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Abstract We consider various types of Hardy–Sobolev inequalities on a
Carnot–Carathéodory space (Ω, d) associated to a system of smooth vector
fields X = {X1, X2, . . . , Xm} on R

n satisfying the Hörmander finite rank
condition rank Lie[X1, . . . , Xm] ≡ n. One of our main concerns is the trace
inequality

∫

Ω

|ϕ(x)|pV (x)dx 6 C

∫

Ω

|Xϕ|pdx, ϕ ∈ C∞
0 (Ω),

where V is a general weight, i.e., a nonnegative locally integrable function
on Ω, and 1 < p < +∞. Under sharp geometric assumptions on the domain
Ω ⊂ R

n that can be measured equivalently in terms of subelliptic capacities
or Hausdorff contents, we establish various forms of Hardy–Sobolev type
inequalities.

1 Introduction

A celebrated inequality of S.L. Sobolev [49] states that for any 1 < p < n
there exists a constant S(n, p) > 0 such that for every function ϕ ∈ C∞

0 (Rn)
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∫

Rn

|ϕ|
np

n−p dx




n−p
np

6 S(n, p)



∫

Rn

|Dϕ|pdx




1
p

. (1.1)

Such an inequality admits the following extension (see [8]). For 0 6 s 6 p
define the critical exponent relative to s as follows:

p∗(s) = p
n− s

n− p
.

Then for every ϕ ∈ C∞
0 (Rn) one has




∫

Rn

|ϕ|p
∗(s)

|x|s
dx





1
p∗(s)

6

(
p

n− p

) s
p∗(s)

S(n, p)
n(p−s)
p(n−s)




∫

Rn

|Dϕ|pdx





1
p

.

(1.2)

In particular, when s = 0, then (1.2) is just the Sobolev embedding (1.1),
whereas for s = p we obtain the Hardy inequality

∫

Rn

|ϕ|p

|x|p
dx 6

(
p

n− p

)p ∫

Rn

|Dϕ|pdx. (1.3)

The constant

(
p

n− p

)p

on the right-hand side of (1.3) is sharp. If one

is not interested in the best constant, then (1.2), and hence (1.3), follows
immediately by combining the generalized Hölder inequality for weak Lp

spaces in [32] with the Sobolev embedding (1.1), after having observed that
| · |−s ∈ L

n
s ,∞(Rn) (the weak L

n
s space).

Inequalities of Hardy–Sobolev type play a fundamental role in analysis,
geometry, and mathematical physics, and there exists a vast literature con-
cerning them. Recently, there has been a growing interest in such inequalities
in connection with the study of linear and nonlinear partial differential equa-
tions of subelliptic type and related problems in CR and sub-Riemannian
geometry. In this context, it is also of interest to study the situation in which
the whole space is replaced by a bounded domain Ω and, instead of a one
point singularity such as in (1.2), (1.3), one has the distance from a lower
dimensional set. We will be particularly interested in the case in which such
a set is the boundary ∂Ω of the ground domain.

In this paper, we consider various types of Hardy–Sobolev inequalities on
a Carnot–Carathéodory space (Ω, d) associated to a system of smooth vector
fields X = {X1, X2, . . . , Xm} on R

n satisfying the Hörmander finite rank
condition [31]

rank Lie[X1, . . . , Xm] ≡ n. (1.4)
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Here, Ω is a connected, (Euclidean) bounded open set in R
n, and d is the

Carnot–Carathéodory (CC hereafter) metric generated by X . For instance,
a situation of special geometric interest is that when the ambient manifold is
a nilpotent Lie group whose Lie algebra admits a stratification of finite step
r > 1 (see [18, 20, 53]. These groups are called Carnot groups of step r. When
r > 1 such groups are non-Abelian, whereas when r = 1 one essentially has
Euclidean R

n with its standard translations and dilations.
For a function ϕ ∈ C1(Ω) we indicate with Xϕ = (X1ϕ, . . . , Xmϕ) its

“gradient” with respect to the system X . One of our main concerns is the
trace inequality

∫

Ω

|ϕ(x)|pV (x)dx 6 C

∫

Ω

|Xϕ|pdx, ϕ ∈ C∞
0 (Ω), (1.5)

where V is a general weight, i.e., a nonnegative locally integrable function on
Ω, and 1 < p < +∞. This includes Hardy inequalities of the form

∫

Ω

|ϕ(x)|p

δ(x)p
dx 6 C

∫

Ω

|Xϕ|pdx, (1.6)

and ∫

Ω

|ϕ(x)|p

d(x, x0)p
dx 6 C

∫

Ω

|Xϕ|pdx, (1.7)

as well as the mixed form
∫

Ω

|ϕ(x)|p

δ(x)p−γd(x, x0)γ
dx 6 C

∫

Ω

|Xϕ|pdx. (1.8)

In (1.6), we denote by δ(x) = inf{d(x, y) : y ∈ ∂Ω} the CC distance of x
from the boundary of Ω. In (1.7), we denote by x0 a fixed point in Ω, whereas
in (1.8) we have 0 6 γ 6 p.

