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Abstract We consider the class of minimal surfaces given by the graphical strips S in the
Heisenberg group H

1 and we prove that for points p along the center of H
1 the quantity

σH (S∩B(p,r))

r Q−1 is monotone increasing. Here, Q is the homogeneous dimension of H
1. We also

prove that these minimal surfaces have maximum volume growth at infinity.

Keywords Minimal surfaces · H -mean curvature · Integration by parts · First and second
variation · Monotonicity of the H -perimeter

1 Introduction

In recent years the study of surfaces of constant horizontal mean curvature H (to be defined
below) in sub-Riemannian spaces has seen an explosion of interest. Similarly to the classical
situation, this interest has provided a strong stimulus for the development of a corresponding
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618 D. Danielli et al.

geometric measure theory. For a partial account of such surge of activity the reader should
consult [1–7,9–20,22,25–27,29–32,34–50,53–62,64,65].

In this context, the Heisenberg group H
n occupies a central position, especially in connec-

tion with the sub-Riemannian Bernstein and isoperimetric problems. We recall that H
n is the

stratified nilpotent Lie group whose (real) underlying manifold is R
2n+1 with the non-Abelian

group law inherited by the complex product in C
n+1

(x, y, t) · (x ′, y′, t ′) =
(

x + x ′, y + y′, t + t ′ +
1

2
(〈x, y′〉 − 〈x ′, y〉)

)

.

If we set p = (x, y, t), p′ = (x ′, y′, t ′) ∈ R
2n+1, define the left-translation map by L p(p

′) =
p◦ p′, and we indicate with L∗

p its differential, then the Lie algebra of all left-invariant vector
fields in H

n is spanned by the 2n + 1 vector fields

X i = L∗
p(∂xi

) = ∂xi
−

yi

2
∂t , Xn+i = L∗

p(∂yi
) = ∂yi

+
xi

2
∂t , T = L∗

p(∂t ) = ∂t ,

where i = 1, . . . , n. We note the important commutation relations [X i , Xn+ j ] = T , i, j =
1, . . . , n. They guarantee that the vector fields X1, . . . , X2n suffice to generate the whole Lie
algebra, and therefore the Heisenberg group is a stratified nilpotent Lie group of step two,
see [8,33,66]. Such group is in fact the basic model of such sub-Riemannian manifolds, and
it plays in this context much the same role played by R

n in Riemannian geometry. The first
Heisenberg group H

1 is obtained when n = 1. If we indicate with p = (x, y, t) ∈ R
3 a

generic point of its underlying manifold, then the generators of its (real) Lie algebra are the
two vector fields

X1 = L∗
p(∂x ) = ∂x −

y

2
∂t , X2 = L∗

p(∂y) = ∂y +
x

2
∂t ,

and we clearly have [X1, X2] = T = L∗
p(∂t ) = ∂t .

To introduce the results in this paper we recall that one of the most fundamental properties
of classical minimal surfaces S ⊂ R

m is the following well-known monotonicity theorem,
see [52], and also [21,51,63].

Theorem 1.1 Let S ⊂ R
m be a C2 hypersurface, with H being its mean curvature, then for

every fixed p ∈ S the function

r →
Hm−1(S ∩ Be(p, r))

rm−1
+

r
∫

0

m − 1

tm−1

∫

S∩Be(p,t)

|H | d Hm−1 dt, (1.1)

is non-decreasing. In particular, if S is minimal, i.e., if H ≡ 0, then

r →
Hm−1(S ∩ Be(p, r))

rm−1
(1.2)

is non-decreasing.

In (1.1), (1.2) we have denoted by Hm−1 the (m − 1)-dimensional Hausdorff mea-
sure in R

m . Theorem 1.1 has many deep implications. It says, in particular, that minimal
hypersurfaces have maximum volume growth at infinity, i.e., there exists cm > 0 such that
Hm−1(S ∩ B(p, r)) ≥ cmrm−1 as r → ∞.

In this paper we are interested in related growth properties of the sub-Riemannian volume
on a minimal surface in H

1. By minimal we mean a C2 oriented surface S ⊂ H
1 such that

its horizontal mean curvature H vanishes identically on S, see Definition 2.2 below. The
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Sub-Riemannian calculus and monotonicity of the perimeter 619

sub-Riemannian volume instead is the so-called horizontal perimeter, see Definition 2.3
below. We should say right upfront that, despite the efforts of several workers, the mono-
tonic character of the sub-Riemannian volume on a general minimal hypersurface in H

n

continues to represent a fundamental open question. As far as we are aware, our main result,
Theorem 1.3 below, is the first sub-Riemannian monotonicity theorem.

The main obstacle so far has been represented by finding an appropriate substitute of some
basic properties such as, for instance, the following elementary, yet fundamental fact from
Riemannian geometry. Consider in R

m the radial vector field ζ(x) =
∑m

i=1 xi∂xi
, then on

any C2 hypersurface S ⊂ R
m , one has

divSζ ≡ m − 1, (1.3)

where we have indicated with divS the Riemannian divergence on S. The elementary identity
(1.3) has many deep implications, and one could safely claim that behind most fundamental
results from the classical theory of minimal surfaces there is (1.3). For instance, Theorem 1.1
and the Sobolev inequalities on minimal surfaces [52] are consequences (highly non-trivial,
of course) of (1.3). The number m −1 in the right-hand side of (1.3) is dimensionally correct
since the standard volume form σ on a hypersurface in R

m scales according to the rule

σ(δλ(E)) = λm−1σ(E), E ⊂ S,

where δλ(x) = λx represent the isotropic dilations in R
m .

