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PAULINHO TCHATCHATCHA

Chapter 4, problem 14. Let I = [0, 1] be the closed unit interval. Suppose f is a
continuous map of I into I. Prove that f(x) = x for at least one x ∈ I.

Solution.
Consider the function g(x) = f(x) − x. Then g is a continuous function of I = [0, 1] into
[−1, 1], since 0 ≤ f(x) ≤ 1. We have then

g(0) = f(0) ≥ 0, g(1) = f(1)− 1 ≤ 0.

If g(0) = 0 or g(1) = 1, the f(0) = 0 or f(1) = 1 and we are done, otherwise g(0) > 0
and g(1) < 0, therefore by the intermediate value theorem there exists x ∈ [0, 1] such that
g(x) = 0, ie, f(x) = x.

Chapter 4, problem 16. Let [x] be the largest integer contained in x, that is, [x] is
the integer such that x− 1 < [x] ≤ x; and let (x) = x− [x] denote the fractional part of x.
What discontinuities do the functions [x] and (x) have?

Solution.
First note that since f(x) = x is continuous in R, (x) is continuous in x if and only if [x] is
continuous in x.
Note that

[x] = n, for x ∈ [n, n+ 1), n ∈ N.
Therefore [x] is discontinuous at x if and only if x ∈ N, and [n+] = n, [n−] = n− 1, for ev-
ery n ∈ N. So both [x] and (x) only have discontinuities of first kind (simple discontinuities).

Chapter 4, problem 20. If E is a nonempty subset of a metric space X, define the
distance from x ∈ X to E by

ρE(x) = inf
z∈E

d(x, z).

(a) Prove that ρE(x) = 0 if and only if x ∈ E.
(b) Prove that ρE is a uniformly continuous function on X, by showing that

|ρE(x)− ρE(y)| ≤ d(x, y)

for all x ∈ X, y ∈ X.

Solution.
(a) Suppose that ρE(x) = 0. Then for any ε > 0, there exists z ∈ E such that

d(x, z) < ε.
1



2 PAULINHO TCHATCHATCHA

Since ε > 0 is arbitrary, this shows that in any neighborhood of x, we can find z ∈ E, ie,
x ∈ E.
Conversely, if x ∈ E, for any ε > 0, there exists w ∈ E such that w ∈ Bε(x) = {y ∈ X :
|x− y| < ε}, ie,

ρE(x) = inf
z∈E

d(x, z) ≤ d(w, x) < ε.

Since ε > 0 is arbitrary, ρE(x) = 0.

(b) We have that for any x ∈ X, y ∈ X, z ∈ E, by the triangle inequality

ρE(x) ≤ d(x, z) ≤ d(x, y) + d(y, z).

Since z ∈ E is arbitrary, in the right hand side we can take the inf over z ∈ E and get

ρE(x) ≤ d(x, y) + ρE(y).

Similarly one can show

ρE(y) ≤ d(x, y) + ρE(x),

and hence

|ρE(x)− ρE(y)| ≤ d(x, y).

Chapter 4, problem 21. Suppose K and F are disjoint sets in a metric space X, K is
compact, F is closed. Prove that there exists δ > 0 such that d(p, q) > δ if p ∈ K, q ∈ F .
Show that the clonclusion may fail for two disjoint closed sets if neither is compact.

Solution.
Let us show first that the function ρF defined in problem 20 is a continuous positive function.
Given ε > 0, let δ = ε, then by the previous problem

|ρF (x)− ρF (y)| ≤ d(x, y) < δ = ε.

Therefore ρF is continuous and since the metric d is a nonnegative function we see that
ρF (x) ≥ 0, for any x ∈ X.
If the assume the contrary of the statement given above, then for any n ∈ N, there exists
pn ∈ K, qn ∈ F such that

d(pn, qn) ≤ 1

n
,

this, in particular, implies

ρF (pn) ≤ 1

n
,

in particular, ρF (pn)→ 0.
But since K is compact and {pn} ⊂ K, there exists a subsequence {pni

} such that pni
→

p ∈ K.
Since ρF is continuous, and ρF (pn) → ρF (p), so ρF (p) = 0. By the previous problem, this
implies that p ∈ F = F. A contradiction with K and F being disjoint.
Hence there exists δ > 0 such that d(p, q) > δ if p ∈ K, q ∈ F .



HOMEWORK #8 - MA 504 3

Now let X = R, F =
{
n+ 1

n
: n ∈ N

}
and K = N. We have that for any δ > 0, there exists

n ∈ N such that
1

n
< δ, so

d

(
n, n+

1

n

)
=

∣∣∣∣n− (
n+

1

n

)∣∣∣∣ =

∣∣∣∣ 1

n

∣∣∣∣ < δ.

Chapter 5, problem 23. A real-valued function f defined in (a, b) is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

whenever a < x < b, a < y < b, 0 < λ < 1. Prove that every convex function is continuous.
Prove that every increasing convex function of a convex function is convex.
If f is convex in (a, b) and if a < s < t < u < b, show that

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
.

Solution.
Let f be a convex function in (a, b). We want to show that f is continuous, ie, given ε > 0
there exists δ > 0 such that

|f(x)− f(y)| < ε if |x− y| < δ.

Given x ∈ (a, b), there exists x1, x2 ∈ (a, b) such that x1 < x < x2. Since f is convex, we
have

x =

(
x− x1

x2 − x1

)
x2 +

[
1−

(
x− x1

x2 − x1

)]
x1, 0 <

x− x1

x2 − x1

< 1,

so

f(x) ≤
(
x− x1

x2 − x1

)
f(x2) +

[
1−

(
x− x1

x2 − x1

)]
f(x1).