Our approach to the inequalities (1.6)-(1.8) is based on results on subel-
liptic capacitary and Fefferman–Phong type inequalities in [13], Whitney
decompositions, and the so-called pointwise Hardy inequality

|ϕ(x)| 6 Cδ(x)
(

sup
0<r64δ(x)

1

|B(x, r)|

∫

B(x,r)

|Xϕ|qdy
) 1

q

, (1.9)

where 1 < q < p. In (1.9), B(x, r) denotes the CC ball centered at x of
radius r.

We use the ideas in [25] and [37] to show that (1.9) is essentially equiv-
alent to several conditions on the geometry of the boundary of Ω, one of
which is the uniform (X, p)-fatness of R

n \Ω, a generalization of that of uni-
form p-fatness introduced in [38] in the Euclidean setting (see Definition 3.2
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below). The inequality (1.9) is also equivalent to other thickness conditions
of R

n \ Ω measured in terms of a certain Hausdorff content which is intro-
duced in Definition 3.5. For the precise statement of these results we refer to
Theorem 3.9.

We stress here that the class of uniformly (X, p)-fat domains is quite rich.
For instance, when G is a Carnot group of step r = 2, then every (Euclidean)
C1,1 domain is uniformly (X, p)-fat for every p > 1 (see [7, 43]). On the other
hand, one would think that the Carnot–Carathéodory balls should share this
property, but it was shown in [7] that this is not the case since even in the
simplest setting of the Heisenberg group these sets fail to be regular for the
Dirichlet problem for the relevant sub-Laplacian.

We now discuss our results concerning the trace inequality (1.5). In the
Euclidean setting, a necessary and sufficient condition on V was found by
Maz’ya [40] in 1962 (see also [41, Theorem 2.5.2]), i.e., the inequality (1.5)
with the standard Euclidean metric induced by X = { ∂

∂x1
, . . . , ∂

∂xn
} holds if

and only if

sup
K⊂Ω

K compact

∫
K

V (x)dx

capp(K,Ω)
< +∞, (1.10)

where capp(K,Ω) is the (X, p)-capacity K defined by

capp(K,Ω) = inf





∫

Ω

|Xu|pdx : u ∈ C∞
0 (Ω), u > 1 on K



 .

Maz’ya’s result was generalized to the subelliptic setting by the first named
author in [13]. However, although Corollary 5.9 in [13] implies that V ∈

L
Q
p

,∞(Ω) is sufficient for (1.5), which is the case of an isolated singularity
as in (1.7), the Hardy inequality (1.6) could not be deduced directly from it

since δ(·)−p 6∈ L
Q
p ,∞(Ω). Here, 1 < p < Q, where Q is the local homogeneous

dimension of Ω (see Sect. 2). On the other hand, in the Euclidean setting the
Hardy inequality (1.6) was established in [1], [38] and [51] (see also [42] and
[3] for other settings) under the assumption that R

n \Ω is uniformly p-fat.
In this paper, we combine a “localized” version of (1.10) and the uniform

(X, p)-fatness of R
n\Ω to allow the treatment of weights V with singularities

which are distributed both inside and on the boundary ofΩ. More specifically,
we show that if R

n \Ω is uniformly (X, p)-fat, then the inequality (1.5) holds
if and only if

sup
B∈W

sup
K⊂2B

K compact

∫

K

V (x)dx

capp(K,Ω)
< +∞,
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where W = {Bj} is a Whitney decomposition of Ω as in Lemma 4.2 below
(see Theorem 4.3). In the Euclidean setting, this idea was introduced in [26].
Moreover, a localized version of Fefferman–Phong condition

sup
B∈W

sup
x∈2B

0<r<diam(B)

∫

B(x,r)

V (y)sdy 6 C
|B(x, r)|

rsp

for some s > 1, is also shown to be sufficient for (1.5) (see Theorem 4.5).
With these general results in hands, in Corollaries 4.6 and 4.7 we deduce

the Hardy type inequalities (1.6), (1.7), and (1.8) for domains Ω whose com-
plements are uniformly (X, p)-fat. Note that in (1.7) and (1.8) one has to
restrict the range of p to 1 < p < Q(x0), where Q(x0) is the homogeneous
dimension at x0 with respect to the system X (see Sect. 2). It is worth
mentioning that in the Euclidean setting inequalities of the form (1.8) were
obtained in [16], but only for more regular domains, say, C1,α domains or
domains that satisfy a uniform exterior sphere condition. In closing we men-
tion that our results are of a purely metrical character and that, similarly to
[13], they can be easily generalized to the case in which the vector fields are
merely Lipschitz continuous and they satisfy the conditions in [23].

2 Preliminaries

Let X = {X1, . . . , Xm} be a system of C∞ vector fields in R
n, n > 3,

satisfying the Hörmander finite rank condition (1.4). For any two points x, y ∈
R

n a piecewise C1 curve γ(t) : [0, T ] → R
n is said to be sub-unitary with

respect to the system of vector fields X if for every ξ ∈ R
n and t ∈ (0, T ) for

which γ′(t) exists one has

(γ′(t) · ξ)2 6

m∑

i=1

(Xi(γ(t)) · ξ)2.

