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ABSTRACT. In this paper we initiate the study of the nonlinear
one phase singular perturbation problem

div(|∇uε|p−2∇uε) = βε(uε), (1 < p <∞)

in a domain Ω of RN . We prove uniform Lipschitz regularity of
uniformly bounded solutions. Once this is done we can pass to
the limit to obtain a solution to the stationary case of a combus-
tion problem with a nonlinearity of power type. (The case p = 2
has been considered earlier by several authors.)

1. INTRODUCTION

Our objective in this paper is to study the singular perturbation problem

(Pε) ∆puε = βε(uε), uε ≥ 0

in a domain Ω of RN . Here, for 1 < p < ∞, ∆p denotes the p-Laplace operator,
i.e., ∆pu = div(|∇u|p−2∇u). We recall that a solution to (Pε) is a function
uε ∈ W 1,p(Ω)∩ L∞(Ω) such that

(1.1)
∫
Ω |∇uε|p−2∇uε · ∇ϕdx = −

∫
Ωϕβε(uε)dx

for all ϕ ∈ C∞0 (Ω). We require βε to be Lip(R) and to satisfy

(1.2) 0 ≤ βε ≤ Aε χ(0,ε) and
∫ ε

0
βε(s)ds = M

for positive constants A and M. In particular, these conditions are fulfilled when
the functions βε are constructed from a single nonnegative Lipschitz function β
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supported in [0,1] by setting

(1.3) βε(s) = 1
ε
β
(
s
ε

)
.

Although our analysis applies to a general type of operators, as the ones considered
in [17] of the form div(A(x,u,∇u)), for simplicity and clarity of the arguments
we focus on the specific form of the p-Laplacian ∆p.

The motivation of the study in this paper comes from the applications to
the one-phase case of the combustion problem, appearing in the description of
laminar flames as an asymptotic limit for high activation energy, that corresponds
to the limit as ε → 0 in (Pε). For the case p = 2 there is an extensive study of the
problem and more or less a complete resolution of it; see [2], [15] for the elliptic
case and [8], [3], [6], [7], [4], [9] for the parabolic one. However, the nonlinear
case, addressed here, has never been considered earlier. This might partly depend
on the lack of an established theory for the p-Laplace operator, and partly on the
fact that some of the earlier techniques fail in the absence of linearity.

We show that, in a sense, the limit of (Pε) as ε → 0 is a free boundary problem

(P )


∆pu = 0 in {u > 0},
|∇u| = c on ∂{u > 0} ∩Ω,

with c = ((p/(p − 1))M)1/p. Namely, the main result of this paper (Theorem
4.3 in Section 4) asserts that the uniform limits u of uε have the asymptotic
development

u(x) =
(
p

p − 1
M
)1/p

〈x − x0, η〉+ + o(|x − x0|),

near x0 ∈ ∂{u > 0}, provided ∂{u > 0} admits a measure theoretic normal and
u is not degenerate at x0 (see Definitions 4.1-4.2).

The free boundary problem (P ) for the p-Laplacian was studied earlier under
certain geometric (convexity) assumptions, by different techniques; see e.g. [1] by
Acker and Meyer and a series of papers [11]-[13] by Henrot and Shahgholian.

To prove the main theorem (Theorem 4.3) we need a uniform bound (The-
orem 2.1) for the gradient of the solutions, in order to have some stability of the
problem as one passes to the limit. This type of uniform bounds on the gradient
usually constitutes the basics of the analysis to follow, and it is by no means an
obvious generalization of earlier results. Indeed, it needs to be pointed out that
one of the main difficulties in the consideration of operators that do not admit
linearization, as it is for the p-Laplacian, appears in the deduction of the uniform
gradient bound, which has its own independent interest. In this part of our analy-
sis we apply techniques that have been recently developed for related free boundary
problems, see [14] and [5].
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2. THE UNIFORM GRADIENT BOUND FOR SOLUTIONS

In this section we prove that the solutions uε of the singular perturbation problem
(Pε) are locally uniformly Lipschitz. Our main theorem in this section is the
following.

Theorem 2.1. Let uε be a nonnegative solution of (Pε) in a domain Ω of RN
with βε satisfying (1.2) and such that ‖uε‖L∞(Ω) ≤ L. Then for every compact K ø Ω
there is a constant C = C(N,p,A, L,dist(K, ∂Ω)) independent of ε such that

‖∇uε‖L∞(K) ≤ C.

It is also noteworthy that as far as the proof of Theorem 2.1 goes, one can
relax the conditions on βε. An important observation is that the same technique to
follow shows that, in the case of two-phase problems (see [6]-[7]), one may deduce
gradient bound for the non-negative part of the solution if one already knows that
the negative part of the solution is Lipschitz. In [3], L. Caffarelli applied this idea
in combination with the monotonicity formulas to deduce gradient bound for the
solution of the two-phase singular perturbation problem for the Laplacian; see also
[4]. In the absence of the monotonicity formula we are not able to prove a similar
result as that in [3]. It is apparent that some new technique is to be developed to
handle the sign change in the case of the p-Laplacian or any other nonlinear case.
This remains an open and tantalizing problem.

The proof of Theorem 2.1 will be based on the following lemma.