In sub-Riemannian geometry, however, the correct dimension is dictated by the non-iso-
tropic dilations of the ambient non-Abelian group, and this seemingly natural fact becomes a
source of great complications. For instance, given a C1 hypersurface S ⊂ H

n , and indicating
with σH the horizontal perimeter on S (for its definition we refer the reader to Sect. 2), then
one has

σH (δλ(E)) = λQ−1σH (E), E ⊂ S, (1.4)

where δλ(x, y, t) = (λx, λy, λ2t) indicates the non-isotropic dilations in H
n associated with

the grading of its Lie algebra. Here, the number Q = 2n + 2 represents the homogeneous
dimension of H

n associated with the dilations {δλ}λ>0. Thus for instance, when n = 1, we
have Q = 4.

Guided by the analogy with (1.3) one would like to find a horizontal vector field ζ in H
n

whose sub-Riemannian divergence on S (to be precisely defined below) satisfy the equation

divH,Sζ = Q − 1. (1.5)

Such attempt would not possibly work however, for several reasons which are all connected
to one another. First of all, the integration by parts formula in which one would like to use
such a ζ contains a corrective term which is produced by the above mentioned non trivial
commutation relations which connect the generators of the Lie algebra of H

n . Secondly, one
should not forget that not only the radial vector field ζ satisfies (1.3), but it also possess the
equally important property that

sup
x∈S∩B(0,r)

|〈ζ(x),∇S |x |〉| ≤ r, (1.6)

where ∇S indicates the Riemannian gradient on S. Because of these obstructions, there
has been no progress so far on the question of the monotonic character of sub-Riemannian
minimal surfaces.

One of the main contributions of the present paper is a monotonicity formula for an
interesting class of minimal surfaces in H

1, the so-called graphical strips. Such surfaces
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620 D. Danielli et al.

were introduced in the work [28], where they played a crucial role in the solution of the
sub-Riemannian Bernstein problem in H

1.
Our main result hinges on the discovery that, despite the original evidence against it, for

such class of surfaces the generator of the non-isotropic group dilations in H
1 provides a

valid replacement of the radial vector field in R
m . This sentence must, however, be suitably

interpreted, in the sense that things do not work so simply. What we mean by this is that the
horizontal integration by parts formulas from [25] (see also [23]) which constitute the sub-
Riemannian counterpart of the classical integration by parts formulas on hypersurfaces (for
these, see, e.g., [21,51,63]), do not suffice. They need to be appropriately intertwined with
a twisted vertical integration by parts formula also discovered in [25]. Both such formulas
have played a pervasive role in the establishment of a general second variation formula for
the horizontal perimeter. For other independent works on integration by parts and variation
formulas one should also see [15,44,53,65]. To state our main result we recall the relevant
definition.

Definition 1.2 We say that S ⊂ H
1 is a graphical strip if there exist an interval I ⊂ R, and

G ∈ C2(I ), with G ′ ≥ 0 on I , such that, after possibly a left-translation and a rotation about
the t-axis, then either

S = {(x, y, t) ∈ H
1 | (y, t) ∈ R × I, x = yG(t)}, (1.7)

or

S = {(x, y, t) ∈ H
1 | (x, t) ∈ R × I, y = −xG(t)}. (1.8)

If there exists J ⊂ I such that G ′ > 0 on J , then we call S a strict graphical strip.

When the interval I can be taken to be the whole real line, then we call S an entire graph-
ical strip (strict, if G ′ > 0 on some J ⊂ R). Examples of entire strict graphical strips are the
surfaces

x = y(αt + β), α > 0, (y, t) ∈ R
2,

and

x = y tan tanh t, (y, t) ∈ R
2.

In Theorem 1.5 in [28] it was proved that every graphical strip is a minimal surface in H
1.

The relevance of these minimal surfaces lies in some results from [28], which we recall in
Proposition 4.1, Theorems 4.2 and 4.3 below. The main result of this paper is the following
theorem.

Theorem 1.3 Let S ⊂ H
1 be a graphical strip, and denote by σH the sub-Riemannian

volume form, or horizontal perimeter, on S. For every p0 = (0, 0, t0) ∈ S the function

r →
σH (S ∩ B(p0, r))

r Q−1
, r > 0,

is monotone non-decreasing. Moreover, there exists a universal constant ω > 0, independent

of the point p0 and of the particular graphical strip S, such that

σH (S ∩ B(p0, r)) ≥ ωr Q−1, for every r > 0.

As a consequence, graphical strips have maximum volume growth at infinity along the center

of H
1.
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Sub-Riemannian calculus and monotonicity of the perimeter 621

In the statement of Theorem 1.3 we have denoted by B(p0, r) = {p ∈ H
n | d(p, p0) < r},

where d(p, p0) = N (p−1
0 p) represents the gauge distance on H

n defined via the Koranyi-
Folland gauge function N (p) = (|z|4 + 16t2)1/4, p = (z, t) ∈ H

n .
The proof of Theorem 1.3 is inspired to the ideas set forth in the beautiful paper [52],

except that, as we have said, we need some new ideas to bypass the obstacles posed by the
sub-Riemannian setting.

A description of the content of the paper is as follows. In Sect. 2 we introduce the rele-
vant geometric setup, and we recall the main integration by parts theorems from [25] which
constitute the backbone of the paper. In Sect. 3 we combine such results with a suitable
adaptation of the ideas in [52] to establish some general growth results for hypersurfaces in
H

n . A basic new fact is the identity (3.12) in Proposition 3.5 which represents the appropri-
ate sub-Riemannian analogue of (1.3). Combining it with the integration by parts we obtain
the growth Theorem 3.6, which concludes Sect. 3. Finally, Sect. 4 is devoted to proving
Theorem 1.3.

2 Sub-Riemannian calculus on hypersurfaces

In this section we introduce the relevant notation and recall some basic integration by parts
formulas involving the tangential horizontal gradient on a hypersurface, and the horizontal
mean curvature of the latter, which are special case of some general formulas discovered in
[25]. Such formulas are reminiscent of the classical one, and in fact they encompass the latter.
However, an important difference is that the ordinary volume form on the hypersurface S

is replaced by the horizontal perimeter measure dσH . Furthermore, they contain additional
terms which are due to the non-trivial commutation relations, which is reflected in the lack
of torsion freeness of the horizontal connection on S. Such term prevents the correspond-
ing horizontal Laplace-Beltrami operator from being formally self-adjoint in L2(S, dσH ) in
general.

