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1 Introduction

The aim of this paper is to prove a pointwise estimate which plays a fundamen-
tal role in the analysis of both linear and nonlinear partial differential equations
arising from a system of non-commuting vector fields X = {X1, . . . ,Xm}. Al-
though our result holds in a larger setting, for the unity of presentation we con-
fine ourselves to the specific case of smooth vector fields X1, . . .Xm satisfying
Hörmander’s finite rank condition [H]: Rank (Lie[X1, . . . ,Xm ])(x ) = n for every
x ∈ �n . Let d : �n ×�n → �

+ be the Carnot-Carathéodory metric associated to
X1, . . . ,Xm , and for x0 ∈ �n and R > 0 set B = Bd (x0,R) = {y ∈ �n |d (x0, y) <
R}. For a > 0 the symbol aB will denote the concentric ball Bd (x0, aR). For a
given function u we let Xu = (X1u, . . . ,Xmu) and |Xu|2 =

∑m
j=1(Xj u)2. Through-

out the paper we will use the standard notation uB = 1
|B |

∫
B u(y)dy .

Our main result is

Theorem 1.1. Let U ⊂⊂ �
n , and x0 ∈ U . There exist C , R0 > 0 and a > 1

depending only on U and the vector fields X1, . . . ,Xm such that for any u ∈
C 1(aB ), R ≤ R0, and x ∈ B one has

|u(x ) − uB | ≤ C
∫

aB
|Xu(y)| d (x , y)

|Bd (x , d (x , y))|dy . (1.1)

Theorem 1.1 has several remarkable applications. Recently Nhieu and one of
us [GN] have proved that (1.1) and the doubling condition (1.4) below, imply a
sharp subelliptic Sobolev embedding. More precisely one has the following:

Theorem 1.2. (see [GN]) Let U ⊂⊂ �
n be fixed. Then there exists R0 > 0 and

C > 0 such that for any x0 ∈ U ,B = Bd (x0,R) and 0 < R ≤ R0, one has for
u ∈ C 1(B )
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(
1
|B |

∫
B
|u − uB |

Q
Q−1 dx

) Q−1
Q

≤ C
R
|B |

∫
B
|Xu|dx ,

where Q is the homogeneous dimension of the family X1, . . . ,Xm in U (see below).

It is worth emphasizing that, in opposition to (1.1), the inequality in Theorem
1.2 involves integration over the same ball B in both left- and right-hand side.

Another important consequence of Theorem 1.1 is that Theorem 1.2 is equiv-
alent to a relative isoperimetric inequality for sets of finite (generalized) perimeter
(for the relevant definitions see also [CDG1]):

Theorem 1.3. (see [GN]) Let E ⊂ �
n be an X -Caccioppoli set. Then, with U ,

Q, C , R0 and B as in Theorem 1.2 one has

min(|E ∩ B |, |E C ∩ B |) Q−1
Q ≤ CR|B |− 1

Q PX (E ; B ) ,

where PX (E ,B ) is the X -perimeter of E relative to B.

For other applications of Theorem 1.1 see for instance [He], [HeHo] and
[Gr].

In this paper we will show that Theorem 1.1 follows in an elementary way
only from the basic properties (a), (b) and (c) listed below.

Let U ⊂⊂ �
n . There exist constants Q ,R,R0 > 0, depending only on U and

X1, . . . ,Xm , such that for any x ∈ U and 0 < R ≤ R0:
(a) One has

CΛ(x ,R) ≤ |Bd (x ,R)| ≤ C−1Λ(x ,R) , (1.2)

where Λ(x ,R) is a polynomial in r with positive coefficients satisfying for 0 <
λ < 1

CλQΛ(x ,R) ≤ Λ(x , λR) ≤ C−1λQ(x )Λ(x ,R) , (1.3)

with Q ≥ Q(x ) ≥ n ≥ 3. The number Q is called the homogeneous dimension
of X1, . . . ,Xm relative to U . The estimate (1.2) implies

|Bd (x , 2R)| ≤ C |Bd (x ,R)| . (1.4)

