HOMEWORK #8 - MA 504

PAULINHO TCHATCHATCHA

Chapter 5, problem 5. Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to +\infty$. Put g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to +\infty$.

Solution.

Since $f'(x) \to 0$ as $x \to +\infty$, for every $\epsilon > 0$, there exists M > 0 such that $|f'(x)| < \epsilon, \quad x \ge M.$

By the Mean Value Theorem (thm 5.10), for every x there exists c such that x < c < x + 1and

$$f(x+1) - f(x) = f'(c).$$

Hence

$$|g(x)| = |f(x+1) - f(x)| = |f'(c)| < \epsilon, \quad x \ge M.$$

Since $\epsilon > 0$ is arbitrary, we see that $g(x) \to 0$ as $x \to +\infty$.

Chapter 5, problem 6. Suppose

(a) f is continuous for $x \ge 0$, (b) f'(x) exists for x > 0, (c) f(0) = 0, (d) f' is monotonically increasing. Put

$$g(x) = \frac{f(x)}{x} \quad (x > 0)$$

and prove that g is monotonically increasing.

Solution.

First of all, by theorem 5.3 (c), g is differentiable at every x > 0.

By theorem 5.10 (Mean Value Theorem), for every x > 0, there exists c_x , $0 < c_x < x$, such that

$$f(x) = f(x) - f(0) = xf'(c_x).$$

Hence $q(x) = f'(c_x)$.

Now assume that there exist x > y such that $c_x < c_y$. Then, since f' is monotonically increasing, $g(y) = f'(c_y) > f'(c_x) = g(x)$. By the Mean Value theorem, there exists c, y < c < x such that

$$f(x) - f(y) = (x - y)f'(c)$$

$$\Rightarrow (x - y)f'(c_y) > xf'(c_x) - yf'(c_y) = f(x) - f(y) = (x - y)f'(c)$$

$$\Rightarrow f'(c_y) > f'(c),$$

but $c_y < y < c$ and f' is monotonically increasing. So we got a contradiction, $c_y \leq c_x$, and therefore $g(y) \leq g(x)$.

Chapter 5, problem 9. Let f be a continuous real function on \mathbb{R} , of which it is known that f'(x) exists for all $x \neq 0$ and that $f'(x) \to 3$ as $x \to 0$. Does it follow that f'(0) exists?

Solution.

Answer: SIM! (YES!). Indeed, we have that f(x) - f(0) and g(x) = x are real and differentiable in (0, 1), and $g'(x) = 1 \neq 0$ for all $x \in (0, 1)$, and

$$\frac{f'(x)}{g'(x)} = f'(x) \to 3 \text{ as } x \to 0^+,$$

$$f(x) - f(0) \to 0$$
 and $g(x) \to 0$ as $x \to 0$,

then by L'Hôpital's rule

$$\frac{f(x) - f(0)}{x} \to 3 \text{ as } x \to 0^+.$$

Similarly one can show that

$$\frac{f(x) - f(0)}{x} \to 3 \text{ as } x \to 0^-.$$

Hence f'(0) exists and f'(0) = 3.

Chapter 5, problem 14. Let f be a differentiable real function defined in (a, b). Prove that f is convex if and only if f' is monotonically increasing. Assume that f''(x) exists for every $x \in (a, b)$, and prove that f is convex if and only if $f''(x) \ge 0$ for all $x \in (a, b)$.

Solution.

Assume that f is convex. Let x > y. We have that

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} = \lim_{t \to x^+} \frac{f(t) - f(x)}{t - x},$$
$$f'(y) = \lim_{s \to y} \frac{f(y) - f(s)}{y - s} = \lim_{s \to y^-} \frac{f(y) - f(s)}{y - s}.$$

By Problem 23 (Chapter 4), we have for s < y < x < t

$$\frac{f(t) - f(x)}{t - x} \ge \frac{f(t) - f(s)}{t - s} \ge \frac{f(y) - f(s)}{y - s},$$

hence

$$f'(x) = \lim_{t \to x^+} \frac{f(t) - f(x)}{t - x} \ge \lim_{s \to y^-} \frac{f(y) - f(s)}{y - s} = f'(y).$$

So f' is monotonically increasing.

Now if f' is monotonically increasing, then by the Mean Value Theorem, for every $x, y \in (a, b), x > y$, there exists $c \in (y, x)$ such that

$$\frac{f(x) - f(y)}{x - y} = f'(c).$$

Since f' is monotonically increasing, we have

$$f'(y) \le \frac{f(x) - f(y)}{x - y} = f'(c) \le f'(x).$$

Hence for every y < z < x,

$$f'(y) \le \frac{f(z) - f(y)}{z - y} \le f'(z) \le \frac{f(x) - f(z)}{x - z} \le f'(x).$$

So if
$$z = \lambda x + (1 - \lambda)y, \lambda \in (0, 1)$$
, we have
 $(\lambda x + (1 - \lambda)y - y)(f(x) - f(\lambda x + (1 - \lambda)y) \ge (x - \lambda x - (1 - \lambda)y)(f(\lambda x + (1 - \lambda)y) - f(y))$
 $\Rightarrow \lambda (x - y)(f(x) - f(\lambda x + (1 - \lambda)y)) \ge (1 - \lambda)(x - y)(f(\lambda x + (1 - \lambda)y) - f(y))$
 $\Rightarrow \lambda (f(x) - f(\lambda x + (1 - \lambda)y)) \ge (1 - \lambda)(f(\lambda x + (1 - \lambda)y) - f(y))$
 $\Rightarrow \lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y).$

Therefore f is convex.