We next recall some basic concepts from the sub-Riemannian geometry of a C2 hypersur-
face S ⊂ H

n . For a detailed account we refer the reader to [25]. We consider the Riemannian
manifold H

n equipped with the left-invariant metric tensor with respect to which X1, . . . , X2n

is an orthonormal basis, the corresponding Levi-Civita connection ∇ on H
n , and the horizon-

tal Levi-Civita connection ∇H . We assume that S is oriented and denote by ν the Riemannian
Gauss map on S. We define the so-called angle function on S as follows

W = |N H | =

√

√

√

√

2n
∑

j=1

〈ν, X j 〉2. (2.1)

The characteristic set of S, hereafter denoted by 6S , is the compact subset of S where the
continuous function W vanishes

6(S) = {p ∈ S | W (p) = 0}. (2.2)

The next definition plays a basic role in sub-Riemannian geometry.

Definition 2.1 We define a horizontal normal on S as follows

N
H =

2n
∑

j=1

〈ν, X j 〉X j , (2.3)
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622 D. Danielli et al.

so that W = |N H |. The horizontal Gauss map ν
H on S is defined by

ν
H =

N
H

|N H |
, on S\6(S). (2.4)

Henceforth, we set 〈νH , X i 〉 = pi , 〈νH , Xn+i 〉 = q i , i = 1, . . . , n, so that

p2
1 + · · · + p2

n + q2
1 + · · · + q2

n = 1.

We note that N
H is the projection of the Riemannian Gauss map on S onto the horizontal

subbundle HH
n ⊂ T H

n . Such projection vanishes only at characteristic points, and this is
why the horizontal Gauss map is not defined on6(S). The following definition is taken from
[25], but the reader should also see [43] for a related notion in the more general setting of
vertically rigid spaces.

In what follows we will indicate with

H TS
def= TS ∩ HH

n

the so-called horizontal tangent bundle of S. Let {e1, . . . , e2n−1} denote an orthonormal basis
of the horizontal tangent bundle H T S.

Definition 2.2 The horizontal or H -mean curvature at a point p0 ∈ S\6(S) is defined as

H =
2n−1
∑

i=1

〈∇H
ei

ei , ν
H 〉.

If instead p0 ∈ 6(S), then we define H(p0) = lim p→p0H(p), provided that the limit exists
and is finite.

Given an open set � ⊂ H
n denote by

F(�) =











φ =
2n
∑

j=1

φ j X j ∈ C1
0 (�, HH

n) | ||φ||∞ = sup
�





2n
∑

j=1

φ2
j





1/2

≤ 1











.

Given φ =
∑2n

j=1 φ j X j ∈ C1
0 (�, HH

n), we let divHφ =
∑2n

j=1 X jφ j . The H -perimeter of
a measurable set E ⊂ H

n with respect to � was defined in [11] as

PH (E;�) = sup
φ∈F(�)

∫

E∩�

divHφ dg.

If E is a bounded open set of class C1, then the divergence theorem gives

PH (E;�) = sup
φ∈F(�)

∫

∂E∩�

2n
∑

j=1

〈ν, X j 〉φ j dσ = sup
φ∈F(�)

∫

∂E∩�

〈N
H , φ〉dσ

=
∫

∂E∩�

|N H |dσ,

where dσ is the Riemannian surface measure on ∂E . It is clear from this formula that the
measure on ∂E , defined by

σH (∂E ∩�) def= PH (E;�)
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Sub-Riemannian calculus and monotonicity of the perimeter 623

on the open sets of ∂E , is absolutely continuous with respect to σ , and its density is rep-
resented by the angle function W of ∂E . We formalize this observation in the following
definition.

Definition 2.3 Given a C2 non-characteristic hypersurface S ⊂ H
n , with angle function W

as in (2.1), we will denote by

dσH = |N H |dσ = W dσ, (2.5)

the H -perimeter measure supported on S.

Definition 2.4 Let S ⊂ H
n be a non-characteristic, C2 hypersurface, then we define the

horizontal connection on S as follows. Let ∇H denote the horizontal Levi-Civita connection
in H

n . For every X, Y ∈ C1(S; H T S) we define

∇H,S
X Y = ∇H

X
Y − 〈∇H

X
Y , νH 〉νH ,

where X , Y are any two horizontal vector fields on H
n such that X = X , Y = Y on S.

One can check that Definition 2.4 is well-posed, i.e., it is independent of the extensions
X , Y of the vector fields X, Y .

Proposition 2.5 For every X, Y ∈ C1(S; H TS) one has

∇H,S
X Y − ∇H,S

Y X = [X, Y ]H − 〈[X, Y ]H , νH 〉νH .

In the latter identity the notation [X, Y ]H indicates the projection of the vector field
[X, Y ] onto the horizontal bundle HH

n . It is clear from this proposition that the horizontal
connection ∇H,S on S is not necessarily torsion free. This depends on the fact that it is not
true in general that, if X, Y ∈ C1(S; H T S), then [X, Y ]H ∈ C1(S; H T S). In the special
case of the first Heisenberg group H

1 this fact is true, and we have the following result, see
Proposition 7.3 in [25].

Proposition 2.6 Given a C2 non-characteristic surface S ⊂ H
1, one has [X, Y ]H ∈ H T S

for every X, Y ∈ C1(S; H T S), and therefore the horizontal connection on S is torsion free.

Definition 2.7 Let S be as in Definition 2.4. Consider a function u ∈ C1(S). We define the
tangential horizontal gradient of u as follows

∇H,Su
def= ∇H u − 〈∇H u, νH 〉 ν

H ,

where u ∈ C1(G) is such that u = u on S.

We are now ready to state the integration by parts formulas from [25] which constitute
the backbone of this paper.

