
that

flx) = f(z) — f(0) = 2 f'(cs).
Hence g(x) = f'(¢cs).
Now assume that there exist > y such that ¢, < ¢,. Then, since f’ is monotonically
increasing, ¢g(y) = f'(¢,) > f'(cz) = g(x). By the Mean Value theorem, there exists c,
y < ¢ < z such that
F(2) = F(y) = (2 — 1) f'()

) =
= (v —y)f'(cy) > xf’ (Cx) yf'(cy) = flx) — fly) = (x —y)f'(c)
f(c ) f'(e),
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but ¢, < y < c and f’ is monotonically increasing. So we got a contradiction, ¢, < ¢,, and
therefore g(y) < g(x).

Chapter 5, problem 9. Let f be a continuous real function on R, of which it is known
that f'(x) exists for all x # 0 and that f'(z) — 3 as © — 0. Does it follow that f'(0) exists?

Solution.

Answer: SIM! (YES!).

Indeed, we have that f(x) — f(0) and g(x) = = are real and differentiable in (0, 1), and
g (x)=1=#0for all z € (0,1), and

f'(x)
g ()

= f'(z) =3 asx— 0",

f(z) — f(0) - 0 and g(x) — 0 as x — 0,

then by L’Hopital’s rule
f(x) — f(0)

X

—3asz— 07,

Similarly one can show that

f(z) = f(0)

T

—3asz— 0.
Hence f'(0) exists and f/(0) = 3.

Chapter 5, problem 14. Let f be a differentiable real function defined in (a,b). Prove
that f is convex if and only if f’ is monotonically increasing. Assume that f”(z) exists for
every = € (a,b), and prove that f is convex if and only if f”(x) > 0 for all z € (a,b).

Solution.
Assume that f is convex. Let x > y. We have that
o) O I@) O~ @)
tmwz  t—x t—axt t—x
() = lim fly) = fGs) _ o ) = fls)
s—=Y Yy—Ss s—Y~ Yy—S

By Problem 23 (Chapter 4), we have for s <y <z <t

1O~ 1) _ 10~ 1(s) _ Jw)—1(s)
t—x —  t—s =  y—-s
hence
) = i LI =)

t—xt t—x s—y~ Yy—S
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So f’ is monotonically increasing.
Now if f’ is monotonically increasing, then by the Mean Value Theorem, for every z,y €
(a,b), x >y, there exists ¢ € (y, ) such that

f(x) = f(y)

)
Since f’ is monotonically increasing, we have
Py < 19T _ piy < pray.
T —y
Hence for every y < z < =,
Y x—z

Soif z =Xz + (1 — Ny, A € (0,1), we have
Az + (1 =Ny —y)(f(z) = fOr+ (1 =Ny) = (2 = Az = (1= Ny)(f(Az + (1= Ny) - f(y)
= Mz —y)(f(z) = fOr + (1 =Ny)) = (1 = )z —y)(fAz + (1 = N)y) - f(y))
= Af(@) = fOz+ (1= Ny)) = (1 =)z + (1= Ny) = f(y))
= M(@) + A =Nf(y) = f(Az+ (1= Ay).

Therefore f is convex.
Now note that if f”(x) exists for every x € (a,b), the f is continuous in (a, b). So if f"(x) <0
for some x € (a,b), then there exists an € > 0 such that
f'(x) < —e.
Now, we have that there exists an > 0 such that

€ < f/(.CE) _f,(t) _f//(l') <

x—1

>
>

%, |z —t] <.
So, in particular, for t < x,|x — t| <,
fl(x) B f/<t> " € € €
e —<—€+-=-—2-<0
v —t flaytg<—ety="3
= [(x) = f'(t) <0 = f(x) < f'(D),
a contradiction with f’ being monotonically increasing.
Therefore f”(z) > 0.
Now if f”(z) > 0 for every x € (a,b), then by theorem 5.11, f’ is monotonically increasing
in (a,b), so as we showed previously, f is convex.

Chapter 5, problem 26. Suppose f is differentiable on [a,b], f(a) = 0, and there is
a real number A such that |f'(x)| < A|f(z)| on [a,b]. Prove that f(xz) = 0 for all x € [a, b].

Solution.
Since f is differentiable on [a, b, then f is continuous on [a,b], so f is bounded on |a, b].
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Also, since |f'(z)| < A|f(z)| on [a,b], then f’is also bounded on [a,b]. Therefore we can
take, for a fixed x¢ € [a, b],

My = sup |f(z)], M= sup ||f'(z)|

z€la,zo] z€la, o]
So, for any z, a < x < xg, as a consequence of the Mean Value Theorem
[f(@)] = |f(z) = fla)] < Mi(z —a) < My(zo — a) < A(zo — a) M.
Hence My = 0 if A(zo — a) < 1, otherwise Ny = A(zg — a)My < My and Ny > |f(x)| for all
x € |a, xq], so Ng > My, a contradiction.

1 1
Therefore f(x) = 0 for all z € |a,a+ 1) assuming a + 1 < band A > 0, other-
wise f'(z) = 0 (since |f'(x)| < A|f(x)|) for all = € [a,b], so f would be constant and since

f(a) = 0, we have then f(z) = 0 for all x € [a, b]. By continuity it follows that f (a + %) =0.
1 2
Similarly one can show that f(x) = 0 for all x € {a+ —, min {a+ —,b}] ,s0 f(x) =0

A A
2
for all z € [a, min {a + i b}] . We can continue this process and get that f(z) = 0 for all
x € [a,min{a + %,bH . But there exists n € N such that % > b, so we get f(z) = 0 for

all z € [a, b].

Chapter 5, problem 27. Let ¢ be a real function defined on a rectangle R in the plane,
given by a < x < b, a <y < (. A solution of the initial-value problem

y':gb(x,y), y(a):c (O./chﬁ)

f@) =0z, f(z)) (a<z<Dh).
Prove that such a problem has at most one solution if there exists a constant A such that

|§Z§(II?, y2> - ¢($, yl)l < A‘y2 - y1|
whenever (z,y;) € R and (z,y2) € R.

Solution.
Assume that there exist two differentiable functions f; and f, on [a,b] such that fi(a) =

fa(a) = ¢, a < fi(z), fa(x) < B, and
fi(x) = é(z, fi(z))  fiolx) = ¢(z, fo2)),

where there exists a constant A such that

|§Z§(l‘, y2> - ¢(1’7 yl)' < A|y2 - y1|
whenever (z,y;) € R and (z,92) € R.

Let f = fi — fo. Then f f is differentiable on [a,b], f(a) = 0, and there is a real number
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A such that |f/'(x)| < Alf(x)| on [a,b]. So by the previous problem (problem 26), f(z) =0
for all = € [a,b], ie, fi = fo as we wanted to show.