We note explicitly that the above inequality forces γ′(t) to belong to the
span of {X1(γ(t)), . . . , Xm(γ(t))}. The sub-unit length of γ is by definition
ls(γ) = T . Given x, y ∈ R

n, denote by SΩ(x, y) the collection of all sub-
unitary γ : [0, T ] → Ω which join x to y. The accessibility theorem of Chow
and Rashevsky (see [46] and [9]) states that, given a connected open set
Ω ⊂ R

n, for every x, y ∈ Ω there exists γ ∈ SΩ(x, y). As a consequence, if
we pose

dΩ(x, y) = inf {ls(γ) | γ ∈ SΩ(x, y)},

we obtain a distance on Ω, called the Carnot–Carathéodory (CC) distance

on Ω, associated with the system X . When Ω = R
n, we write d(x, y) instead

of dRn(x, y). It is clear that d(x, y) 6 dΩ(x, y), x, y ∈ Ω, for every connected
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open set Ω ⊂ R
n. In [44], it was proved that for every connected Ω ⊂⊂ R

n

there exist C, ε > 0 such that

C |x− y| 6 dΩ(x, y) 6 C−1 |x− y|ε, x, y ∈ Ω. (2.1)

This gives d(x, y) 6 C−1|x− y|ε, x, y ∈ Ω, and therefore

i : (Rn, | · |) → (Rn, d) is continuous.

It is easy to see that also the continuity of the opposite inclusion holds [23],
hence the metric and the Euclidean topology are compatible. In particular,
the compact sets with respect to either topology are the same.

For x ∈ R
n and r > 0 we let B(x, r) = {y ∈ R

n | d(x, y) < r}. The basic
properties of these balls were established by Nagel, Stein and Wainger in
their seminal paper [44]. Denote by Y1, . . . , Yl the collection of the Xj ’s and
of those commutators which are needed to generate R

n. A formal “degree”
is assigned to each Yi, namely the corresponding order of the commutator.
If I = (i1, . . . , in), 1 6 ij 6 l, is an n-tuple of integers, following [44] we

let d(I) =
n∑

j=1

deg(Yij ), and aI(x) = det (Yi1 , . . . , Yin). The Nagel–Stein–

Wainger polynomial is defined by

Λ(x, r) =
∑

I

|aI(x)| rd(I), r > 0. (2.2)

For a given compact set K ⊂ R
n we denote by

Q = sup{d(I) : |aI(x)| 6= 0, x ∈ K} (2.3)

the local homogeneous dimension of K with respect to the system X and by

Q(x) = inf{d(I) : |aI(x)| 6= 0} (2.4)

the homogeneous dimension at x with respect to X . It is obvious that 3 6

n 6 Q(x) 6 Q. It is immediate that for every x ∈ K, and every r > 0, one
has

tQΛ(x, r) 6 Λ(x, tr) 6 tQ(x)Λ(x, r) (2.5)

for any 0 6 t 6 1, and thus

Q(x) 6
rΛ′(x, r)

Λ(x, r)
6 Q. (2.6)

For a simple example consider in R
3 the system

X = {X1, X2, X3} =

{
∂

∂x1
,
∂

∂x2
, x1

∂

∂x3

}
.



Inequalities of Hardy–Sobolev Type in Carnot–Carathéodory Spaces 123

It is easy to see that l = 4 and

{Y1, Y2, Y3, Y4} = {X1, X2, X3, [X1, X3]}.

Moreover, Q(x) = 3 for all x 6= 0, whereas for any compact set K containing
the origin Q(0) = Q = 4.

The following fundamental result is due to Nagel, Stein, and Wainger [44]:
For every compact set K ⊂ R

n there exist constants C,R0 > 0 such that for

any x ∈ K and 0 < r 6 R0 one has

CΛ(x, r) 6 |B(x, r)| 6 C−1Λ(x, r). (2.7)

As a consequence, there exists C0 such that for any x ∈ K and 0 < r <
s 6 R0 we have

C0

(r
s

)Q

6
|B(x, r)|

|B(x, s)|
. (2.8)

Henceforth, the numbers C0 and R0 above will be referred to as the local

parameters of K with respect to the system X . If E is any (Euclidean)
bounded set in R

n, then the local parameters of E are defined as those of E.
We mention explicitly that the number R0 is always chosen in such a way that
the closed metric balls B(x,R), with x ∈ K and 0 < R 6 R0, are compact
(see [23, 24]). This choice is motivated by the fact that in a CC space the
closed metric balls of large radii are not necessarily compact. For instance,
if one considers the Hörmander vector field on R given by X1 = (1 + x2) d

dx ,
then for any R > π/2 one has B(0, R) = R (see [23]).