Theorem 2.8 (Horizontal integration by parts formula) Consider a C2 oriented hypersurface

S ⊂ H
n . If u ∈ C1

0(S\6S), then we have
∫

S

∇H,S
i u dσH =

∫

S

u
{

HνH
i − c

H,S
i

}

dσH , i = 1, . . . , 2n, (2.6)

where the C1 vector field c
H,S =

∑m
i=1 c

H,S
i X i is given by

c
H,S = ω (νH )⊥ = ω

(

q1 X1 + · · · + qn Xn − p1 Xn+1 − · · · − pn X2n

)

. (2.7)
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624 D. Danielli et al.

As a consequence, c
H,S is perpendicular to the horizontal Gauss map ν

H , i.e., one has

〈c
H,S , νH 〉 = 0, (2.8)

and therefore c
H,S ∈ C1(S\6S , H T S).

Remark 2.9 We note explicitly that in view of (2.7) we can re-write (2.6) as follows
∫

S

∇H,Su dσH =
∫

S

u
{

H ν
H − ω (νH )⊥

}

dσH . (2.9)

We have the following notable consequences of Theorem 2.8.

Theorem 2.10 Let S ⊂ H
n be a C2 oriented hypersurface, with characteristic set 6S . If

ζ ∈ C1
0(S\6S , H T S), then we have

∫

S

{

divH,Sζ + 〈c
H,S , ζ 〉

}

dσH =
∫

S

H 〈ζ, νH 〉 dσH , (2.10)

where we have let

divH,Sζ =
2n
∑

i=1

∇H,S
i ζi .

We next recall a different integration by parts formula which involves differentiation along
a special combination of the vector fields ν

H and T .

Theorem 2.11 (Vertical integration by parts formula) Let S ⊂ H
n be a C2 oriented hyper-

surface. For every f ∈ C1(S), g ∈ C1
0(S\6(S)), one has

∫

S

f (T − ωY )g dσH = −
∫

S

g (T − ωY ) f dσH +
∫

S

f gω H dσH , (2.11)

where we have let Yf = 〈∇ f, νH 〉.

3 Growth formulas for the horizontal perimeter on hypersurfaces

In this section we establish some preparatory results which constitute sub-Riemannian ver-
sions of some basic growth lemmas on hypersurfaces which in the Riemannian case were
first found in [52]. Throughout the section we will work in H

n , for arbitrary n ∈ N. In what
follows, we consider functions ρ ∈ C1(Hn) and λ ∈ C1(R), to be determined later.

Lemma 3.1 Consider a horizontal vector field ζ =
∑2n

i=1 ζi X i ∈ C1(Hn, HH
n). Let S ⊂

H
n be a C2 hypersurface with empty characteristic locus 6(S). Suppose that the level sets

of ρ are compact, and let λ be non-decreasing, with λ(t) ≡ 0 for t ≤ 0. Given ψ ∈ C1(S),

for every r > 0 we have
∫

S

{

divH,Sζ + 〈c
H,S , ζ 〉

}

λ(r − ρ) ψ dσH −
∫

S

λ′(r − ρ) ψ〈ζ,∇H,Sρ〉 dσH

≤
∫

S

λ(r − ρ) |ζ |
{

|H| ψ + |∇H,Sψ |
}

dσH . (3.1)
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Sub-Riemannian calculus and monotonicity of the perimeter 625

In particular, choosing ψ ≡ 1 we obtain from (3.1)
∫

S

{

divH,S ζ + 〈c
H,S , ζ 〉

}

λ(r − ρ) dσH −
∫

S

λ′(r − ρ)〈ζ,∇H,Sρ〉 dσH

≤
∫

S

λ(r − ρ) |ζ | |H| dσH . (3.2)

Proof For a fixed r > 0 we define

u = ζi λ(r − ρ) ψ, (3.3)

where λ : R → R is non-decreasing, and λ ≡ 0 for t ≤ 0. We have

m
∑

i=1

∇H,S
i u =

(

divH,Sζ
)

λ(r − ρ) ψ + λ(r − ρ)〈ζ,∇H,Sψ〉 − λ′(r − ρ) ψ〈ζ,∇H,Sρ〉.

(3.4)

We now integrate (3.4) on S with respect to the measure σH . Applying (2.6) in Theorem 2.8
we obtain

∫

S

divH,S ζ λ(r − ρ) ψ dσH +
∫

S

λ(r − ρ)〈ζ,∇H,Sψ〉dσH

−
∫

S

λ′(r − ρ) ψ〈ζ,∇H,Sρ〉dσH +
∫

S

λ(r − ρ) ψ〈c
H,S , ζ 〉dσH

=
∫

S

H λ(r − ρ) ψ〈ζ, νH 〉dσH . (3.5)

From the identity (3.5) we easily obtain (3.1). ⊓⊔

We next use the formula (2.11) in Theorem 2.11 with the choice g(p) = λ(r − ρ(p)) to
obtain the following result.

Lemma 3.2 Let S ⊂ H
n be a C2 hypersurface with empty characteristic locus. Suppose

that the level sets of ρ are compact, and let λ be non-decreasing, with λ(t) ≡ 0 for t ≤ 0.

For every r > 0 we have for any f ∈ C1(S)

∫

S

λ(r − ρ) (T − ωY ) f dσH =
∫

S

f λ′(r − ρ)(T − ωY )ρ dσH

+
∫

S

λ(r − ρ) f ω H dσH . (3.6)

At this point we combine (3.2) in Lemma 3.1 with (3.6) in Lemma 3.2, obtaining the
following basic result.