Lemma 2.2. Let v be a bounded nonnegative solution of

0 ≤ ∆pv ≤ Aχ{0<v<1}

in the unit ball B1 of RN , with v(0) ≤ 1. Then there is a constant C = C(N,p,A)
such that

‖v‖L∞(B1/4) ≤ C.
Remark 2.3. We explicitly observe that v ∈ C1,α(Ω) for some α > 0,

thanks to the results in [17]. In the case when ∆pv = β(v) with |β(s)| ≤
c0|s|p + c1|s|p−1 for some constants c0 and c1, the conclusion of the Lemma
2.2 follows directly from Serrin’s Harnack inequality for nonhomogeneous quasi-
linear operators, see [16]. Our proof, however, uses only Harnack inequality for
homogeneous operators and is based on compactness rather than energy methods,
which allows to generalize it to a broad range of operators.

Proof. Indeed, assume the contrary. Then there exists a sequence of functions
{vk}, k = 1, 2, . . . , satisfying the assumptions of the lemma and such that

max
B̄1/4

vk(x) >
4
3
k.
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Consider the sets

Ωk = {x ∈ B1 | vk(x) > 1} and Γk = ∂Ωk ∩ B1.

Note that vk is p-harmonic in Ωk. Let now δk(x) = dist(x, B1 \Ωk) and define

Ok =
{
x ∈ B1 | δk(x) ≤ 1

3
(1− |x|)

}
⊃ B1 \Ωk.

Observe that B̄1/4 ⊂ Ok. In particular

mk := sup
Ok
(1− |x|)vk(x) ≥ 3

4
max
B̄1/4

vk(x) > k.

Since vk(x) is bounded (for fixed k), we will have (1−|x|)vk(x)→ 0 as |x| → 1,
and therefore mk will be attained at some point xk ∈ Ok:
(2.1) (1− |xk|)vk(xk) = max

Ok
(1− |x|)vk(x).

Clearly,
vk(xk) = mk

1− |xk| ≥ mk > k.

Since xk ∈ Ok, by the definition we will have

(2.2) δk := δk(xk) ≤ 1
3
(1− |xk|).

Let now yk ∈ Γk be a point where δk = dist(xk, Γk) is realized, so that

(2.3) |yk − xk| = δk.
Then we will have two inclusions, B2δk(yk) ⊂ B1 and Bδk/2(yk) ⊂ Ok, both con-
sequences of (2.2)-(2.3). In particular, for z ∈ Bδk/2(yk) the following inequality
holds

(1− |z|) ≥ (1− |xk|)− |xk − z| ≥ (1− |xk|)− 3
2
δk ≥ 1

2
(1− |xk|).

This, in conjunction with (2.1), implies that

max
B̄δk/2(yk)

vk ≤ 2vk(xk).

Next, since Bδk(xk) ⊂ Ωk, vk satisfies ∆pvk = 0 in Bδk(xk). By the Harnack
inequality for p-harmonic functions there is a constant c = c(N,p) > 0 such that

min
B̄3δk/4(xk)

vk ≥ cvk(xk).
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In particular,
max

B̄δk/4(yk)
vk ≥ cvk(xk).

Further, define

wk(x) = vk(yk + δkx)vk(xk)
for x ∈ B2.

Summarizing the properties of vk above, we see that wk satisfies the following
system 

0 ≤ ∆pwk ≤ A(δk)pkp−1 in B2,

maxB̄1/2 wk ≤ 2, maxB̄1/4 wk ≥ c > 0,

wk ≥ 0, wk(0) ≤ 1
k
.

Therefore, from a priori estimates, we can conclude that a subsequence of {wk}
will converge in C1,α norm on every compact subset of B1/2 to a function w0 that
satisfies 

∆pw0 = 0 in B1/2,

maxB̄1/4 w0 ≥ c > 0,

w0 ≥ 0, w0(0) = 0.

This, however, contradicts the strong maximum principle for p-harmonic func-
tions. The lemma is proved. ❐

Proof of Theorem 2.1. We start with the observation that it is enough to prove
the theorem in the case when Ω = B1, K = B̄1/8, and under the assumptions
uε(0) = ε and ‖uε‖L∞(B1) = 1. Denote

Ωε = {x ∈ B1 | uε > ε} and Γ ε = ∂Ωε ∩ B1.

Step 1. Prove that there is a constant C = C(N,p,A) such that

(2.4) |∇uε(x)| ≤ C, for x ∈ B̄1/2 \Ωε.
Indeed, take a point x0 ∈ B̄1/2 with uε(x0) ≤ ε and consider a function

vε(x) = u
ε(x0 + εx)

ε
.

Direct computation shows that vε satisfies

0 ≤ ∆pvε ≤ Aχ{0<vε<1}.
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All the assumptions of Lemma 2.2 are thus fulfilled for v = vε and we can con-
clude

(2.5) max
B̄1/4

vε ≤ C(N,p,A).

From interior gradient estimates we obtain

|∇uε(x0)| = |∇vε(0)| ≤ C1(N,p,A)max
B̄1/4

vε ≤ C2(N,p,A)

for all x0 ∈ B̄1/2 \Ωε. Hence (2.4) is proved.

Step 2. Prove that

(2.6) |uε(x)| ≤ ε + C(N,p,A)dist(x, B1 \Ωε) for x ∈ B̄1/4 ∩Ωε.
Indeed, for x0 ∈ B̄1/4 ∩Ωε denote

m0 = uε(x0)− ε and δ0 = dist(x0, B1 \Ωε)
Notice that, since 0 ∈ Γ ε, δ0 ≤ 1

4 . We want to prove that

(2.7) m0 ≤ C(N,p,A)δ0.

