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PAULINHO TCHATCHATCHA

Chapter 4, problem 14. Let I = [0,1] be the closed unit interval. Suppose f is a
continuous map of [ into I. Prove that f(z) = x for at least one = € [.

Solution.
Consider the function g(x) = f(z) — z. Then g is a continuous function of I = [0, 1] into
[—1,1], since 0 < f(x) < 1. We have then

9(0) = f(0) =0, g(1)=f(1)-1<0.
If g(0) = 0 or g(1) = 1, the f(0) = 0 or f(1) = 1 and we are done, otherwise g(0) > 0
and g(1) < 0, therefore by the intermediate value theorem there exists z € [0, 1] such that
g(x) =0, ie, f(x) = x.

Chapter 4, problem 16. Let [z] be the largest integer contained in z, that is, [z] is
the integer such that x — 1 < [z] < z; and let (x) = = — [z] denote the fractional part of x.
What discontinuities do the functions [z] and (x) have?

Solution.
First note that since f(x) = x is continuous in R, () is continuous in x if and only if [z] is
continuous in x.
Note that

[z] =n, forxe[n,n+1),neN.
Therefore [z] is discontinuous at z if and only if x € N, and [ny] =n, [n_] =n — 1, for ev-
ery n € N. So both [z] and (x) only have discontinuities of first kind (simple discontinuities).

Chapter 4, problem 20. If E is a nonempty subset of a metric space X, define the
distance from = € X to E by

pe(x) = nf d(a ).

(a) Prove that pg(r) = 0 if and only if z € E.

(b) Prove that pg is a uniformly continuous function on X, by showing that
lpe(z) — pe(y)| < d(z,y)

forallz € X,y € X.

Solution.
(a) Suppose that pg(x) = 0. Then for any € > 0, there exists z € F such that

d(z,2) < e
1
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Since € > 0 is arbitrary, this shows that in any neighborhood of z, we can find z € E| ie,
rekb.

Conversely, if # € E, for any € > 0, there exists w € E such that w € B.(r) = {y € X :
"7: - y’ < 6}7 ie>

pe(x) = ing d(z,z) <d(w,z) < e.
zE

Since € > 0 is arbitrary, pg(z) = 0.

(b) We have that for any x € X, y € X, z € E, by the triangle inequality
Since z € F is arbitrary, in the right hand side we can take the inf over z € E and get

pe(r) < d(z,y) + pe(y).
Similarly one can show
pe(y) < d(z,y) + pe(z),
and hence
lpe(x) — pe(y)| < d(z,y).
Chapter 4, problem 21. Suppose K and F' are disjoint sets in a metric space X, K is

compact, F' is closed. Prove that there exists § > 0 such that d(p,q) >d if p € K,q € F.
Show that the clonclusion may fail for two disjoint closed sets if neither is compact.

Solution.
Let us show first that the function pp defined in problem 20 is a continuous positive function.
Given € > 0, let 0 = ¢, then by the previous problem

lpr(x) — pr(y)| < d(z,y) <6 =€

Therefore pr is continuous and since the metric d is a nonnegative function we see that
pr(x) >0, for any = € X.
If the assume the contrary of the statement given above, then for any n € N, there exists
pn € K, @, € F such that

d(pn, gn) <

Y

S|

this, in particular, implies
1

in particular, pgp(p,) — 0.

But since K is compact and {p,} C K, there exists a subsequence {p,,} such that p,, —
p e K.

Since pg is continuous, and pp(p,) — pr(p), so pr(p) = 0. By the previous problem, this
implies that p € F = F. A contradiction with K and F being disjoint.

Hence there exists 6 > 0 such that d(p,q) >dif pe K,q € F.
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Now let X =R, F = {n + % 'n € N} and K = N. We have that for any ¢ > 0, there exists
1

n € N such that — < 4, so
n

(i) =p=(03)
dlnn+—)=n—(n+—-||=
n n

Chapter 5, problem 23. A real-valued function f defined in (a, b) is said to be convex if
fOz + (1= XNy) < Af(x) + (1 =N f(y)

whenever a < x < b, a <y <b, 0 <\ < 1. Prove that every convex function is continuous.
Prove that every increasing convex function of a convex function is convex.
If fis convex in (a,b) and if @ < s <t < u < b, show that

1) = fls) _ f(w) = fls) _ fw) = F(D),

t—s uU—Ss - u—t

1

n

< 0.

Solution.
Let f be a convex function in (a,b). We want to show that f is continuous, ie, given € > 0
there exists > 0 such that

1flz) — fy)| <e if |z —y| <6

Given x € (a,b), there exists x1,zy € (a,b) such that ;7 < x < z5. Since f is convex, we

have
r — T r — T Tr — T
x:( )azg—l—[l—( )]xl, 0< <1,
To — I To — T To —T1

fo) = (Z25) s+ 1= (£22)] st

We can rewrite the equation above and get

f(x) — f(21) < f(x2) — f(z1)

Tr— T - To — I1

SO

?