Theorem 3.3 Let S ⊂ H
n be a C2 hypersurface with empty characteristic locus. Consider

a horizontal vector field ζ =
∑2n

i=1 ζi X i ∈ C1(Hn, HH
n). Suppose that the level sets of ρ
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are compact, and let λ be non-decreasing, with λ(t) ≡ 0 for t ≤ 0. For every r > 0 we have

for any f ∈ C1(S)
∫

S

{

divH,S ζ + 〈c
H,S , ζ 〉 + (T − ωY ) f

}

λ(r − ρ) dσH

−
∫

S

λ′(r − ρ)

{

〈ζ,∇H,Sρ〉 + f (T − ωY )ρ
}

dσH

≤
∫

S

λ(r − ρ) {|ζ | + | f |ω} |H| dσH . (3.7)

In particular, if S is minimal, we obtain from (3.7)
∫

S

{

divH,S ζ + 〈c
H,S , ζ 〉 + (T − ωY ) f

}

λ(r − ρ) dσH

−
∫

S

λ′(r − ρ)

{

〈ζ,∇H,Sρ〉 + f (T − ωY )ρ
}

dσH

≤ 0. (3.8)

We now turn to the fundamental question of the choice of the horizontal vector field ζ and
of the function f in Theorem 3.3. With this objective in mind we introduce the following
definition.

Definition 3.4 Let p0 ∈ H
n , then the generator of the non-isotropic dilations {δλ}λ>0 cen-

tered at p0 is defined by

Z p0 f (p) =
n

∑

i=1

(xi − x0,i )X i + (yi − y0,i )Xn+i + [2(t − t0)+ (〈x, y0〉 − 〈x0, y〉)]T .

Definition 3.4 is motivated by the following considerations. Let F ∈ C1(Hn), then

Z p0 F(p)
def=

d

dλ
F(p0δλ(p

−1
0 p))

∣

∣

∣

∣

λ=1
.

Now

p0δλ(p
−1
0 p) =

(

x0 + λ(x − x0), y + λ(y − y0),

t0 + λ2
(

t − t0 +
1

2
(〈x, y0〉 − 〈x0, y〉)

)

+
λ

2
(〈x0, y − y0〉 − 〈y0, x − x0〉)

)

.

A simple calculation now gives

d

dλ
F(p0δλ(p

−1
0 p))

∣

∣

∣

∣

λ=1
=

n
∑

i=1

(xi − x0,i )
∂F

∂xi

(p)+ (yi − y0,i )
∂F

∂yi

(p)+ [2(t − t0)

+
1

2
(〈x, y0〉 − 〈x0, y〉)]TF(p). (3.9)
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If in (3.9) we now use the fact that

∂F

∂xi

(p) = X i F(p)+
yi

2
TF(p),

∂F

∂yi

(p) = Xn+i F(p)−
xi

2
TF(p),

we easily obtain the formula in Definition 3.4.
Guided by Definition 3.4, we now choose the horizontal vector field ζ and the function f

in Theorem 3.3 as follows

ζ(p) =
n

∑

i=1

(

(xi − x0,i )X i + (yi − y0,i )Xn+i

)

, (3.10)

f (p) = 2(t − t0)+ 〈x, y0〉 − 〈x0, y〉. (3.11)

With these choices, we next establish a remarkable identity which should be considered as
the sub-Riemannian counterpart of the above recalled (1.3). In what follows, similarly to
formula (2.11) above, we will use the notation Y f = 〈∇ f, νH 〉.

Proposition 3.5 Fix a point p0 = (x0, y0, t0) ∈ H
n and consider the horizontal vector field

ζ ∈ C∞(Hn, HH
n) given by (3.10), and the function f ∈ C1(Hn) in (3.11), then on any

C2 non-characteristic hypersurface S ⊂ H
n (or on any hypersurface S, but away from its

characteristic set 6(S)) one has the identity

divH,S ζ + 〈c
H,S , ζ 〉 + (T − ωY ) f ≡ Q − 1. (3.12)

Proof We begin by observing that with ζ =
∑n

i=1(ζi X i + ζn+i Xn+i ) one has

∇H,S
i ζi = 1 − p2

i , ∇H,S
n+i ζn+i = 1 − q2

i , i = 1, . . . , n.

Therefore,

divH,Sζ =
n

∑

i=1

(

∇H,S
i ζi + ∇H,S

n+i ζn+i

)

= 2n −
n

∑

i=1

(p2
i + q2

i ) ≡ 2n − 1 = Q − 3.

(3.13)

We now have from (2.7)

c
H,S = ω(q1 X1 + · · · + qn Xn − p1 Xn+1 − · · · − pn X2n),

and therefore

〈c
H,S , ζ 〉 = ω〈z, (νH )⊥〉 − ω〈z0, (ν

H )⊥〉,

where, abusing the notation, we have set z =
∑n

i=1 xi X i + yi Xn+i , z0 =
∑n

i=1 x0,i X i +
y0,i Xn+i . On the other hand, since Y t = 1

2 (x1q1 + · · · + xnqn − y1 p1 − · · · − yn pn), we
have

(T − ωY )(2(t − t0)) = 2T t − 2ωY t = 2 − ω〈z, (νH )⊥〉.

We also have

(T − ωY )(〈x, y0〉 − 〈x0, y〉) = −ωY (〈x, y0〉 − 〈x0, y〉) = ω〈z0, (ν
H )⊥〉,

and so

〈c
H,S , ζ 〉 + (T − ωY ) f ≡ 2. (3.14)

Combining (3.14) with (3.13) we obtain (3.12). ⊓⊔
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If we now combine (3.8) in Theorem 3.3 with Proposition 3.5, we obtain the following
basic result.

Theorem 3.6 Let S ⊂ H
n be a non-characteristic minimal surface, then with ζ as in (3.10)

and f as in (3.11), one has for any p0 = (x0, y0, t0) ∈ H
n

(Q − 1)
∫

S

λ(r − ρ) dσH

−
∫

S

λ′(r − ρ)

{

〈ζ,∇H,Sρ〉 + f (T − ωY )ρ
}

dσH

≤ 0. (3.15)

4 Monotonicity for graphical strips

In this section as an interesting consequence of Theorem 3.6 we prove Theorem 1.3. To pro-
vide the reader with some motivation for the class of graphical strips we begin by recalling
a result which is part of Theorem 1.5 in [28].