Given an open set Ω ⊂ R
n, and 1 6 p 6 ∞, we denote by S1,p(Ω), the

subelliptic Sobolev space associated with the system X is defined by

S1,p(Ω) = {u ∈ Lp(Ω) : Xiu ∈ Lp(Ω), i = 1, . . . ,m},

where Xiu is understood in the distributional sense, i.e.,

〈Xiu, ϕ〉 =

∫

Ω

uX∗
i ϕdx

for every ϕ ∈ C∞
0 (Ω). Here, X∗

i denotes the formal adjoint of Xi. Endowed
with the norm

‖u‖S1,p(Ω) =




∫

Ω

(|u|p + |Xu|p)dx





1
p

, (2.9)

S1,p(Ω) is a Banach space which admits C∞(Ω) ∩ S1,p(Ω) as a dense subset
(see [23, 21]). The local version of S1,p(Ω) is denoted by S1,p

loc (Ω), whereas

the completion of C∞
0 (Ω) under the norm in (2.9) is denoted by S1,p

0 (Ω).
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A fundamental result in [47] shows that for any bounded open set Ω ⊂ R
n

the space S1,p
0 (Ω) embeds into a standard fractional Sobolev space W s,p

0 (Ω),
where s = 1/r and r is the largest number of commutators which are needed
to generate the Lie algebra over Ω. Since, on the other hand, we have classi-
cally W s,p

0 (Ω) ⊂ Lp(Ω), we obtain the following Poincaré inequality:

∫

Ω

|ϕ|p dx 6 C(Ω)

∫

Ω

|Xϕ|p dx , ϕ ∈ S1,p
0 (Ω). (2.10)

Another fundamental result which plays a pervasive role in this paper is
the following global Poincaré inequality on metric balls due to Jerison [33].
Henceforth, given a measurable set E ⊂ R

n, the notation ϕE indicates the
average of ϕ over E with respect to Lebesgue measure.

Theorem 2.1. Let K ⊂ R
n be a compact set with local parameters C0 and

R0. For any 1 6 p < ∞ there exists C = C(C0, p) > 0 such that for any

x ∈ K and every 0 < r 6 R0 one has for all ϕ ∈ S1,p(B(x, r))

∫

B(x,r)

|ϕ− ϕB(x,r)|
pdy 6 C rp

∫

B(x,r)

|Xϕ|pdy. (2.11)

We also need the following basic result on the existence of cut-off functions
in metric balls (see [24] and also [21]). Given a set Ω ⊂ R

n, we indicate with
C0,1

d (Ω) the collection of functions ϕ ∈ C(Ω) for which there exists L > 0
such that

|ϕ(x) − ϕ(y)| 6 L d(x, y), x, y ∈ Ω.

We recall that, thanks to the Rademacher–Stepanov type theorem proved
in [24, 21], if Ω is metrically bounded, then any function in C0,1

d (Ω) belongs
to the space S1,∞(Ω). This is true, in particular, when Ω is a metric ball.

Theorem 2.2. Let K ⊂ R
n be a compact set with local parameters C0 and

R0. For every 0 < s < t < R0 there exists ϕ ∈ C0,1
d (Rn), 0 6 ϕ 6 1, such

that

(i) ϕ ≡ 1 on B(x, s) and ϕ ≡ 0 outside B(x, t),

(ii) |Xϕ| 6 C
t−s for a.e. x ∈ R

n,

for some C > 0 depending on C0. Furthermore, we have ϕ ∈ S1,p(Rn) for

every 1 6 p <∞.

A condenser is a couple (K,Ω), where Ω is open and K ⊂ Ω is compact.
The subelliptic p-capacity of (K,Ω) is defined by

capp(K,Ω) = inf






∫

Ω

|Xϕ|pdx : ϕ ∈ C0,1
d (Rn), supp ϕ ⊂ Ω,ϕ > 1 on K




 .
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As usual, it can be extended to arbitrary sets E ⊂ Ω by letting

capp(E,Ω) = inf
G⊂Ω open

E⊂G

sup
K⊂G

K compact

capp(K,Ω).

It was proved in [12] that the subelliptic p-capacity of a metric “annular”
condenser has the following two-sided estimate which will be used extensively
in the paper. Given a compact set K ⊂ R

n with local parameters C0 and R0,
and homogeneous dimension Q, for any 1 < p < ∞ there exist C1, C2 > 0
depending only on C0 and p such that

C1
|B(x, r)|

rp
6 capp(B(x, r), B(x, 2r)) 6 C2

|B(x, r)|

rp
(2.12)

for all x ∈ K, and 0 < r 6 R0/2.
The subelliptic p-Laplacian associated to the system X is the quasilinear

operator defined by

Lp[u] = −
m∑

i=1

X∗
i (|Xu|p−2Xiu).

A weak solution u ∈ S1,p
loc (Ω) to the equation Lp[u] = 0 is said to be Lp-

harmonic in Ω. It is well-known that every Lp-harmonic function in Ω has a
Hölder continuous representative (see [4]). This means that, if C0 and R0 are
the local parameters of Ω, then there exist 0 < α < 1 and C > 0, depending
on C0 and p, such that for every 0 < R 6 R0 for which B4R(x0) ⊂ Ω one has

|u(x) − u(y)| 6 C

(
d(x, y)

R

)α




1

|B2R(x0)|

∫

B2R(x0)

|u|pdx




1/p

. (2.13)

Given a bounded open set Ω ⊂ R
n and 1 < p <∞, the Dirichlet problem

for Ω and Lp consists in finding, for every given ϕ ∈ S1,p(Ω) ∩ C(Ω), a
function u ∈ S1,p(Ω) such that

Lp[u] = 0 in Ω, u− ϕ ∈ S1,p
0 (Ω). (2.14)

Such a problem admits a unique solution (see [12]). A point x0 ∈ ∂Ω is
called regular if for every ϕ ∈ S1,p(Ω) ∩ C(Ω),one has lim

x→x0

u(x) = ϕ(x0). If

every x0 ∈ ∂Ω is regular, then we say that Ω is regular. We need the following
basic Wiener type estimate proved in [12].