(b) For any u ∈ C 1(2B )∫
B
|u(y) − uB |dy ≤ CR

∫
2B

|Xu(y)|dy . (1.5)

(c) Denote by Γ (x , y) the fundamental solution with pole in x of the operator
L =

∑m
j=1 X ∗

j Xj . Then one has

C
d (x , y)2

|Bd (x , d (x , y))| ≤ Γ (x , y) ≤ C−1 d (x , y)2

|Bd (x , d (x , y))| (1.6)

and

|XΓ (x , y)| ≤ C−1 d (x , y)
|Bd (x , d (x , y))| . (1.7)

Properties (a), (b) and (c) were established in a series fo fundamental papers.
For (a) see [NSW], (b) is contained in [J], (c) was independently obtained in
[SC] and [NSW].
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Remark 1. Given a system of Lipschitz continuous vector fields X = {X1, . . . ,Xm}
one can still define the associated Carnot-Carathéodory metric. In this more gen-
eral setting properties (a), (b) and (c) can be thought of as a set of hypothesis,
under which Theorem 1.1 holds.

The key to our approach consists in working with a family of “balls” different
from the Carnot-Carathéodory balls, namely some appropriately rescaled level
sets of the fundamental solution Γ (x , y) defined in (c). To be more precise let

E (x , r) = r−2Λ(x , r) (1.8)

and observe that since Q(x ) ≥ n ≥ 3, E (x , r) is a strictly increasing function of
r . Denote by

F (x , ·) = E−1(x , ·) (1.9)

its inverse function and define for x ∈ �n and R > 0

B (x , r) =

{
y ∈ �n |Γ (x , y) >

1
E (x ,R)

}
.

By virtue of (1.4) and (c), one can prove that if U , C and R are defined as
in (a), (b) and (c), then

Bd (x , a−1R) ⊂ B (x ,R) ⊂ Bd (x , aR) , (1.10)

with a > 0 depending on U and X1, . . . ,Xm . The latter allows, in many cases,
to substitute the metric balls with the smooth sets B (x ,R) and obtain equivalent
results. In particular, we are going to prove Theorem 1.1 for the sets B (x ,R),
observing that the original version with Bd (x ,R) follows directly from (1.10)
(with different constants). Also, (a) and (c) imply

Cd (x , y) ≤ F (x , Γ−1(x , y)) ≤ C−1d (x , y) . (1.11)

An advantage in using the level sets of the fundamental solution consists in
the existence of a representation formula analogous to the classical one, supported
on such sets. In fact, from (1.4), (c) and the co-area formula [F] one can deduce
(see [CGL]) that for any x ∈ U , 0 < s < R0 and u ∈ C 1(B (x , 2R0))

∫
∂B (x ,s)

u(y)
|XyΓ (x , y)|2
|DyΓ (x , y)| dHn−1 = u(x ) +

∫
B (x ,s)

< Xu(y),XyΓ (x , y) > dy .

(1.12)
In this paper we assume (a), (b) and (c), together with their consequences

(1.10)–(1.12) as a starting point. From there we reach the conclusion through an
elementary argument involving a family of mollifiers tailored on the “subelliptic
geometry” attached to L which were introduced in [CDG2] to characterize
domains supporting the Poincaré inequality or the compact embedding. These
mollifiers turn out to be a powerful tool in the analysis of the operator L . In
particular, applications to boundary problems will be given in forthcoming work.



150 L. Capogna et al.

Remark 2. In the setting of nilpotent, stratified Lie groups Theorem 1.1 was
established in [L] with a different approach. Even in this restricted context our
proof is much simpler.

Remark 3. We stress that Theorem 1.1 holds globally on a stratified, nilpotent Lie
group. More in general, thanks to the works [Gu], [V] and [MS], the assumptions
(a), (b) an (c) in this paper are fulfilled in any connected Lie group of polynomial
volume growth. Therefore, Theorem 1.1. continues to hold globally in that setting.

Remark 4. After this paper was completed we learned that a completely dif-
ferent proof of Theorem 1.1 has independently been given by Franchi, Lu and
Wheeden [FLW1]. Compared to our approach, however, the proof in [FLW1] is
considerably more complicated and longer.