Since Bδ0(x0) is contained in Ωε, uε − ε will be nonnegative and p-harmonic
there. We can thus apply the Harnack inequality to conclude

min
Bδ0/2(x0)

(uε(x)− ε) ≥ c1m0

for c1 = c1(N,p) > 0. Next, consider the p-capacitary potential ϕ(x) of the
ring B1 \ B̄1/2 which satisfies

∆pϕ(x) = 0 in B1 \ B̄1/2, ϕ
∣∣
∂B1
= 0, and ϕ

∣∣
∂B1/2

= 1.

The functionϕ will be spherically symmetric with |∇ϕ| = c0 = c0(N,p) > 0 on
∂B1. Define

ψ(x) = c1m0ϕ
(
x − x0

δ0

)
for x ∈ B̄δ0(x0) \ B̄δ0/2(x0).

From the comparison principle for p-harmonic functions we will have

(2.8) ψ(x) ≤ uε(x)− ε for x ∈ B̄δ0(x0) \ B̄δ0/2(x0).
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Take y0 ∈ ∂Bδ0(x0)∩ Γε. Then y0 ∈ B̄1/2, and

(2.9) ψ(y0) = uε(y0)− ε = 0.

We infer from (2.8), (2.9), and (2.4) that |∇ψ(y0)| ≤ |∇uε(y0)| ≤ c2(N,p,A).
Observe now that |∇ψ(y0)| = c1m0c0/δ0 and therefore we obtain

m0 ≤ c2

c0c1
δ0.

Thus, inequalities (2.7) and (2.6) are proved.

Step 3. Prove that

(2.10) |∇uε(x)| ≤ C(n,p,A) for x ∈ B̄1/8 ∩Ωε.
Indeed, let x0 ∈ B̄1/8 ∩Ωε, δ0 = dist(x0, B1 \Ωε) and define

w(x) = u
ε(x0 + δ0x)− ε

δ0
for x ∈ B1.

Then, from the inclusion Bδ0(x0) ⊂ Ωε and inequality (2.6) we will have

0 ≤ w ≤ C(N,p,A) in B1.

Since also w is p-harmonic in B1, from the interior gradient estimates we obtain

|∇uε(x0)| = |∇w(0)| ≤ C1(N,p,A),

which proves (2.10).
Now the theorem follows from (2.4) and (2.10). ❐

3. PASSAGE TO THE LIMIT: εj ↘ 0

From now on we will assume that functions βε in (Pε) satisfy (1.2)-(1.3).
This section embodies the main technical tools that one needs to establish the

main theorem (Theorem 4.3).

Lemma 3.1. Let {uε} be a uniformly bounded family of solutions to (Pε). Then
for every sequence εj → 0 there exists a subsequence ε′j → 0 and u ∈ Lip(Ω) such
that:

(i) uε
′
j → u uniformly on compact subsets of Ω;

(ii) ∆pu = 0 in Ω \ ∂{u > 0};
(iii) ∇uε′j → ∇u in Lploc(Ω).
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Proof. Part (i) follows by Theorem 2.1 and a standard compactness argu-
ment. Let now E ø {u > 0} be open. Then u ≥ c > 0 in E. By the uniform
convergence, we will have uε

′
j > c/2 in E for small ε′j . Hence, if also ε′j < c/2,

uε
′
j will be p-harmonic in E. This implies that u is p-harmonic in E and since E

was arbitrary, (ii) follows.
Finally, we prove (iii). Let ψ be a nonnegative C∞0 (Ω) function, and δ > 0.

Take (u − δ)+ψ as a test function. Since ∆pu = 0 in the positivity set of u,
integrating by parts, we obtain∫
{u>δ}

|∇u|pψ = −
∫
{u>δ}

|∇u|p−2∇u · ∇ψu+ δ
∫
{u>δ}

|∇u|p−2∇u · ∇ψ.

Letting δ→ 0 we find

(3.1)
∫
{u>0}

|∇u|pψ = −
∫
{u>0}

|∇u|p−2∇u · ∇ψu.

On the other hand, the observation βε(uε)uε ≥ 0 yields

(3.2)
∫
Ω |∇uε|pψ ≤ −

∫
Ω |∇uε|p−2∇uε · ∇ψuε.

Using the uniform convergence ofuε tou and the weak convergence of |∇uε|p−2∇uε
to |∇u|p−2∇u in Lp/(p−1)

loc (Ω), we infer from (3.1) and (3.2) that

(3.3) lim sup
j→∞

∫
|∇uεj |pψ ≤

∫
|∇u|pψ.

Since ∇uεj ⇀ ∇u in Lploc(Ω), we have

(3.4)
∫
|∇u|pψ ≤ lim inf

j→∞

∫
|∇uεj |pψ.

It follows from (3.3), (3.4), and a simple compactness argument that ∇uεj → ∇u
in Lploc(Ω).

The conclusion of part (iii) is proved, and so is the lemma. ❐

We now prove that limit solutions are solutions to the free boundary problem
in a very weak sense.