Proposition 4.1 Every C2 graphical strip is a minimal surface in H
1 with empty character-

istic locus.

One fundamental aspect of graphical strips is represented by the following Theorem 4.2,
which constitutes one of the two central results in [28]. In order to state it we mention that
by V

H
I I (S; X ) we denote the second variation of the H -perimeter measure σH with respect

to a deformation of S in the direction of the vector field X . A minimal surface S with
empty characteristic locus is called stable if V

H
I I (S; X ) ≥ 0 for every compactly supported

X = aX1 + bX2 + kT . Otherwise, it is called unstable. We note that, since thanks to Propo-
sition 4.1 every graphical strip has empty characteristic locus, the horizontal Gauss map ν

H

of such a surface is globally defined.

Theorem 4.2 Let S be a C2 strict graphical strip, then S is unstable. In fact, there exists a

continuum of h ∈ C2
0 (S), for which V

H
I I (S; hν

H ) < 0.

In connection with the stability assumption in Theorem 4.2 we mention that it represents
a new phenomenon with respect to the classical case. In fact, thanks to the strict convexity of
the area functional A( f ) =

∫

�

√

1 + |∇ f |2dx , any critical point of the latter (and therefore
any minimal graph) is automatically stable, see for instance [21]. In the sub-Riemannian
setting this is no longer true. This central aspect of the problem was first discovered in [26]
where it was shown that the non-planar minimal surface S = {(x, y, t) ∈ H

1 | x = yt} is
unstable (recall that such surface is a strict graphical strip).

The following theorem constitutes the second main result in [28]. It underscores the central
relevance of graphical strips in the study of minimal graphs in H

1.

Theorem 4.3 Let S ⊂ H
1 be a minimal entire graph of class C2, with empty characteristic

locus, and that is not itself a vertical plane

50 = {(x, y, t) ∈ H
1 | ax + by = γ0}, (4.1)

then there exists a strict graphical strip S0 ⊂ S.
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By combining Theorems 4.2 and 4.3 the following solution of the sub-Riemannian Bern-
stein problem was obtained in [28].

Theorem 4.4 (of Bernstein type) In H
1 the only C2 stable entire minimal graphs, with empty

characteristic locus, are the vertical planes (4.1).

After these preliminaries we turn to the proof of Theorem 1.3. In what follows we denote
by B(p0, r) = {p ∈ H

n | d(p, p0) < r}, where d(p, p0) = N (p−1
0 p) represents the gauge

distance on H
n defined via the Koranyi-Folland gauge function N (p) = (|z|4 + 16t2)1/4,

p = (z, t) ∈ H
n . Using this function we now specialize the choice of the function ρ in

Theorem 3.6 by letting ρ(p) = N (p−1
0 p). Of course, this is not the only possible choice of

ρ, but at the moment we will not further investigate this question since we plan to return to
it in a future study.

Notice that we can write

ρ(p) =
[

(

(x − x0)
2 + (y − y0)

2)2 + 4 (2(t − t0)+ (xy0 − x0 y))2
]1/4

. (4.2)

A simple calculation gives

X1ρ = ρ−3 [

(x − x0)|z − z0|2 − 2(y − y0) (2(t − t0)+ (xy0 − x0 y))
]

, (4.3)

X2ρ = ρ−3 [

(y − y0)|z − z0|2 + 2(x − x0) (2(t − t0)+ (xy0 − x0 y))
]

, (4.4)

Tρ = ρ−34 [2(t − t0)+ (xy0 − x0 y)] . (4.5)

From (4.3), (4.4), (4.5) we obtain with ζ and f as in (3.10), (3.11) respectively,

〈ζ,∇Hρ〉 + f Tρ = ρ. (4.6)

On the other hand, we have from the expression of the horizontal covariant derivative on S

〈ζ,∇H,Sρ〉 = 〈ζ,∇Hρ〉 − 〈∇Hρ, νH 〉〈ζ, νH 〉.

Using (4.6) we find

〈ζ,∇H,Sρ〉 + f (T − ωY )ρ = 〈ζ,∇Hρ〉 + f Tρ

−〈∇Hρ, νH 〉〈ζ, νH 〉 − ω f Yρ

= ρ − 〈∇Hρ, νH 〉
(

〈ζ, νH 〉 + ω f
)

, (4.7)

where in the last equality we have used the fact that Yρ = 〈∇Hρ, νH 〉.
The next result provides a fundamental estimate. It is at this point that we use the special

structural assumption that S be a graphical strip in H
1.

Lemma 4.5 Let S ⊂ H
1 be a C2 graphical strip. Let p0 = (0, 0, t0) ∈ S, then with ζ as in

(3.10) and f as in (3.11), one has

sup
S∩B(p0,r)

∣

∣

∣〈ζ,∇H,Sρ〉 + f (T − ωY )ρ

∣

∣

∣ ≤ r.

Proof In view of (4.7), proving the lemma is equivalent to showing

sup
S∩B(p0,r)

∣

∣

∣ρ − 〈∇Hρ, νH 〉
(

〈ζ, νH 〉 + ω f
)∣

∣

∣ ≤ r.