Theorem 2.3. Given a bounded open set Ω ⊂ R
n with local parameters C0

and R0, let ϕ ∈ S1,p(Ω) ∩ C(Ω). Consider the (unique) solution u to the

Dirichlet problem (2.14). There exists C = C(p, C0) > 0 such that for given

x0 ∈ ∂Ω and 0 < r < R 6 R0/3 one has with Ωc = R
n \Ω
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osc {u,Ω ∩B(x0, r)} 6 osc {ϕ, ∂Ω ∩B(x0, 2R)}

+ osc (ϕ, ∂Ω) exp



− C

R∫

r

[
capp (Ωc ∩B(x0, t), B(x0, 2t))

capp (B(x0, t), B(x0, 2t))

]
dt

t



 .

Remark 2.4. It is clear from Theorem 2.3 that if Ω is thin at x0 ∈ ∂Ω, i.e.,
if one has

lim inf
t→0+

capp (Ωc ∩B(x0, t), B(x0, 2t))

capp (B(x0, t), B(x0, 2t))
> 0 ,

then x0 is regular for the Dirichlet problem (2.14).

A lower semicontinuous function u : Ω → (−∞,∞] such that u 6≡ +∞ is
called Lp-superharmonic in Ω if for all open sets D such that D ⊂ Ω, and all
Lp-harmonic functions h ∈ C(D) the inequality h 6 u on ∂D implies h 6 u
in D. Similarly to what is done in the classical case in [30], one can associate
with each Lp-superharmonic function u in Ω a nonnegative (not necessarily
finite) Radon measure µ[u] such that −Lp[u] = µ[u]. This means that

∫

Ω

|Xu|p−2Xu ·Xϕ dx =

∫

Ω

ϕ dµ[u]

for all ϕ ∈ C∞
0 (Ω). Here, Xu is defined a.e. by

Xu = lim
k→∞

X(min{u, k}).

It is known that if either u ∈ L∞(Ω) or u ∈ S1,r
loc (Ω) for some r > 1, then

Xu coincides with the regular distributional derivatives. In general, we have

Xu ∈ Ls
loc(Ω) for 0 < s < Q(p−1)

Q−1 (see, for example, [50] and [30]).
We need the following basic pointwise estimates for Lp-superharmonic

functions. This result was first established by Kilpeläinen and Malý [35] in
the elliptic case and extended to the setting of CC metrics by Trudinger and
Wang [50]. For a generalization to more general metric spaces we refer the
reader to [3]. We recall that for given 1 < p <∞ the p-Wolff’s potential of a
Radon measure µ on a metric ball B(x,R) is defined by

WR
p µ(x) =

R∫

0

[
µ(B(x, t))

t−p|B(x, t)|

] 1
p−1 dt

t
. (2.15)

Theorem 2.5. Let K ⊂ R
n be a compact set with relative local parameters

C0 and R0. If x ∈ K and R 6 R0/2, let u > 0 be Lp-superharmonic in

B(x, 2R) with associated measure µ = −Lp[u]. There exist positive constants

C1 and C2 depending only on p and C0 such that
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C1W
R
p µ(x) 6 u(x) 6 C2

{
W2R

p µ(x) + inf
B(x,R)

u

}
.

3 Pointwise Hardy Inequalities

We begin this section by generalizing a Sobolev type inequality that, in the
Euclidean setting, was found by Maz’ya [41, Chapt. 10].

Lemma 3.1. Let K ⊂ R
n be a compact set with local parameters C0 and R0.

For x ∈ K and r 6 R0/2 we set B = B(x, r). Given 1 6 q <∞, there exists

a constant C > 0 depending only on C0 and q such that for all ϕ ∈ C∞(2B)

|ϕB | 6 C


 1

capq({ϕ = 0} ∩B, 2B)

∫

2B

|Xϕ|qdx




1
q

. (3.1)

Proof. We may assume that ϕB 6= 0; otherwise, there is nothing to prove.
Let η ∈ C0,1

d (Rn), 0 6 η 6 1, supp η ⊂ 2B, η = 1 on B and |Xη| 6
C
r

be a cut-off function as in Theorem 2.2. Define ϕ = η(ϕB − ϕ)/ϕB. Then
ϕ ∈ C0,1

d (Rn), supp ϕ ⊂ 2B, and ϕ = 1 on {ϕ = 0}∩B. It thus follows that

capq({ϕ = 0} ∩B, 2B) 6

∫

2B

|Xϕ|qdx (3.2)

6 |ϕB |−q

∫

2B

|Xη|q|ϕ− ϕB |qdx + |ϕB|−q

∫

2B

|Xϕ|qdx

6 C|ϕB |−qr−q

∫

2B

|ϕ− ϕB|qdx + |ϕB|−q

∫

2B

|Xϕ|qdx.

On the other hand, by Theorem 2.1 and (2.8), we infer

∫

2B

|ϕ− ϕB |qdx 6 C

∫

2B

|ϕ− ϕ2B |qdx + C

∫

2B

|ϕB − ϕ2B|qdx

6 Crq

∫

2B

|Xϕ|qdx + C

∫

2B

|ϕ− ϕ2B |qdx

6 Crq

∫

2B

|Xϕ|qdx.