Proposition 3.2. Let {uεj} be a family of solutions to (Pεj ). Assume that uεj →
u uniformly on compact subsets of Ω as εj → 0. Then there exists a locally finite
measure µ supported on the free boundary Ω ∩ ∂{u > 0} such that βεj (uεj ) ⇀
µ in Ω. In particular, ∆pu = µ in Ω, i.e.,

(3.5)
∫
Ω |∇u|p−2∇u · ∇ϕdx = −

∫
Ωϕdµ
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for all ϕ ∈ C∞0 (Ω).
Proof. By definition of weak solutions to (Pε), if ϕ ∈ C∞0 (Ω), one has

(3.6)
∫
Ω |∇uε|p−2∇uε · ∇ϕ = −

∫
Ω βε(uε)ϕ.

Since uεj → u uniformly on compact subsets of Ω, by Lemma 3.1 we know
∇uεj → ∇u in Lploc(Ω), and so the left-hand side of (3.6) converges to the left-
hand side of (3.5). Now let F ⊂ Ω be compact, and take ϕ ∈ C∞0 (Ω), ϕ ≥ 0,
ϕ ≡ 1 in F . The sequence {∫Ω βεj (uεj )ϕdx} is convergent, and therefore it is
bounded. Hence ∫

F
βεj (u

εj )dx ≤
∫
Ω βεj (uεj )ϕdx ≤ C(ϕ).

This implies that there exists a locally finite measure µ such that, passing to a
subsequence (still denoted by εj) if necessary, βεj (uεj ) → µ as measures in Ω.
Passing to the limit in (3.6), we get (3.5). Moreover, since ∆pu = 0 in Ω \ ∂{u >
0} by Lemma 3.1, we conclude that µ is supported in Ω∩ ∂{u > 0}. The proof
is thus complete. ❐

Lemma 3.3. Let {uεj} be a family of solutions to (Pεj ) in Ω such that uεj → u
uniformly on compact subsets of Ω and εj → 0 as j →∞. Let x0, xn ∈ Ω∩∂{u > 0}
be such that xn → x0 as n→ ∞. Let λn → 0, uλn(x) = (1/λn)u(xn+λnx), and
(uεj )λn(x) = (1/λn)uεj (xn + λnx). Suppose that uλn → U as n → ∞ uniformly
on compact sets of RN . Then, there exists j(n) → ∞ such that for every jn ≥ j(n)
there holds that εjn/λn → 0, and

(i) (uεjn )λn → U uniformly on compact sets of RN ;
(ii) ∇(uεjn )λn → ∇U in Lploc(RN);

(iii) ∇uλn → ∇U in Lploc(RN).

Proof. The proof is along the lines of the one of Lemma 3.2 in [6]. We
discuss here only the relevant modifications. For simplicity we assume xn = x0.
Proceeding as in the cited reference, one can show that (i) holds. The functions
(uεjn )λn are solutions to

∆p(uεjn )λn = βεjn/λn((uεjn )λn)
in Bk, where k is a fixed positive number. By Lemma 3.1 there exists a subse-
quence, still denoted by jn, such that ∇(uεjn )λn → ∇U in Lp(Bk). Then also (ii)
holds. In order to prove (iii), let δ > 0 and consider

‖∇uλn −∇U‖ ≤ ‖∇uλn −∇(uεj )λn‖ + ‖∇(uεj )λn −∇U‖ = I + II,
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where all the norms are in Lp(Bk). By (ii) we already know that II < δ if j ≥ jn
and n is sufficiently large. Moreover, by virtue of Lemma 3.1 it holds

Ip =
∫
Bk
|∇u−∇uεj |p(x0 + λnx)dx

= 1
λNn

∫
Bλnk(x0)

|∇u−∇uεj |p(x)dx < δp

if j and n are sufficiently large. This proves (iii). ❐

We now turn our attention to the special case when the limit function u is one-
dimensional.

Proposition 3.4. Let x0 ∈ Ω, and let uεk be solutions to

∆puεk = βεk(uεk)
in Ω. If uεk converge to α(x−x0)+1 uniformly on compact subsets of Ω, with α ∈ R,
and εk → 0 as k→∞, then

0 ≤ α ≤
(
p

p − 1
M
)1/p

.

Proof. Without loss of generality, we assume x0 = 0. Since uεk ≥ 0, we
readily haveα ≥ 0. Next, letψ ∈ C∞0 (Ω). Choosinguεkx1ψ as a test function in the
weak formulation of ∆puεk = βεk(uεk) (see Remark 3.5 below) and integrating
by parts, we obtain

(3.7) − 1
p

∫
Ω |∇uεk|pψx1 +

∫
Ω |∇uεk|p−2uεkx1∇uεk · ∇ψ =

∫
Ω Bεk(uεk)ψx1 .

Here, Bεk(s) =
∫ s
0 βεk(τ)dτ. Since 0 ≤ Bεk(s) ≤M, there existsM(x) ∈ L∞(Ω),

0 ≤ M(x) ≤ M, such that on a subsequence (still denoted by εk) Bεk(uεk) →
M(x) ∗-weakly in L∞(Ω). If y ∈ Ω ∩ {x1 > 0}, then uεk ≥ αy1/2 in a
neighborhood of y for k sufficiently large. Hence, if uεk(x) ≥ εk we have, by
(1.2),

Bεk(u
εk)(x) =

∫ uεk(x)/εk
0

β(s)ds = M.

