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PAULINHO TCHATCHATCHA

Chapter 5, problem 5. Suppose f is defined and differentiable for every x > 0, and
f ′(x)→ 0 as x→ +∞. Put g(x) = f(x+ 1)− f(x). Prove that g(x)→ 0 as x→ +∞.

Solution.
Since f ′(x)→ 0 as x→ +∞, for every ε > 0, there exists M > 0 such that

|f ′(x)| < ε, x ≥M.

By the Mean Value Theorem (thm 5.10), for every x there exists c such that x < c < x+ 1
and

f(x+ 1)− f(x) = f ′(c).

Hence
|g(x)| = |f(x+ 1)− f(x)| = |f ′(c)| < ε, x ≥M.

Since ε > 0 is arbitrary, we see that g(x)→ 0 as x→ +∞.

Chapter 5, problem 6. Suppose
(a) f is continuous for x ≥ 0,
(b) f ′(x) exists for x > 0,
(c) f(0) = 0,
(d) f ′ is monotonically increasing.
Put

g(x) =
f(x)

x
(x > 0)

and prove that g is monotonically increasing.

Solution.
First of all, by theorem 5.3 (c), g is differentiable at every x > 0.
By theorem 5.10 (Mean Value Theorem), for every x > 0, there exists cx, 0 < cx < x, such
that

f(x) = f(x)− f(0) = xf ′(cx).

Hence g(x) = f ′(cx).
Now assume that there exist x > y such that cx < cy. Then, since f ′ is monotonically
increasing, g(y) = f ′(cy) > f ′(cx) = g(x). By the Mean Value theorem, there exists c,
y < c < x such that

f(x)− f(y) = (x− y)f ′(c)

⇒ (x− y)f ′(cy) > xf ′(cx)− yf ′(cy) = f(x)− f(y) = (x− y)f ′(c)

⇒ f ′(cy) > f ′(c),
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but cy < y < c and f ′ is monotonically increasing. So we got a contradiction, cy ≤ cx, and
therefore g(y) ≤ g(x).

Chapter 5, problem 9. Let f be a continuous real function on R, of which it is known
that f ′(x) exists for all x 6= 0 and that f ′(x)→ 3 as x→ 0. Does it follow that f ′(0) exists?

Solution.
Answer: SIM! (YES!).
Indeed, we have that f(x) − f(0) and g(x) = x are real and differentiable in (0, 1), and
g′(x) = 1 6= 0 for all x ∈ (0, 1), and

f ′(x)

g′(x)
= f ′(x)→ 3 as x→ 0+,

f(x)− f(0)→ 0 and g(x)→ 0 as x→ 0,

then by L’Hôpital’s rule

f(x)− f(0)

x
→ 3 as x→ 0+.

Similarly one can show that

f(x)− f(0)

x
→ 3 as x→ 0−.

Hence f ′(0) exists and f ′(0) = 3.

Chapter 5, problem 14. Let f be a differentiable real function defined in (a, b). Prove
that f is convex if and only if f ′ is monotonically increasing. Assume that f ′′(x) exists for
every x ∈ (a, b), and prove that f is convex if and only if f ′′(x) ≥ 0 for all x ∈ (a, b).

Solution.
Assume that f is convex. Let x > y. We have that

f ′(x) = lim
t→x

f(t)− f(x)

t− x
= lim

t→x+

f(t)− f(x)

t− x
,

f ′(y) = lim
s→y

f(y)− f(s)

y − s
= lim

s→y−

f(y)− f(s)

y − s
.

By Problem 23 (Chapter 4), we have for s < y < x < t

f(t)− f(x)

t− x
≥ f(t)− f(s)

t− s
≥ f(y)− f(s)

y − s
,

hence

f ′(x) = lim
t→x+

f(t)− f(x)

t− x
≥ lim

s→y−

f(y)− f(s)

y − s
= f ′(y).
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So f ′ is monotonically increasing.
Now if f ′ is monotonically increasing, then by the Mean Value Theorem, for every x, y ∈
(a, b), x > y, there exists c ∈ (y, x) such that

f(x)− f(y)

x− y
= f ′(c).

Since f ′ is monotonically increasing, we have

f ′(y) ≤ f(x)− f(y)

x− y
= f ′(c) ≤ f ′(x).

Hence for every y < z < x,

f ′(y) ≤ f(z)− f(y)

z − y
≤ f ′(z) ≤ f(x)− f(z)

x− z
≤ f ′(x).

So if z = λx+ (1− λ)y, λ ∈ (0, 1), we have

(λx+ (1− λ)y− y)(f(x)− f(λx+ (1− λ)y) ≥ (x− λx− (1− λ)y)(f(λx+ (1− λ)y)− f(y)

⇒ λ(x− y)(f(x)− f(λx+ (1− λ)y)) ≥ (1− λ)(x− y)(f(λx+ (1− λ)y)− f(y))

⇒ λ(f(x)− f(λx+ (1− λ)y)) ≥ (1− λ)(f(λx+ (1− λ)y)− f(y))

⇒ λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y).