Inserting the latter inequality in (3.2), we find
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capq({ϕ = 0} ∩B, 2B) 6 C|ϕB |−q

∫

2B

|Xϕ|qdx,

which gives the desired inequality (3.1). ⊓⊔

We now introduce the notion of uniform (X, p)-fatness. As Theorem 3.9
below proves, such a notion turns out to be equivalent to a pointwise Hardy
inequality and to a uniform thickness property expressed in terms of the
Hausdorff content.

Definition 3.2. We say that a set E ⊂ R
n is uniformly (X, p)-fat with

constants c0, r0 > 0 if

capp(E ∩B(x, r), B(x, 2r)) > c0 capp(B(x, r), B(x, 2r))

for all x ∈ ∂E and for all 0 < r 6 r0.

The potential theoretic relevance of Definition 3.2 is underscored in Re-
mark 2.4. From the latter it follows that if R

n \ Ω is uniformly (X, p)-fat,
then for every x0 ∈ ∂Ω one has for every ϕ ∈ S1,p(Ω) ∩ C(Ω)

osc {u,Ω ∩B(x0, r)} 6 osc {ϕ, ∂Ω ∩B(x0, 2R)}

and, therefore, Ω is regular for the Dirichlet problem for the subelliptic
p-Laplacian Lp.

Uniformly (X, p)-fat sets enjoy the following self-improvement property
which was discovered in [38] in the Euclidean setting. Such a property holds
also in the setting of weighted Sobolev spaces and degenerate elliptic equa-
tions [42]. The proof in [42] uses the Wolff potential and works also in the
general setting of metric spaces [3]. For the sake of completeness, we include
its details here.

Theorem 3.3. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. There exists a constant 0 < r0 6 R0/100 such that whenever R
n \Ω

is uniformly (X, p)-fat with constants c0 and r0, then it is also uniformly

(X, q)-fat for some q < p with constants c1 and r0.

Proof. Let dist(x,Ω) = inf{d(x, y) : y ∈ Ω}. Denote by U ⊂ R
n the compact

set
U = {x ∈ R

n : dist(x,Ω) 6 R0},

with local parameters C1, R1. We show that if R
n \Ω is uniformly (X, p)-fat

with constants c0 and r0 = min{R0, R1}/100, then it is also uniformly (X, q)-
fat for some q < p with constants c1 and r0. To this end, we fix x0 ∈ ∂Ω and
0 < R 6 r0. Following [38], we first claim that there e xists a compact set
K ⊂ (Rn \ Ω) ∩ B(x0, R) containing x0 such that K is uniformly (X, p)-fat
with constants c1 > 0 and R. Indeed, let E1 = (Rn \ Ω) ∩ B(x0,

R
2 ), and

inductively let
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Ek = (Rn \Ω) ∩




⋃

x∈Ek−1

B(x, R
2k )


 , k ∈ N.

Then it is easy to see that K can be taken as the closure of ∪kEk.
Let now B = B(x0, R). Denote by P̂K the potential of K in 2B, i.e., P̂K

is the lower semicontinuous regularization

P̂K(x) = lim
r→0

inf
Br(x)

PK ,

where PK is defined by

PK = inf{u : u is Lp-superharmonic in 2B, and u > χK}.

Let µ = −Lp[P̂K ]. Then supp µ ⊂ ∂K and

µ(K) = capp(K, 2B). (3.3)

Moreover, P̂K = PK except for a set of zero capacity capp(·, 2B) (see [50]).

Hence P̂K is the unique solution in S1,p
0 (2B) to the Dirichlet problem

Lp[u] = 0 in 2B \K, u− f ∈ S1,p
0 (2B \K)

for any f ∈ C∞
0 (2B) such that f ≡ 1 on K. Thus, by Theorem 2.3 and the

(X, p)-fatness of K, there are constants C > 0 and α > 0 independent of R
such that

osc (P̂K , B(x, r)) 6 CR−αrα (3.4)

for all x ∈ ∂K and 0 < r 6 R/2. From the lower Wolff potential estimate in
Theorem 2.5 we have

[
µ(B(x, r))

r−p|B(x, r)|

] 1
p−1

6 CW2r
p µ(x) 6 C

(
P̂K(x) − inf

B(x,4r)
P̂K

)

6 C osc (P̂K , B(x, 4r)).

Thus, from (3.4) it follows that

µ(B(x, r)) 6 CR−α(p−1)rα(p−1)−p|B(x, r)| (3.5)

for all x ∈ ∂K and 0 < r 6 R/8. Moreover, since supp µ ⊂ ∂K, we see from
the doubling property (2.8) that (3.5) holds also for all x ∈ B(x0, 2R) and
0 < r 6 R/16. In fact, it then holds for all R/16 < r 6 3R as well since,
again by (2.8), the ball B(x, r) can be covered by a fixed finite number of
balls of radius R/16.