Without loss of generality we assume that

S = {(x, y, t) ∈ H
1 | (y, t) ∈ R × I, x = yG(t)},
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for some G ∈ C2(I ), such that G ′(t) ≥ 0 for every t ∈ I . We next recall some calculations
from [28]. It is obvious from the definition that S is a C2 graph over the (y, t)-plane. We can
use the global defining function

φ(x, y, t) = x − yG(t), (4.8)

and assume that S is oriented in such a way that a non-unit Riemannian normal on S be given
by N = ∇φ = (X1φ)X1 + (X2φ)X2 + (Tφ)T . We thus find

p= X1φ=1 +
y2

2
G ′(t), q = X2φ=−G(t)−

xy

2
G ′(t), ω = Tφ=−yG ′(t). (4.9)

Incidentally, since p ≥ 1 > 0, we see from (4.9) that 6(S) = ∅.
From now on, to simplify the notation, we will omit the variable t in all expressions

involving G(t),G ′(t). The second equation in (4.9) becomes on S

q = − G

(

1 +
y2

2
G ′

)

. (4.10)

We thus find on S

W =
√

p2 + q2 =
√

1 + G2

(

1 +
y2

2
G ′

)

. (4.11)

The equations (4.9), (4.10) and (4.11) give on S

p =
1

√
1 + G2

, q = −
G

√
1 + G2

, ω = −
yG ′

√
1 + G2

(

1 + y2

2 G ′
) . (4.12)

We thus have on S

xq − y p = −
{

yG2

√
1 + G2

+
y

√
1 + G2

}

= −y
√

1 + G2, (4.13)

and also

x p + yq =
y G(t)

√

1 + G(t)2
−

y G(t)
√

1 + G(t)2
= 0. (4.14)

On the other hand, if p0 = (x0, y0, t0) ∈ S, we must have x0 = y0G(t0), and therefore

x0q − y0 p = −y0

{

G(t0)G√
1 + G2

+
1

√
1 + G2

}

= −y0
1 + G(t0)G√

1 + G2
, (4.15)

and also

x0 p + y0q = −y0
G − G(t0)√

1 + G2
. (4.16)

We also have on S

xy0 − x0 y = y0 y(G − G(t0)). (4.17)

Combining (4.14) and (4.16) we find

〈ζ, νH 〉 = (x − x0)p + (y − y0)q = y0
G − G(t0)√

1 + G2
. (4.18)
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From (4.12), (4.17) we have

ω(2(t − t0)+ (xy0 − x0 y)) = −2y0

y2

2 G ′(G − G(t0))
√

1 + G2
(

1 + y2

2 G ′
) −

2(t − t0)yG ′
√

1 + G2
(

1 + y2

2 G ′
) .

(4.19)

Combining (4.18) and (4.19) we find

〈ζ, νH 〉 + f ω = y0
G − G(t0)√

1 + G2

− 2y0

y2

2 G ′(G − G(t0))
√

1 + G2
(

1 + y2

2 G ′
) −

2(t − t0)yG ′
√

1 + G2
(

1 + y2

2 G ′
) . (4.20)

When x0 = y0 = 0, and therefore p0 = (0, 0, t0), we obtain from (4.20)

〈ζ, νH 〉 + f ω = −
2(t − t0)yG ′

√
1 + G2

(

1 + y2

2 G ′
) . (4.21)

Next, we observe that we have on S

|z|2 = y2(1 + G2), x |z|2 = y3G(1 + G2), y|z|2 = y3(1 + G2).

If we use these formulas in (4.3), (4.4), in combination with (4.12), we obtain

〈∇Hρ, νH 〉 = −
4y(t − t0)(1 + G2)

ρ3
√

1 + G2
. (4.22)

Combining equations (4.21), (4.22) we find

〈∇Hρ, νH 〉
(

〈ζ, νH 〉 + f ω
)

=
16(t − t0)

2 y2

2 G ′

ρ3
(

1 + y2

2 G ′
) . (4.23)

Since on S we have

ρ4 = (x2 + y2)2 + 16(t − t0)
2 = y4(1 + G2)2 + 16(t − t0)

2,

from this equation and from (4.23) it is at this point easy to check that on S one has

ρ − 〈∇Hρ, νH 〉
(

〈ζ, νH 〉 + ω f
)

≥ 0.

Since from (4.23) again we see that 〈∇Hρ, νH 〉
(

〈ζ, νH 〉 + f ω
)

≥ 0, we finally obtain

∣

∣

∣ρ − 〈∇Hρ, νH 〉
(

〈ζ, νH 〉 + ω f
)∣

∣

∣=ρ−〈∇Hρ, νH 〉
(

〈ζ, νH 〉 + ω f
)

≤ρ,

which, in particular, proves the lemma. ⊓⊔

We can now prove the main result in this section.
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Proof of Theorem 1.3 We define

P(r) =
∫

S

λ(r − ρ)dσH . (4.24)

We easily find

d

dr

(

P(r)

r Q−1

)

=
1

r Q

(

rP
′(r)− (Q − 1)P(r)

)

.

We next recall that for any p0 = (x0, y0, t0) ∈ H
n one has from (3.15),

(Q − 1)P(r)−
∫

S

λ′(r − ρ)

{

〈ζ,∇H,Sρ〉 + f (T − ωY )ρ
}

dσH ≤ 0, (4.25)

where ζ is as in (3.10) and f as in (3.11).
At this point the crucial Lemma 4.5 enters the picture. In it we have proved that on the set

B(p0, r) = {ρ < r} one has
∣

∣

∣〈ζ,∇H,Sρ〉 + f (T − ωY )ρ

∣

∣

∣ ≤ r. (4.26)

Then from (4.26), the fact that λ′(r − ρ) ≥ 0 and from (4.25) we can conclude that

d

dr

(

P(r)

r Q−1

)

=
1

r Q

(

rP
′(r)− (Q − 1)P(r)

)

≥ 0.

We now fix 0 < r1 < r2 < ∞ and integrate the latter inequality on the interval (r1, r2)

obtaining

0 ≤
r2

∫

r1

d

dr

(

P(r)

r Q−1

)

dr =
P(r2)

r
Q−1
2

−
P(r1)

r
Q−1
1

=
1

r
Q−1
2

∫

S

λ(r2 − ρ)dσH −
1

r
Q−1
1

∫

S

λ(r1 − ρ)dσH . (4.27)

At this point we fix arbitrarily 0 < ǫ < r1, and choose a non-decreasing 0 ≤ λ(s) ≤ 1, with
λ ≡ 0 if s ≤ 0, λ ≡ 1 if s ≥ ǫ. With this choice we obtain from (4.27)

0 ≤
1

r
Q−1
2

∫

S∩B(p0,r2)

λ(r2 − ρ)dσH −
1

r
Q−1
1

∫

S∩B(p0,r1−ǫ)

λ(r1 − ρ)dσH

−
1

r
Q−1
1

∫

S∩[B(p0,r1)\B(p0,r1−ǫ)]

λ(r1 − ρ)dσH

≤
σH (S ∩ B(p0, r2))

r
Q−1
2

−
σH (S ∩ B(p0, r1 − ǫ))

r
Q−1
1

. (4.28)

Letting ǫ → 0 we reach the conclusion

σH (S ∩ B(p0, r1))

r
Q−1
1

≤
σH (S ∩ B(p0, r2))

r
Q−1
2

.