Therefore f is convex.
Now note that if f ′′(x) exists for every x ∈ (a, b), the f ′ is continuous in (a, b). So if f ′′(x) < 0
for some x ∈ (a, b), then there exists an ε > 0 such that

f ′′(x) < −ε.
Now, we have that there exists an δ > 0 such that

− ε
2
<
f ′(x)− f ′(t)

x− t
− f ′′(x) <

ε

2
, |x− t| < δ.

So, in particular, for t < x, |x− t| < δ,

f ′(x)− f ′(t)
x− t

< f ′′(x) +
ε

2
< −ε+

ε

2
= − ε

2
< 0

⇒ f ′(x)− f ′(t) < 0⇒ f ′(x) < f ′(t),

a contradiction with f ′ being monotonically increasing.
Therefore f ′′(x) ≥ 0.
Now if f ′′(x) ≥ 0 for every x ∈ (a, b), then by theorem 5.11, f ′ is monotonically increasing
in (a, b), so as we showed previously, f is convex.

Chapter 5, problem 26. Suppose f is differentiable on [a, b], f(a) = 0, and there is
a real number A such that |f ′(x)| ≤ A|f(x)| on [a, b]. Prove that f(x) = 0 for all x ∈ [a, b].

Solution.
Since f is differentiable on [a, b], then f is continuous on [a, b], so f is bounded on [a, b].
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Also, since |f ′(x)| ≤ A|f(x)| on [a, b], then f ′ is also bounded on [a, b]. Therefore we can
take, for a fixed x0 ∈ [a, b],

M0 = sup
x∈[a,x0]

|f(x)|, M1 = sup
x∈[a,x0]

||f ′(x)|.

So, for any x, a ≤ x ≤ x0, as a consequence of the Mean Value Theorem

|f(x)| = |f(x)− f(a)| ≤M1(x− a) ≤M1(x0 − a) ≤ A(x0 − a)M0.

Hence M0 = 0 if A(x0 − a) < 1, otherwise N0 = A(x0 − a)M0 < M0 and N0 ≥ |f(x)| for all
x ∈ [a, x0], so N0 ≥M0, a contradiction.

Therefore f(x) = 0 for all x ∈
[
a, a+

1

A

)
, assuming a +

1

A
≤ b and A > 0, other-

wise f ′(x) = 0 (since |f ′(x)| ≤ A|f(x)|) for all x ∈ [a, b], so f would be constant and since
f(a) = 0, we have then f(x) = 0 for all x ∈ [a, b]. By continuity it follows that f

(
a+ 1

A

)
= 0.

Similarly one can show that f(x) = 0 for all x ∈
[
a+

1

A
,min

{
a+

2

A
, b

}]
, so f(x) = 0

for all x ∈
[
a,min

{
a+

2

A
, b

}]
. We can continue this process and get that f(x) = 0 for all

x ∈
[
a,min

{
a+

n

A
, b
}]

. But there exists n ∈ N such that n
A
≥ b, so we get f(x) = 0 for

all x ∈ [a, b].

Chapter 5, problem 27. Let φ be a real function defined on a rectangle R in the plane,
given by a ≤ x ≤ b, α ≤ y ≤ β. A solution of the initial-value problem

y′ = φ(x, y), y(a) = c (α ≤ c ≤ β)

is, by definition, a differentiable function f on [a, b] such that f(a) = c, α ≤ f(x) ≤ β, and

f ′(x) = φ(x, f(x)) (a ≤ x ≤ b).

Prove that such a problem has at most one solution if there exists a constant A such that

|φ(x, y2)− φ(x, y1)| ≤ A|y2 − y1|
whenever (x, y1) ∈ R and (x, y2) ∈ R.

Solution.
Assume that there exist two differentiable functions f1 and f2 on [a, b] such that f1(a) =
f2(a) = c, α ≤ f1(x), f2(x) ≤ β, and

f ′1(x) = φ(x, f1(x)) f ′2(x) = φ(x, f2(x)),

where there exists a constant A such that

|φ(x, y2)− φ(x, y1)| ≤ A|y2 − y1|
whenever (x, y1) ∈ R and (x, y2) ∈ R.

Let f = f1 − f2. Then f f is differentiable on [a, b], f(a) = 0, and there is a real number
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A such that |f ′(x)| ≤ A|f(x)| on [a, b]. So by the previous problem (problem 26), f(x) = 0
for all x ∈ [a, b], ie, f1 = f2 as we wanted to show.


