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PAULINHO TCHATCHATCHA

Chapter 3, problem 5. For any two real sequences {an}, {bn}, prove that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn,

provided the sum on the right is not of the form ∞−∞.

Solution.
First assume that the sum on the right hand side is not of the form ∞ +∞ or −∞−∞,
otherwise we clearly have the equality.
Assume that one of the terms of the sum of the right hand side is ∞. Then without loss of
generality consider lim sup

n→∞
an =∞ and lim sup

n→∞
bn = b. So lim sup

n→∞
an + lim sup

n→∞
bn =∞ and

the inequality is trivially satisfied.
Now assume lim sup

n→∞
an = −∞, and lim sup

n→∞
bn = b ∈ (−∞,∞). Let x ∈ R be such that

ank
→ x for some subsequence {ank

} of {an}. By definition 3.16, x ≤ lim sup
n→∞

an. Therefore

one must have that x = −∞. Since lim sup
n→∞

bn = b ∈ (−∞,∞), it follows from theorem

3.17(b) that {bn} is bounded, so one sees that lim sup
n→∞

(an + bn) = −∞ and the inequality is

clearly sastified.
Finally assume that lim sup

n→∞
an = a ∈ (−∞,∞) and lim sup

n→∞
bn = b ∈ (−∞,∞).

Let y ∈ R be such that ank
+ bnk

→ y for some subsequence {ank
+ bnk

} of {an + bn}.
Since {ank

} and {bnk
} are bounded, by theorem 2.42 (Weierstrass) there exists convergent

subsequences {ankj
} and {bnkj

} such that ankj
→ s, bnkj

→ t. Then

y = lim
k→∞

(ank
+ bnk

) = lim
j→∞

(ankj
+ bnkj

) = s+ t,

and we have
y = s+ t ≤ lim sup

n→∞
an + lim sup

n→∞
bn.

Since y is an arbitrary real number with the property defined in definition 3.16, we have
that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.
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Chapter 3, problem 20. Suppose {pn} is a Cauchy sequence in a metric space X, and
some subsequence {pni

} converges to a point p ∈ X. Prove that the full sequence {pn}
converges to p.

Solution.
Since {pn} is a Cauchy sequence and {pni

} converges to a point p ∈ X, given ε > 0 there
exists N1, N2 such that

d(pn, pm) <
ε

2
, n,m ≥ N1;

d(pni
, p) <

ε

2
, i ≥ N2.

Assume that ni ≤ ni+1. So

d(pn, p) ≤ d(pn, pni
) + d(pni

, p) <
ε

2
+
ε

2
= ε,

if n, ni ≥ N = max{N1, nN2}. Since ε > 0 is arbitrary, pn → p.

Chapter 3, problem 21. Prove the following analoge of Theorem 3.10(b): If {En} is a
sequence of closed nonempty and bounded sets in a complete metric space X, if En ⊃ En+1,
and if

lim
n→∞

diam En = 0,

then ∩∞1 En consists of exactly one point.

Solution.
First we see that if there exists a N such that EN contains only one point, say EN = {p},
then since En ⊃ En+1, En = EN = {p} for all n ≥ N and ∩∞1 En = {p}.
Now assume that every En contains at least two points. Then

diam En = sup{d(p, q) : p, q ∈ En} > 0 ∀n.

Since

lim
n→∞

diam En = 0,

given ε > 0, there exists Nk such that diam En < ε for n ≥ N. So d(p, q) < ε for all p, q ∈ En,
n ≥ N. For each n choose pn ∈ En. Then, since En ⊃ Em if m ≥ n, we have

d(pn, pm) < ε m ≥ n ≥ N.

Therefore, since ε > 0 is arbitrary, {pn} is a Cauchy sequence in X, which is a complete
metric space, so {pn} converges. Say pn → p ∈ X. We have that p ∈ ∩∞1 En. Indeed, p is
a limit point of ∩∞1 En, which is an intersection of closed sets, so ∩∞1 En is closed and then
p ∈ ∩∞1 En.
Then ∩∞1 En is nonempty and contains at least one point. Now let us show that ∩∞1 En does
not contain more than one point. Suppose that there exist p, q ∈ ∩∞1 En. Then, say for any
0 < ε < d(p, q),

diam En ≥ diam ∩∞1 En ≥ d(p, q) > ε, ∀n.
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But this contradicts limn→∞ diam En = 0. Therefore ∩∞1 En consists of exactly one point.

Chapter 3, problem 23. Suppose that {pn} and {qn} are Cauchy sequences in a metric
space X. Show that the sequence {d(pn, qn)} converges.

Solution.
Since {pn} and {qn} are Cauchy, given ε > 0, there exists N1 and N2 such that

d(pn, pm) <
ε

2
, n,m ≥ N1;

d(qn, qm) <
ε

2
, n,m ≥ N2.

By the triangle inequality, for any m,n,

d(pn, qn) ≤ d(pn, qm) + d(qm, qn) ≤ d(pn, pm) + d(pm, qm) + d(qm, qn).

So if n,m ≥ N = max{N1, N2}, we have

|d(pn, qn)− d(pm, qm)| < d(pn, pm) + d(qm, qn) <
ε

2
+
ε

2
= ε.

Hence {d(pn, qm)} ⊂ R is a Cauchy sequence, and it follows from theorem 3.11(c) that
{d(pn, qm)} coverges.