We next pick q ∈ R such that p− α(p − 1) < q < p and define a measure
ν = Rp−qµ. From (3.5) it follows that for all x ∈ B(x0, 2R),
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W3R
q ν(x) 6 CR

p−q−α(p−1)
q−1

3R∫

0

r
q−p+α(p−1)

q−1
dr

r
6 M, (3.6)

where M is independent of R. Thus, by [2, Lemma 3.3], ν belongs to the
dual space of S1,q

0 (2B) and there is a unique solution v ∈ S1,q
0 (2B) to the

problem
− Lq[v] = ν in 2B

v = 0 on ∂(2B).
(3.7)

We now claim that
v(x) 6 c (3.8)

for all x ∈ 2B and for a constant c independent of R. To this end, it is enough
to show (3.8) only for x ∈ B since v is Lq-harmonic in 2B \B and v = 0 on
∂(2B). Fix now x ∈ B. By Theorem 2.5, we have

v(x) 6 C

{
W3R

q ν(x) + inf
B(x,R/4)

v

}
. (3.9)

To bound the term inf
B(x,R/4)

v in (3.9), we first use min{v, k}, k > 0, as a

test function in (3.7) to obtain

∫

2B

|X(min{v, k})|qdx =

∫

2B

|Xv|q−2Xv ·X(min{v, k})dx (3.10)

=

∫

2B

min{v, k}dν 6 k ν(K).

Consequently,

capq({v > k}, 2B) 6

∫

2B

|X(min{v, k}/k)|qdx 6 k1−qν(K) (3.11)

for any k > 0. The inequality (3.11) with k = inf
B(x,R/4)

v then gives

R−q|B(x,R)| 6 C capq(B(x,R/4), B(x, 4R))

6 C capq({v > k}, 2B)

6 Ck1−qν(K),

which yields the estimate

inf
B(x,R/4)

v 6 C

(
ν(K)

R−q|B(x,R)|

) 1
q−1

. (3.12)
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Combining (3.6), (3.9), and (3.12). we obtain (3.8), thus proving the claim.
Note that for any ϕ ∈ C∞

0 (2B) such that ϕ > χK , by the Hölder inequality
and by applying (3.10) with k = c, we have

ν(K) 6

∫

2B

ϕdν =

∫

Ω

|Xv|q−2Xv ·Xϕdx

6



∫

2B

|Xv|qdx




q−1
q


∫

2B

|Xϕ|qdx




1
q

6 [c ν(K)]
q−1

q




∫

2B

|Xϕ|qdx





1
q

.

Thus, minimizing over such functions ϕ, we obtain

ν(K) 6 cq−1 capq(K, 2B).

The latter inequality and (2.12) give

capq((Rn \Ω) ∩B, 2B) > capq(K, 2B) > C ν(K) = CRp−qµ(K)

= CRp−qcapp(K, 2B) > CRp−qcapp(B, 2B)

> CR−q|B| > C capq(B, 2B)

by (3.3) and the uniform (X, p)-fatness of K. This proves that R
n \ Ω is

uniformly (X, q)-fat, thus completing the proof of the theorem. ⊓⊔

In what follows, given f ∈ L1
loc(R

n), we denote by MR, 0 < R < ∞, the
truncated centered Hardy–Littlewood maximal function of f defined by

MR(f)(x) = sup
0<r6R

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy, x ∈ R
n.

We note explicitly that if R1 < R2, then MR1(f)(x) 6 MR2(f)(x). The
first consequence of the self-improvement property of uniformly (X, p)-fat
set is the following pointwise Hardy inequality which generalizes a result
originally found by Haj lasz [25] in the Euclidean setting.

Theorem 3.4. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Suppose that R
n \ Ω is uniformly (X, p)-fat with constants c0 and

r0, where 0 < r0 6 R0/100 is as in Theorem 3.3. There exist 1 < q < p and

a constant C > 0, both depending on C0 and p, such that the inequality

|u(x)| 6 Cδ(x)
(
M4δ(x)(|∇u|

q)(x)
) 1

q

(3.13)
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holds for all x ∈ Ω with δ(x) < r0 and all compactly supported u ∈ C0,1
d (Ω).

Proof. For x ∈ Ω with δ(x) < r0 we let B = B(x, δ(x)), where x ∈ ∂Ω is
chosen so that |x − x| = δ(x). By the fatness assumption and Theorem 3.3,
there exists 1 < q < p such that

cap1, q(B ∩ (Rn \Ω), 2B) > C|B|δ(x)−q .

Thus, by Lemma 3.1 above and Theorem 1.1 in [6],

u(x) 6 |u(x) − uB| + |uB| (3.14)

6 C

∫

2B

|Xu(y)|
d(x, y)

|B(x, d(x, y))|
dy + C

(
∫

2B

|Xu|qdx

|B|δ(x)−q

) 1
q

.

Note that by the doubling property (2.8),

∫

2B

|Xu(y)|
d(x, y)

|B(x, d(x, y))|
dy (3.15)

6

∫

B(x,4δ(x))

|Xu(y)|
d(x, y)

|B(x, d(x, y))|
dy

=

∞∑

k=0

∫

B(x,2−k4δ(x))\B(x,2−k−14δ(x))

|Xu(y)|
d(x, y)

|B(x, d(x, y))|
dy

6 C

∞∑

k=0

2−k4δ(x)

|B(x, 2−k4δ(x))|

∫

B(x,2−k4δ(x))

|Xu(y)|dy

6 Cδ(x)M4δ(x)(|Xu|)(x).

Also,

(
∫

2B

|Xu|qdx

|B|δ(x)−q

) 1
q

6 Cδ(x)
(

∫

B(x,4δ(x))

|Xu|qdx

|B(x, 4δ(x))|

) 1
q

(3.16)

6 Cδ(x)
(
M4δ(x)(|Xu|

q)(x)
) 1

q

.