2 Proof of the main theorem

Following [CDG2] for u ∈ L1
loc(�n ) we define a family of mollifiers

JRu(x ) =
∫
�n

u(y)KR(x , y)dy , R > 0 , (2.1)

where

KR(x , y) = fR(F (x , Γ−1(x , y))
|XyΓ (x , y)|2
|Γ (x , y)|2 F ′(x , Γ−1(x , y)) . (2.2)

In (2.1) we have let F ′(x , s) = d
ds F (x , s), f ∈ C∞

0 (1, 2),
∫
�

f (s)ds = 1 and
fR(s) = R−1f (sR−1).

Remark 5. We explicitly observe that for any x ∈ �n , supp KR(x , ·) ⊂ B (x , 2R)\
B (x ,R).

The properties of JR have been extensively studied in [CDG2]. In the present
paper only the following ones are needed

Theorem 2.1. Let U ⊂⊂ �
n . There exist C , R0 > 0 depending only on U and

X1, . . . ,Xm such that for every x ∈ U , 0 < R ≤ R0 one has

– i) JR1 =
∫
�n KR(x , y)dy = 1.

– ii) For u ∈ C 1(B (x , 2R)) one has

JRu(x ) = u(x ) +
∫ ∞

0
fR(s)

∫
B (x ,s)

< Xu(y),XyΓ (x , y) > dyds . (2.3)

– iii) supy∈B (x ,2R)\B (x ,R)KR(x , y) ≤ C |B (x ,R)|−1.
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Proof of (i). Letting u = 1 in (1.12) one has
∫
∂B (x ,s)

|XyΓ (x , y)|2
|DyΓ (x , y)| dHn−1(y) = 1 . (2.4)

By the co-area formula (see [F]) and (2.2) it follows that
∫
�n

KR(x , y)dy =
∫ ∞

0

∫
Γ (x ,y)=t

fR(F (x , Γ−1(x , y))
|XyΓ (x , y)|2
Γ 2(x , y)

F ′(x , Γ−1(x , y))|DyΓ (x , y)|−1dHn−1(y)dt . (2.5)

If we set t = E (x , τ )−1, then τ = F (x , t−1) and dt = − E ′(x ,τ )
E (x ,τ )2 dτ , where E ,

F are as in (1.8), (1.9) and E ′(x , s) = d
ds E (x , s). By this change of variable (2.5)

gives
∫
�n

KR(x , y)dy =
∫ ∞

0

∫
∂B (x ,τ )

fR(τ )
|XyΓ (x , y)|2
DyΓ (x , y)|

E (x , τ )2F ′(x ,E (x , τ ))
E ′(x , τ )
E (x , τ )2

dHn−1(y)dτ . (2.6)

Since F ′(x ,E (x , τ )) = E ′(x , τ )−1, (2.6) yields
∫
�n

KR(x , y)dy =
∫ ∞

0
fR(τ )

∫
∂B (x ,τ )

|XyΓ (x , y)|2
|DyΓ (x , y)| dHn−1(y)dτ . (2.7)

The latter and (2.4) allow to conclude the proof of (i). ��

Proof of (ii). Using the co-area formula and the same change of variables that
led to (2.6) one has for x ∈ U

JRu(x ) =
∫ 2R

R

(∫
∂B (x ,s)

u(y)
|XyΓ (x , y)|2
|DyΓ (x , y)| dHn−1(y)

)
fR(s)ds . (2.8)

The conclusion now follows from (2.8) after multiplying (1.12) by fR(s) and
integrating in s ∈ (0,∞).