Moreover, using Proposition 3.2, it is immediate to recognize that ∇Bεk(uεk) =
βεk(uεk)∇uεk → 0 in L1

loc(Ω ∩ {x1 < 0}). Hence M(x) = M̄ ∈ [0,M] inΩ∩ {x1 < 0}. Passing to the limit in (3.7) yields

p − 1
p

αp
∫
{x1>0}

ψx1 dx =M
∫
{x1>0}

ψx1 dx + M̄
∫
{x1<0}

ψx1 dx,
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and integrating by parts we find

p − 1
p

αp
∫
{x1=0}

ψdx′ = M
∫
{x1=0}

ψdx′ − M̄
∫
{x1=0}

ψdx′.

The arbitrariness ofψ ∈ C∞0 (Ω) allows to conclude ((p−1)/p)αp = M−M̄ ≤M,
since M̄ ≥ 0. Hence αp ≤ (p/(p − 1))M, and the proof is complete. ❐

Remark 3.5. We recall that the weak solution u of the equation ∆pu = f inΩ with bounded f has a representative in W 2,2
loc (Ω) if 2 ≤ p <∞, and in W 2,p

loc (Ω)
for 1 < p ≤ 2, see e.g. [17]. This, in conjunction with local L∞ bounds on |∇uεk|
in Ω, justifies the integration by parts in the proof of Proposition 3.4 above.

Proposition 3.6. Let x0 ∈ Ω, and let uεk be solutions to

∆puεk = βεk(uεk)
in Ω. If uεk converge to α(x − x0)+1 + γ(x − x0)−1 uniformly on compact subsets ofΩ, with α, γ > 0 and εk → 0 as k→∞, then

α = γ ≤
(
p

p − 1
M
)1/p

.

Proof. Without loss of generality we assume x0 = 0. As in Proposition 3.4,
uεk satisfies (3.7), and it is immediate to recognize that Bεk(uεk)→ M in L1

loc(Ω).
Passing to the limit in (3.7), and integrating by parts in the resulting equation, we
find that α = γ.

Now we assume that α > ((p/(p − 1))M)1/p and show that this leads to a
contradiction.

Step 1. Let R2 := {x = (x1, x′) ∈ RN : |x1| < 2, |x′| < 2}. Without loss
of generality, we may assume R2 ø Ω. First of all, we construct a family {vεj} of
solutions to (Pεj ) in R2 with the property

(3.8) vεj (x1, x′) = vεj (−x1, x′) in R2,

and such that vεj → u uniformly on compact subsets ofR2, whereu(x) = α|x1|.
To this end, we let bεj = supR2

|uεj − u| and vεj be the minimal solution (i.e.,
minimum of all supersolutions) to (Pεj ) inR2 with boundary values vεj = u−bεj
on ∂R2. By virtue of Lemma 3.1, there exists v ∈ Liploc(R2) such that, on a
subsequence, vεj → v uniformly on compact subsets ofR2. From the minimality
of vεj it is immediate to recognize that u ≥ v.

To prove the reverse inequality, we consider w ∈ C2(R), satisfying

(|w′|p−2w′)′ = β(w) in R, w(0) = 1, w′(0) = α,
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and let

wεj(x1) = εjw
(
x1

εj
− bεj
γεj

+ s̄
)
.

Here s̄ < 0 is a constant, determined as in [6, Proposition 5.3], such that

w(s) =


1+αs, s ≥ 0,

γ(s − s̄), s ≤ s̄.

Here α and γ are related by αp −γp = (p/(p−1))M and therefore γ > 0 under
the assumption α > ((p/(p − 1))M)1/p. Moreover, we have w′(x1) ≥ γ for all
x1 ∈ R. Observe also thatwεj ≤ u−bεj = vεj on ∂R2. From Lemma 3.7 below,
it follows that wεj ≤ vεj in R2. Let us point out that such an implication is not
immediate since, in general, there is no comparison principle for ∆p − β. As a
consequence, u ≤ v in R2 ∩ {x1 > 0}. Using (3.8), finally, we see that u ≤ v in
R2, and the construction is complete.

Step 2. Let R+ = {x | 0 < x1 < 1, |x′| < 1}. Then using the weak
formulation of (Pεj ) in R+ we have

Ej =
∫∫
R+

∂
∂x1

(
1
p
|∇vεj |p

)
dx =

∫∫
R+
|∇vεj |p−2∇vεj · ∇vεjx1 dx

=
∫∫
R+

div(|∇vεj |p−2∇vεjvεjx1)dx −
∫∫
R+
βεj (v

εj )vεjx1 dx = Fj −Gj.

Using the divergence theorem and that vεjx1(0, x′) = 0 (from symmetry in the x1
variable) we find that

Fj =
∫
∂R+∩{x1=1}

|∇vεj |p−2(vεjx1)2 dx′ +
∫
∂R+∩{|x′|=1}

|∇vεj |p−2vεjn v
εj
x1 dS,

where vεjn is the exterior normal derivative of vεj on ∂R+∩{|x′| = 1}. From the
convergence vεj → u = αx+1 +αx−1 in R2 and Lemma 3.1 it follows (at least for
a subsequence) that

∇vεjx1 → αe1 pointwise a.e. in R+
2 = R2 ∩ {x1 > 0}.