⊓⊔
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According to Theorem 1.3 the limit

lim
r→0+

σH (S ∩ B(p0, r))

r Q−1

exists. In the next proposition we show that such limit is actually positive and independent
of the point p0 ∈ S or of the function G(t) which defines the graphical strip S.

Proposition 4.6 Let S be a graphical strip, that is,

S = {(x, y, t) | x = y G(t)} where G ∈ C1(R), G ′(t) ≥ 0 for all t ∈ R,

then for every p0 = (0, 0, t0) ∈ S we have

lim
r→0+

σH (S ∩ B(p0, r))

r3
=

1
∫

0

(1 − τ 2)
1
4 dτ > 0.

Note that this limit is independent of G(t) or of the point p0 = (0, 0, t0) ∈ S.

Proof Let φ be as in (4.8). We then have

S ∩ B(p0, r) = {(x, y, t) ∈ H
1 | x = y G(t), y4(1 + G(t)2)2 + 16 (t − t0)

2 < r4}.

|Xφ| =
(

1 +
y2

2
G ′(t)

)

√

1 + G(t)2.

Hence

σH (S ∩ B(p0, r))

r3
=

1

r3

∫

S∩B(p0,r)

|Xφ|
|∇φ|

dσ

=
1

r3

∫

{(y,t) | y4(1+G(t)2)2+16(t−t0)2<r4}

(

1 +
y2

2
G ′(t)

)

√

1 + G(t)2 dy dt

=
1

r3

t0+ r2
4

∫

t0− r2
4

√

1 + G(t)2















(r4−16(t−t0)
2)

1
4√

1+G(t)2
∫

− (r4−16(t−t0)
2)

1
4√

1+G(t)2

(

1 +
y2

2
G ′(t)

)

dy















dt

=
2

r3

t0+ r2
4

∫

t0− r2
4

√

1 + G(t)2

{

(r4 − 16(t − t0)
2)

1
4

√

1 + G(t)2
+

G ′(t)

6

(r4 − 16(t − t0)
2)

3
4

(1 + G(t)2)
3
2

}

dt

=
2

r3

t0+ r2
4

∫

t0− r2
4

(r4 − 16(t − t0)
2)

1
4 +

G ′(t)

6

(r4 − 16(t − t0)
2)

3
4

1 + G(t)2
dt

=
2

r3

t0+ r2
4

∫

t0− r2
4

(r4−16(t−t0)
2)

1
4 dt+

2

r3

t0+ r2
4

∫

t0− r2
4

G ′(t)

6(1+G(t)2)
(r4−16(t−t0)

2)
3
4 dt. (4.29)
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To continue we make the change of variable t − t0 = r2

4 τ and analyze the following two
terms.

2

r3

t0+ r2
4

∫

t0− r2
4

(r4 − 16(t − t0)
2)

1
4 dt =

2

r3

1
∫

−1

r (1 − τ 2)
1
4

r2

4
dτ =

1
∫

0

(1 − τ 2)
1
4 dτ

(4.30)

2

r3

t0+ r2
4

∫

t0− r2
4

G ′(t)

6(1 + G(t)2)
(r4 − 16(t − t0)

2)
3
4 dt

=
1

3r3

1
∫

−1

G ′(t0 + r2τ/4)

1 + G(t0 + r2 τ/4)2
r3 (1 − τ 2)

3
4

r2

4
dτ

=
r2

12

1
∫

−1

G ′(t0 + r2τ/4)

1 + G(t0 + r2 τ/4)2
(1 − τ 2)

3
4 dτ. (4.31)

Using (4.30) and (4.31) in (4.29) and Lebesgue dominated convergence theorem, we obtain

lim
r→0+

σH (S ∩ B(p0, r))

r3

= lim
r→0+

1
∫

0

(1 − τ 2)
1
4 dτ + lim

r→0+

r2

12

1
∫

−1

G ′(t0 + r2τ/4)

1 + G(t0 + r2 τ/4)2
(1 − τ 2)

3
4 dτ

=
1

∫

0

(1 − τ 2)
1
4 dτ +

(

lim
r→0+

r2

12

)

1
∫

−1

(1 − τ 2)
3
4 lim

r→0+

G ′(t0 + r2τ/4)

1 + G(t0 + r2 τ/4)2
dτ

=
1

∫

0

(1 − τ 2)
1
4 dτ. (4.32)

⊓⊔

Using (4.29), (4.30) and (4.31) we can also compute and obtain

lim
r→∞

σH (S ∩ B(p0, r))

r3

=
1

∫

0

(1 − τ 2)
1
4 dτ + lim

r→∞

1
∫

−1

r2 G ′(t0 + r2τ/4)

12(1 + G(t0 + r2 τ/4)2)
(1 − τ 2)

3
4 dτ. (4.33)

Of course, the above limit may or may not be finite.
At this point, combining Theorem 1.3 and Proposition 4.6 we obtain the maximum sub-

Riemannian volume growth of graphical strips at infinity.
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Corollary 4.7 Let S ⊂ H
1 be a graphical strip, then for every p0 = (0, 0, t0) ∈ S, and

every r > 0 one has

σH (S ∩ B(p0, r)) ≥ ωr Q−1,

where we have set ω =
∫ 1

0 (1 − τ 2)
1
4 dτ .
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