Proof of (iii). From (1.6)-(1.7) and (2.2) we have for y ∈ B (x , 2R) \ B (x ,R),

KR(x , y) ≤ C
R
|F ′(x , Γ−1(x , y))||XΓ (x , y)|2

Γ 2(x , y)

= CR−1 |XΓ (x , y)|2
Γ 2(x , y)

1
|E ′(x ,F (x , Γ−1(x , y)))| , (2.9)

where in the last equality we have used the inverse function theorem. Recalling
that Λ(x , r) is a polynomial function in r with positive coefficients, from (1.3)
and (1.8) we obtain

n ≤ sE ′(x , s)
E (x , s)

≤ Q .
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Inserting this information in (2.9) and using (1.6), (1.7) and (1.11) we con-
clude

KR(x , y) ≤ CR−1

( |F (x , Γ−1(x , y))|
|E (x ,F (x , Γ−1(x , y)))|

) |XΓ (x , y)|2
Γ 2(x , y)

≤ C |B (x , d (x , y))|−1 ,

that implies
KR(x , y) ≤ C |B (x ,R)|−1 . (2.10)

��
The following corollary of Theorem 2.1, (ii) plays a crucial role.

Corollary 2.1. Let U ⊂⊂ �
n and x0 ∈ U . There exist constants C , R0 > 0

depending on U and the vector fields X1, . . . ,Xm such that for any 4R < R0,
x ∈ B (x0,R) and u ∈ C 1(B (x0, 3R))

|JRu(x ) − u(x )| ≤ C
∫

B (x0,3R)
|Xu(y)| d (x , y)

|B (x , d (x , y))|dy .

Proof.. The inequality follows immediately from Theorem 2.1, (ii) and the esti-
mates of the fundamental solution (1.7). ��

We are now ready to give the

Proof of Theorem 1.1. Denote B = B (x0,R).
By (ii) in Theorem 2.1 one has

|u(x ) − u3B | ≤ |u(x ) − JRu(x )| + |JR(u − u3B )(x )| . (2.11)

From (iii) in Theorem 2.1 and Remark 5 we estimate

|JR(u − u3B )(x )| ≤
∫

B (x ,2R)\B (x ,R)
KR(x , y)|u − u3B |(y)dy

≤ C |B (x ,R)|−1
∫

B (x ,2R)
|u − u3B |(y)dy . (2.12)

By (2.2) and property (b) one infers

|JR(u − u3B )(x )| ≤ C |B (x ,R)|−1
∫

3B
|u − u3B |(y)dy

≤ CR|B (x ,R)|−1
∫

6B
|Xu(y)dy . (2.13)

Finally, observe that (1.3) implies for y ∈ 6B , y /= x

|B (x ,R)| = |B
(

x ,
R

d (x , y)
d (x , y)

)
| ≥ C

(
R

d (x , y)

)n

|B (x , d (x , y))|

≥ C

(
R

d (x , y)

)n−1

R
B (x , d (x , y))

d (x , y)
. (2.14)
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This gives
R

|B (x ,R)| ≤ C
d (x , y)

|B (x , d (x , y))| . (2.15)

As a consequence of (2.11), (2.13), (2.15) and Corollary 2.1 we have that for
any x ∈ B

|u(x ) − u3B | ≤ C
∫

6B
|Xu(y)| d (x , y)

B (x , d (x , y))|dy .

The proof is now concluded by using (1.10), the triangle inequality, property
(b) and (2.15). ��
Remark 6. We would like to comment on the above argument. The estimate of
the piece |JR(u − u3B )|(x ) in (2.11) does not use assumption (c). We could have
employed as a mollifier any JR with a kernel KR(x , y) satisfying (2.10). Thus, in
particular,

JRu(x ) =
1

|Bd (x ,R)|
∫

Bd (x ,R)
u(y)dy , (2.16)

for which

KR(x , y) =
1

|Bd (x ,R)|χBd (x ,R)(y) ,

works (here χE denotes the characteristic function of the set E ).
In the estimate of the piece |u(x ) − JRu(x )| in (2.11), instead, we have used

the special structure of the mollifier which is reflected by the important formula
(2.3) above.

Note: The result of this paper was part of a lecture delivered by the third named
author at the conference on “Integral Inequalities and Nonlinear Variational
Problems” held in Ischia, Italy, June 1–3, 1995.

In September 1995 R. Wheeden has kindly communicated to us an argument,
based on (2.14), which in the estimate of the first addend in (2.11), allows to
use any mollifier with a kernel satisfying (2.10), see [FLW2]. As a consequence,
Theorem 1.1 holds under assumptions (a) and (b) alone.
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Duke Math. J. 53 (1986), 503–523.
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