Since |∇vεj | are uniformly bounded, from the dominated convergence theorem
we deduce that

(3.9) lim
j→∞

Fj =
∫
∂R+∩{x1=1}

αp dx′.
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On the other hand

Ej +Gj =
∫∫
R+

∂
∂
x1

(
1
p
|∇vεj |p + Bεj (vεj )

)
dx

≤
∫
∂R+∩{x1=1}

(
1
p
|∇vεj |p + Bεj (vεj )

)
dx′.

Using again that vεj → u = αx+1 +αx−1 uniformly on compact subsets ofR2, we
have |∇vεj | → α uniformly and Bεj (vεj ) = M on ∂R+∩{x1 = 1}, and therefore

(3.10) lim sup
j→∞

(Ej +Gj) ≤
∫
R+∩{x1=1}

(
1
p
αp +M

)
dx′.

Combining (3.9) and (3.10) we obtain

αp ≤ 1
p
αp +M

or equivalently

α ≤
(
p

p − 1
M
)1/p

,

which is a contradiction. The proof is thus complete. ❐

Lemma 3.7. Let wε(x1) be a strictly increasing solution of

(|wε′|p−2wε′)′ = βε(wε)

on R, and vε(x) be a solution of ∆pvε = βε(vε) in R = {x = (x1, x′) | a <
x1 < b, |x′| < r}, continuous up to ∂R. Then the following comparison principle
holds: if vε(x) ≥ wε(x1) for all x ∈ ∂R, then vε(x) ≥ wε(x1) for all x ∈ R.

Proof. Without loss of generality we assume that wε(0) = 0. Since wε is
strictly increasing, we can find τ > max{|a|, |b|} such that

wε(x1 − τ) < vε(x) on R̄.

For η > 0 sufficiently small definewε,η(x1) := wε(ϕη(x1−cη)), whereϕη(s) =
s+ηs2 and cη > 0 is the smallest constant such thatϕη(s−cη) ≤ s on [−2τ,2τ].
By the construction we readily have wε,η ≤ wε on [−2τ,2τ] and the straightfor-
ward computation shows that

∆pwε,η = (ϕ′η)p(∆pwε)(ϕη)+ ((wε)′(ϕη))p−1∆pϕη
> (ϕ′η)pβε(wε,η) ≥ βε(wε,η)
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on [−2τ,2τ]. The first inequality follows from the observation that ∆pϕη > 0
on [−2τ,2τ] (for small η > 0) and the second inequality follows from the fact
that x1 ≤ cη implies βε(wε,η) = 0 and that for x1 ≥ cη we have ϕ′η ≥ 1.

Summarizing the construction above, we see that, for small η > 0, the func-
tion wε,η is strictly increasing on the interval [−2τ,2τ], and satisfies ∆pwε,η >
βε(wε,η) and wε,η ≤ wε. Moreover, as η→ 0, wε,η converges uniformly to wε.

Let now τ∗ ≥ 0 be the smallest constant with the property

wε,η(x1 − τ∗) ≤ vε(x) on R̄.

Evidently, τ∗ < τ, and in fact, we claim that τ∗ = 0. Indeed, the minimality of
τ∗ implies that there is a point x∗ ∈ R̄ such that wε,η(x∗1 − τ∗) = vε(x∗). If
τ∗ > 0, we have wε,η(· − τ∗) < wε,η ≤ wε ≤ vε on ∂R, and hence x∗ is an
interior point of R. At this point we observe that the gradient of wε,η(x1 − τ∗)
is non-degenerate. We can thus apply the strong comparison principle for the
p-Laplacian to obtain a contradiction, since at x∗ we have ∆pwε,η(x∗1 − τ∗) >∆pvε(x∗). This shows that τ∗ = 0, and in particular that wε,η ≤ vε on R̄.
Letting η→ 0, we conclude the proof of the lemma. ❐

4. ASYMPTOTIC BEHAVIOR OF LIMIT SOLUTIONS

In this section we prove the asymptotic development of solutions to (Pε). We
begin with the relevant definitions.

Definition 4.1. A unit vector η ∈ RN is said to be the inward unit normal in
the measure theoretic sense to the free boundary ∂{u > 0} at a point x0 ∈ ∂{u > 0}
if

(4.1) lim
r→0

1
rN

∫
Br (x0)

|χ{u>0} − χ{x|〈x−x0,η〉>0}|dx = 0.

Definition 4.2. Let v be a continuous function in a domain Ω ⊂ RN . We
say that v is non-degenerate at a point x0 ∈ Ω ∩ {v = 0} if there exist c, r0 > 0
such that

1
rN

∫
Br (x0)

v dx ≥ cr for any r ∈ (0, r0).

The main result in this section is the following.

Theorem 4.3. Let uεj be solutions to (Pεj ) in a domain Ω ⊂ RN such that
uεj → u uniformly on compact subsets of Ω and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0}
be such that ∂{u > 0} has an inward unit normal η in the measure theoretic sense at
x0, and suppose that u is non-degenerate at x0. Under these assumptions, we have

u(x) =
(
p

p − 1
M
)1/p

〈x − x0, η〉+ + o(|x − x0|).
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The proof of Theorem 4.3 relies heavily on the following result.

Theorem 4.4. Let uεj be a solution to (Pεj ) in a domain Ω ⊂ RN such that
uεj → u uniformly on compact subsets of Ω as εj → 0. Then

lim sup
x→x0

|∇u(x)| ≤
(
p

p − 1
M
)1/p

.