(zo—21)(f(x)=f(21)) < (2—21)(f(22) = f(21)) = (v2—2) f(202) = f(21)(22—7) < (f(22)—f (7)) (22— 11)
f(z2) — f(z1) flas) — f(ac)

= S
To — T To — X

Therefore for any x,y € [x1, 23], assume without loss of generality x > y, and since (a, b) is
open there exist g, x3 € (a,b) such that xy < x; < zy < z3,

flx) = fly) _ flzs) = fly) _ flas) = flao)

r—y  T3—y T3 T2

)

and

f(z1) — f(w0)

9

f@) = 0) | f@) = fa) _

r—1y r — X 1 — X
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| () — F(v)
|z —yl

<C= max{'f(mg) — f(x2)| |f(x1) —f(xo)’}.

r3—x9 T — X

So given € > 0, x € [x1, 22, let 6 = min{é, 2 ; l

} >0, then for any y € (x — 0,2+ 0) C
(21, T2],
€
[f(@) = fy)l < Clz—yl < CFr =

Hence f is continuous on x and since = € (a,b) is arbitrary, f is continuous in (a, b).
Note that we showed above that if a < s <t < u < b, then

f(t) = f(s) < flw) = f(s) _ flw) = f(O)

t—s uU—Ss - u—t

Let h = go f, ie, h(x) = g(f(x)), where g is an increasing function and f is a convex
function. We have for z,y € (a,b),0 < A < 1,

h(Az + (1 = A)y) = g(f(Ar + (1 = Ny)) < g(Af(z) + (1 = A)f(y)-

Assume without loss of generality f(x) > f(y) and y > x, otherwise consider Ay + (1 — \)z
instead of Az + (1 — X)y. So Af(x) + (1 —X)f(y) < f(z), and since g is increasing

h(Az+(1=Ny)=Ag(f(z)) < AgAf(2)+(1=N)f(¥)+(1=A)gAf(x)+(1=A) f(y))—Ag(x) <
< (A =NgAf(x) + (1 =N f(y) < (1 =Ng(f(y)),

ie,
h(Az + (1= XNy) < g(f(z)) +1=Ng(f(y)).
Chapter 5, problem 1. Let f be defined for all real x, and suppose that

[f(z) = )l < (@ —p)*

for all real x and y. Prove that f is constant.

Solution.
We see that, x # vy,

£(@) = F)] < (@ = y)? = fo — yf? = LT

<z —yl.
|z —y

Therefore
@)~ 1)
yoo |z —y|
Hence f is differentiable at every x € R and f’(x) = 0. By theorem 5.11 f must be constant.

=0.

Chapter 5, problem 2. Suppose f'(x) > 0 in (a,b). Prove that f is strictly increas-
ing in (a,b), and let g be its inverse function. Prove that ¢ is differentiable, and that

g (f(x)) = (a <z <)
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Solution.
Let x,y € (a,b), x < y. Then by the Mean Value Theorem, there exists ¢ € (z,y) such that

fly) = f(x) = (y — 2)f'(c) > 0.
Therefore f(y) > f(z) and f is increasing. Hence the inverse of f is well defined, since f is
injective, and let g be its inverse function, ie, g(f(z)) = f(g(z)) = x.
Given y € f(a,b), let {y,} C f(a,b) be such that y,, — vy, y, # y. Then for each n, there
exists x, € (a,b) such that f(x,) = y,, and let x € (a,b) such that f(z) =y.
By theorem 4.17, g is continuous, so x, — z (note x, # x, since f is injective and y, =

f(an) #y = f(x)). We have
9y) —glyn) 1 | _ ’g<f($)) — 9(f(zn)) ’ - xn 1
Y= Yn f(x) f(@) = f(n) f@) = flan)  f(2)

Since z,, — x and f is differentiable at x, there exists N1 such that
['(z)
7() — fla) > L
and given € > 0, there exists Ny such that
'f—) - f’(m)‘ <e n> Ny
T — T,
Let N = max{Ny, Ny}. We have

9(y) —gly.) 1 r—x, 1
Y = Yn f@) @) = fla)  f)] [f@) = fla)lf(z)
2 "(2) — (f(x) — fz 2 elr —x e

Since € > 0 and {z,},z, — x, are arbitrary, we have that ¢ is differentiable at any y €

f(a,b),y = f(z) and

|£I§'—33'n‘ nlea

1

= (@ — ) f(2) = (f(x) = f(2n)]