Now note that if f''(x) exists for every $x \in (a, b)$, the f' is continuous in (a, b). So if f''(x) < 0 for some $x \in (a, b)$, then there exists an $\epsilon > 0$ such that

$$f''(x) < -\epsilon.$$

Now, we have that there exists an $\delta > 0$ such that

$$-\frac{\epsilon}{2} < \frac{f'(x) - f'(t)}{x - t} - f''(x) < \frac{\epsilon}{2}, \quad |x - t| < \delta.$$

So, in particular, for t < x, $|x - t| < \delta$,

$$\frac{f'(x) - f'(t)}{x - t} < f''(x) + \frac{\epsilon}{2} < -\epsilon + \frac{\epsilon}{2} = -\frac{\epsilon}{2} < 0$$
$$\Rightarrow f'(x) - f'(t) < 0 \Rightarrow f'(x) < f'(t),$$

a contradiction with f' being monotonically increasing.

Therefore $f''(x) \ge 0$.

Now if $f''(x) \ge 0$ for every $x \in (a, b)$, then by theorem 5.11, f' is monotonically increasing in (a, b), so as we showed previously, f is convex.

Chapter 5, problem 26. Suppose f is differentiable on [a, b], f(a) = 0, and there is a real number A such that $|f'(x)| \leq A|f(x)|$ on [a, b]. Prove that f(x) = 0 for all $x \in [a, b]$.

Solution.

Since f is differentiable on [a, b], then f is continuous on [a, b], so f is bounded on [a, b].

PAULINHO TCHATCHATCHA

Also, since $|f'(x)| \leq A|f(x)|$ on [a, b], then f' is also bounded on [a, b]. Therefore we can take, for a fixed $x_0 \in [a, b]$,

$$M_0 = \sup_{x \in [a,x_0]} |f(x)|, \quad M_1 = \sup_{x \in [a,x_0]} ||f'(x)|.$$

So, for any $x, a \leq x \leq x_0$, as a consequence of the Mean Value Theorem

$$|f(x)| = |f(x) - f(a)| \le M_1(x - a) \le M_1(x_0 - a) \le A(x_0 - a)M_0.$$

Hence $M_0 = 0$ if $A(x_0 - a) < 1$, otherwise $N_0 = A(x_0 - a)M_0 < M_0$ and $N_0 \ge |f(x)|$ for all $x \in [a, x_0]$, so $N_0 \ge M_0$, a contradiction.

Therefore f(x) = 0 for all $x \in \left[a, a + \frac{1}{A}\right)$, assuming $a + \frac{1}{A} \leq b$ and A > 0, otherwise f'(x) = 0 (since $|f'(x)| \leq A|f(x)|$) for all $x \in [a, b]$, so f would be constant and since f(a) = 0, we have then f(x) = 0 for all $x \in [a, b]$. By continuity it follows that $f\left(a + \frac{1}{A}\right) = 0$. Similarly one can show that f(x) = 0 for all $x \in \left[a + \frac{1}{A}, \min\left\{a + \frac{2}{A}, b\right\}\right]$, so f(x) = 0 for all $x \in \left[a, \min\left\{a + \frac{2}{A}, b\right\}\right]$. We can continue this process and get that f(x) = 0 for all $x \in \left[a, \min\left\{a + \frac{2}{A}, b\right\}\right]$. But there exists $n \in \mathbb{N}$ such that $\frac{n}{A} \geq b$, so we get f(x) = 0 for all $x \in [a, b]$.

Chapter 5, problem 27. Let ϕ be a real function defined on a rectangle R in the plane, given by $a \leq x \leq b$, $\alpha \leq y \leq \beta$. A solution of the initial-value problem

$$y' = \phi(x, y), \quad y(a) = c \quad (\alpha \le c \le \beta)$$

is, by definition, a differentiable function f on [a, b] such that $f(a) = c, \alpha \leq f(x) \leq \beta$, and

$$f'(x) = \phi(x, f(x)) \quad (a \le x \le b).$$

Prove that such a problem has at most one solution if there exists a constant A such that

$$|\phi(x, y_2) - \phi(x, y_1)| \le A|y_2 - y_1|$$

whenever $(x, y_1) \in R$ and $(x, y_2) \in R$.

Solution.

Assume that there exist two differentiable functions f_1 and f_2 on [a, b] such that $f_1(a) = f_2(a) = c$, $\alpha \leq f_1(x), f_2(x) \leq \beta$, and

$$f'_1(x) = \phi(x, f_1(x)) \quad f'_2(x) = \phi(x, f_2(x)),$$

where there exists a constant A such that

$$|\phi(x, y_2) - \phi(x, y_1)| \le A|y_2 - y_1|$$

whenever $(x, y_1) \in R$ and $(x, y_2) \in R$.

Let $f = f_1 - f_2$. Then f f is differentiable on [a, b], f(a) = 0, and there is a real number

A such that $|f'(x)| \leq A|f(x)|$ on [a, b]. So by the previous problem (problem 26), f(x) = 0 for all $x \in [a, b]$, i.e., $f_1 = f_2$ as we wanted to show.