Proof. Let α = lim supx→x0
|∇u(x)|. Since u ∈ Lip(Ω), clearly α < ∞. If

α = 0, there is nothing to prove, so we may assume α > 0. There exists a sequence
xn → x0 such that |∇u(xn)| → α and u(xn) > 0. Let zn ∈ Ω ∩ ∂{u > 0} be
such that dn = |zn−xn| = dist(xn, ∂{u > 0}). Defineudn(x) = (1/dn)u(zn+
dnx). Since u ∈ Lip(Ω) and udn(0) = 0 for every n, {udn} is uniformly
bounded on compact subsets of RN , and therefore for a subsequence (still denoted
by dn) udn → u0 uniformly on compact subsets of RN , where u0 ∈ Lip(RN).

Now, set x̄n = (xn − zn)/dn ∈ ∂B1. We may choose the subsequence dn so
that x̄n → x̄ ∈ ∂B1. Then u0 is p-harmonic and nonnegative in B1(x̄). Consider
now the sequence

νn = ∇udn(x̄n)
|∇udn(x̄n)|

= ∇u(xn)
|∇u(xn)| .

Passing to a subsequence, we assume, without loss of generality, that νn → e1. At
this point we observe that B2/3(x̄) ⊂ B1(x̄n) for n sufficiently large, and there-
fore udn is p-harmonic in B2/3(x̄). By interior gradient estimates, udn → u0

in C1,σ (B1/2(x̄)) for some σ > 0. This suffices to show that ∇udn → ∇u0
uniformly in B1/3(x̄) and thus, as a consequence, |∇u(xn)| → ∂x1u0(x̄). In
particular, ∂x1u0(x̄) = α.

Next, it is easy to show that |∇u0| ≤ α in RN . Indeed, let R > 1, δ > 0. Then
there exists τ0 > 0 such that |∇u(x)| ≤ α + δ for any x ∈ Bτ0R(x0). Observe
now that |xn − x0| < τ0R/2 and dn < τ0/2 imply BdnR(xn) ⊂ Bτ0R(x0), and
therefore |∇udn(x)| ≤ α + δ in BR for n large enough. In particular, ∇udn →
∇u0 ∗-weakly in L∞(BR) and thus |∇u0| ≤ α + δ in BR. Since δ and R are
arbitrary, we conclude

|∇u0| ≤ α in RN.

Let w = ∂x1u0, which is a weak solution to the equation

∂xj
(
θij(∇u0)∂xiw

)
= 0 in B1(x̄),

with θij(ξ) = (p − 2)|ξ|p−4ξiξj + δij|ξ|p−2ξij . We also know that w ≤ α in
B1(x̄), w(x̄) = α. By the maximum principle (recall that ∂x1u0(x̄) = α > 0),
w ≡ α in B1(x̄) and so u0(x) = α(x1 − y1) in B1(x̄) for some y ∈ RN . It is
not difficult to recognize that

u0(x) = α(x1 −y1) in {x1 ≥ y1}.
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We now apply Lemma A.1 from the Appendix to u0 in {x1−y1 < 0} and obtain

u0(x) = γ(x −y)−1 + o(|x −y|) in {x1 −y1 < 0}

for some γ ≥ 0. Define, for λ > 0, (u0)λ(x) = (1/λ)u0(λx + y). There
exist a sequence λn → 0 and a function u00 ∈ Lip(RN) such that (u0)λn → u00

uniformly on compact sets of RN . We have u00(x) = αx+1 + γx−1 in RN . By
Lemma 3.3, there exists a sequence ε0

j → 0 such that uε
0
j is a solution to (Pε0

j
)

and uε
0
j → u0 uniformly on compact subsets of B1. Applying Lemma 3.3 again

(the second “blowup”) we find a sequence ε00
j → 0 and solutions uε

00
j to (Pε00

j
)

converging uniformly on compact subsets of B1 to u00(x) = αx+1 +γx−1 . Finally,
we may apply Proposition 3.4 or Proposition 3.6, depending on whether γ = 0 or
γ > 0, to conclude α ≤ ((p/(p − 1))M

)1/p. ❐

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Without loss of generality we may assume x0 = 0 and
η = e1. Define, for λ > 0,

uλ(x) = 1
λ
u(λx),

and let ρ > 0 be such that Bρ ø Ω. Since uλ ∈ Lip(Bρ/λ) uniformly in λ, and
uλ(0) = 0, there exist a subsequence λj → 0 and a function U ∈ Lip(RN) such
that uλj → U uniformly on compact subsets of RN . From Lemmas 3.1 and 3.3 it
follows that uλ is p-harmonic in its positivity set {uλ > 0}. Next, rescaling (4.1)
we see that, for every fixed k > 0

|{uλ > 0} ∩ {x1 < 0} ∩ Bk| → 0 as λ→ 0.

Hence, U is nonnegative in {x1 > 0}, p-harmonic in {U > 0}, and vanishes on
{x1 ≤ 0}. By Lemma A.1, there exists α ≥ 0 such that

U(x) = αx+1 + o(|x|) in {x1 > 0}.

By virtue of Lemma 3.3, we can find a sequence ε′j → 0 and solutions uε
′
j to (Pε′j )

such that uε
′
j → U uniformly on compact sets of RN as j →∞.