We can rewrite the equation above and get

f(x)− f(x1)

x− x1

≤ f(x2)− f(x1)

x2 − x1

,

or

(x2−x1)(f(x)−f(x1)) ≤ (x−x1)(f(x2)−f(x1))⇒ (x2−x)f(x2)−f(x1)(x2−x) ≤ (f(x2)−f(x))(x2−x1)

⇒ f(x2)− f(x1)

x2 − x1

≤ f(x2)− f(x)

x2 − x
.

Therefore for any x, y ∈ [x1, x2], assume without loss of generality x > y, and since (a, b) is
open there exist x0, x3 ∈ (a, b) such that x0 < x1 < x2 < x3,

f(x)− f(y)

x− y
≤ f(x3)− f(y)

x3 − y
≤ f(x3)− f(x2)

x3 − x2

,

and
f(x)− f(y)

x− y
≥ f(x)− f(x0)

x− x0

≤ f(x1)− f(x0)

x1 − x0

,
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ie,
|f(x)− f(y)|
|x− y|

≤ C = max

{
|f(x3)− f(x2)|

x3 − x2

,
|f(x1)− f(x0)|

x1 − x0

}
.

So given ε > 0, x ∈ [x1, x2], let δ = min{ ε
C
,
x2 − x1

2
} > 0, then for any y ∈ (x− δ, x+ δ) ⊂

[x1, x2],

|f(x)− f(y)| ≤ C|x− y| ≤ C
ε

C
= ε.

Hence f is continuous on x and since x ∈ (a, b) is arbitrary, f is continuous in (a, b).
Note that we showed above that if a < s < t < u < b, then

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
.

Let h = g ◦ f, ie, h(x) = g(f(x)), where g is an increasing function and f is a convex
function. We have for x, y ∈ (a, b), 0 < λ < 1,

h(λx+ (1− λ)y) = g(f(λx+ (1− λ)y)) ≤ g(λf(x) + (1− λ)f(y)).

Assume without loss of generality f(x) ≥ f(y) and y > x, otherwise consider λy+ (1− λ)x
instead of λx+ (1− λ)y. So λf(x) + (1− λ)f(y) ≤ f(x), and since g is increasing

h(λx+(1−λ)y)−λg(f(x)) ≤ λg(λf(x)+(1−λ)f(y))+(1−λ)g(λf(x)+(1−λ)f(y))−λg(x) ≤

≤ (1− λ)g(λf(x) + (1− λ)f(y)) ≤ (1− λ)g(f(y)),

ie,

h(λx+ (1− λ)y) ≤ g(f(x)) + 1− λ)g(f(y)).

Chapter 5, problem 1. Let f be defined for all real x, and suppose that

|f(x)− f(y)| ≤ (x− y)2

for all real x and y. Prove that f is constant.

Solution.
We see that, x 6= y,

|f(x)− f(y)| ≤ (x− y)2 = |x− y|2 ⇒ |f(x)− f(y)|
|x− y|

≤ |x− y|.

Therefore

lim
y→x

|f(x)− f(y)|
|x− y|

= 0.

Hence f is differentiable at every x ∈ R and f ′(x) = 0. By theorem 5.11 f must be constant.

Chapter 5, problem 2. Suppose f ′(x) > 0 in (a, b). Prove that f is strictly increas-
ing in (a, b), and let g be its inverse function. Prove that g is differentiable, and that

g′(f(x)) =
1

f ′(x)
(a < x < b).
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Solution.
Let x, y ∈ (a, b), x < y. Then by the Mean Value Theorem, there exists c ∈ (x, y) such that

f(y)− f(x) = (y − x)f ′(c) > 0.

Therefore f(y) > f(x) and f is increasing. Hence the inverse of f is well defined, since f is
injective, and let g be its inverse function, ie, g(f(x)) = f(g(x)) = x.
Given y ∈ f(a, b), let {yn} ⊂ f(a, b) be such that yn → y, yn 6= y. Then for each n, there
exists xn ∈ (a, b) such that f(xn) = yn, and let x ∈ (a, b) such that f(x) = y.
By theorem 4.17, g is continuous, so xn → x (note xn 6= x, since f is injective and yn =
f(xn) 6= y = f(x)). We have∣∣∣∣g(y)− g(yn)

y − yn
− 1

f ′(x)

∣∣∣∣ =

∣∣∣∣g(f(x))− g(f(xn))

f(x)− f(xn)
− 1

f ′(x)

∣∣∣∣ =

∣∣∣∣ x− xn
f(x)− f(xn)

− 1

f ′(x)

∣∣∣∣
Since xn → x and f is differentiable at x, there exists N1 such that

|f(x)− f(xn)| > f ′(x)

2
|x− xn| n ≥ N1,

and given ε > 0, there exists N2 such that∣∣∣∣f(x)− f(xn)

x− xn
− f ′(x)

∣∣∣∣ < ε n ≥ N2.

Let N = max{N1, N2}. We have∣∣∣∣g(y)− g(yn)

y − yn
− 1

f ′(x)

∣∣∣∣ =

∣∣∣∣ x− xn
f(x)− f(xn)

− 1

f ′(x)

∣∣∣∣ =
1

|f(x)− f(xn)|f ′(x)
|(x− xn)f ′(x)− (f(x)− f(xn)|

≤ 2

(f ′(x))2|x− xn|
|(x− xn)f ′(x)− (f(x)− f(xn))| ≤ 2

(f ′(x))2|x− xn|
ε|x− xn| <

2ε

f ′(x)
.

Since ε > 0 and {xn}, xn → x, are arbitrary, we have that g is differentiable at any ý ∈
f(a, b), y = f(x) and

g′(f(x)) =
1

f ′(x)
.