On the other hand, if we define Uλ(x) = (1/λ)U(λx), Uλ → αx+1 uniformly
on compact subsets of RN as λ → 0. Applying Lemma 3.3 the second time, we
find now a sequence σj → 0 and solutions uσj to (Pσj ) such that uσj → αx+1
uniformly on compact subsets of RN , and

(4.2) ∇uσj → αχ{x1>0}e1 in Lploc(RN),
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by virtue of Lemma 3.1.
Further, we proceed as in the proof of Proposition 3.4. Let ψ ∈ C∞0 (RN) and

choose uσjx1ψ as a test function in the weak formulation of ∆puσj = βσj (uσj).
Then we find that Bσj(uσj ) → Mχ{x1>0} + M̄χ{x1<0} ∗-weakly in L∞(Ω), and
((p − 1)/p)αp = M − M̄. We now claim that either M̄ = 0 or M̄ = M. To this
end, let K ø {x1 < 0}. Then for any ε > 0 there exists 0 < δ < 1 such that

|K ∩ {ε < Bσj(uσj ) < M − ε}| ≤
∣∣∣∣∣K ∩

{
δ <

uσj
σj

< 1− δ
}∣∣∣∣∣

≤
∣∣∣∣∣K ∩

{
βσj (u

σj) ≥ a
σj

}∣∣∣∣∣→ 0

as j → ∞, where a = inf[δ,1−δ] β > 0, since βσj (uσj) → 0 in L1(K) by virtue
of Proposition 3.2. At this point we observe that, thanks to a simple compactness
argument, the latter fact also implies that the convergence of Bσj(uσj) to M̄ is
actually in L1

loc({x1 < 0}). We may thus conclude

|K ∩ {ε < M̄ < M − ε}| = 0

for every ε > 0 and K ø {x1 < 0}. Hence, the claim is proved.
Let us see now that α > 0. By virtue of the non-degeneracy assumption on u

at 0, for every r > 0 and j sufficiently large,

1
rN

∫
Br
uλj ≥ cr ,

and passing to the limit as j →∞,

1
rN

∫
Br
U ≥ cr .

Clearly, this forces α > 0, and as a consequence, M̄ = 0 and α =(
(p/(p − 1))M

)1/p. We have thus shown that

(4.3) U(x) =


(
p

p − 1
M
)1/p

x1 + o(|x|), x1 > 0;

0, x1 ≤ 0.

Next, it follows from Theorem 4.4 that

|∇U| ≤
(
p

p − 1
M
)1/p

in RN.
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At this point it suffices to observe that U ≡ 0 on {x1 = 0} to conclude that
U ≤ ((p/(p − 1))M)1/px1 in {x1 > 0}. Applying Hopf ’s boundary principle we
see that necessarily

U(x) =
(
p

p − 1
M
)1/p

x1 in {x1 > 0}.

As an immediate consequence we finally obtain

u(x) =
(
p

p − 1
M
)1/p

x+1 + o(|x|),

and the proof is complete. ❐

APPENDIX A.

Here we prove an analogue of Corollary A.1 in [6] on asymptotic development of
p-harmonic functions near flat boundary points, by a slight modification of the
proof of Lemma A.1 in [6].

Lemma A.1. Let U ∈ Lip(B̄+1 ) and assume that U is nonnegative in B+1 , p-
harmonic in {U > 0} and vanishes on ∂B+1 ∩ {x1 = 0}. Then in B+1 , U has the
asymptotic development

U(x) = αx1 + o(|x|)
with α ≥ 0.

Proof. Let `k := inf{l | U(x) ≤ lx1 in B+2−k}. Since `k is a nonincreasing
sequence of nonnegative finite numbers, there exists α = limk→∞ `k. Then

U(x) ≤ αx1 + o(|x|) in B+1 .

If α = 0, the conclusion of the lemma will follow. Assume therefore that α > 0.
Then there exists a sequence xk ∈ B+1 with rk = |xk| → 0 such that

U(xk) ≤ αxk1 − δ0rk,

for some δ0 > 0. Note that xk will belong to the cone C = {|x| ≤ (α/δ0)x1},
and thus we can assume that νk := xk/rk converges to some ν0 ∈ ∂B+1 ∩C. Next,
let

Uk(x) := U(rkx)
rk

.

Since {Uk} are uniformly Lipschitz, we may assume that Uk converges uniformly
on B̄+1 to a nonnegative function V . Then from the construction we will have
V(x) ≤ αx1 in B+1 , and in addition

V(x) ≤ αx1 − δ0

2
and Uk(x) ≤ `kx1 − δ0

2
on ∂B+1 ∩ Bε(ν0)
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for a sufficiently small ε > 0 and large k.
Let now w be a p-harmonic function in B+1 with smooth boundary values,

such that

w = x1 on ∂B+1 \ Bε/2(ν0),

w = x1 − δ0

4α
on ∂B+1 ∩ Bε/4(ν0),

x1 − δ0

4α
≤ w ≤ x1 on ∂B+1 ∩ Bε/2(ν0).

Then w vanishes on the flat boundary {x1 = 0} ∩ B1, it is C1,σ up to {x1 =
0} ∩ B1, and by the Hopf boundary principle

w(x) ≤ (1− µ)x1 in B+γ

for some small µ, γ.
Now, from the comparison principle we will have Uk ≤ `kw in B+1 for large

k, and consequently Uk ≤ `k(1− µ)x1 in B+γ . This implies α ≤ (1−µ)α, which
contradicts the assumption that α > 0. The lemma is proved. ❐
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