From (3.14), (3.15), (3.16) and the Hölder inequality we now obtain

u(x) 6 Cδ(x)
(
M4δ(x)(|Xu|

q)(x)
) 1

q

,

which completes the proof of the theorem. ⊓⊔
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As it turns out, the pointwise Hardy inequality (3.13) is in fact equivalent
to certain geometric conditions on the boundary of Ω that can be measured
in terms of a Hausdorff content. We introduce the relevant definition.

Definition 3.5. Let s ∈ R, r > 0 and E ⊂ R
n. The (X, s, r)-Hausdorff

content of E is the number

H̃s
r(E) = inf

∑

j

rs
j |Bj |,

where the infimum is taken over all coverings of E by balls Bj = B(xj , rj)
such that xj ∈ E and rj 6 r.

We next follow the idea in [37] to prove the following important conse-
quence of the pointwise Hardy inequality (3.13).

Theorem 3.6. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Suppose that there exist r0 6 R0/100, q > 0, and a constant C > 0
such that the inequality

|u(x)| 6 Cδ(x)
(
M4δ(x)(|∇u|

q)(x)
) 1

q

(3.17)

holds for all x ∈ Ω with δ(x) < r0 and all compactly supported u ∈ C0,1
d (Ω).

There exists C1 > 0 such that the inequality

H̃−q
δ(x)(B(x, 2δ(x)) ∩ ∂Ω) > C1δ(x)−q |B(x, δ(x))| (3.18)

holds for all x ∈ Ω with δ(x) < r0.

Proof. We argue by contradiction and suppose that (3.18) fails. We can thus
find a sequence {xk}

∞
k=1 ⊂ Ω with δ(xk) < r0 such that

H̃−q
δ(x)/4(B(xk, 5δ(xk)) ∩ ∂Ω) < k−1δ(xk)−q|B(xk, δ(xk))|.

Here, we used the fact that, by the continuity of the distance function δ
and the doubling property (2.8), the inequality (3.18), which holds for all
x ∈ Ω with δ(x) < r0, is equivalent to the validity of

H̃−q
δ(x)/4(B(x, 5δ(x)) ∩ ∂Ω) > C2δ(x)−q |B(x, δ(x))|

for all x ∈ Ω with δ(x) < r0 and for a constant C2 > 0. By com-
pactness, we can now find a finite covering {Bi}

N
i=1, Bi = B(zi, ri) with

zi ∈ B(xk, 5δ(xk)) ∩ ∂Ω and 0 < ri < δ(xk)/4, such that

B(xk, 5δ(xk)) ∩ ∂Ω ⊂

N⋃

i=1

Bi (3.19)
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and
N∑

i=1

r−q
i |Bi| < k−1δ(xk)−q|B(xk, δ(xk))|. (3.20)

Next, for each k ∈ N we define a function ϕk by

ϕk(x) = min{1, min
16i6N

r−1
i dist(x, 2Bi)}

and let ϕk ∈ C0,1
d (B(xk, 5δ(xk))) be such that 0 6 ϕk 6 1 and ϕk ≡ 1 on

B(xk, 4δ(xk)). Clearly, the function uk = ϕkϕk belongs to C0,1
d (Ω) and, in

view of (3.19), it has compact support. Moreover, uk(xk) = 1 since from the
fact that zi ∈ ∂Ω we have

d(xk, zi) > δ(xk) > 4ri (3.21)

for all 1 6 i 6 N . Also, since ϕk(x) = 1 for x 6∈
N⋃

i=1

3Bi and ϕk(x) = 0 for

x ∈
N⋃

i=1

2Bi, it is easy to see that

supp (|Xuk|) ∩B(xk, 4δ(xk)) ⊂

N⋃

i=1

(3Bi \ 2Bi)

and that for a.e. y ∈ B(xk, 4δ(xk)) we have

|Xuk(y)|q 6

N∑

i=1

r−q
i χ3Bi\2Bi

(y). (3.22)

Hence, using (3.21) and (3.22), we can calculate

M4δ(xk)(|Xuk|
q)(xk)

6 C sup
1
4 δ(xk)6r64δ(xk)

1

|B(xk, r)|

∫

B(xk,r)

|Xuk(y)|qdy

6 C
1

|B(xk, δ(xk))|

∫

B(xk,4δ(xk))

|Xuk(y)|qdy

6 C
1

|B(xk, δ(xk))|

N∑

i=1

|3Bi \ 2Bi|r
−q
i
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6 C
1

|B(xk, δ(xk))|

N∑

i=1

|Bi|r
−q
i . (3.23)

From (3.20) and (3.23) we obtain

δ(xk)qM4δ(xk)(|Xuk|
q)(xk) 6 Ck−1.

Since uk = 1 for any k, this implies that the pointwise Hardy inequality (3.17)
fails to hold with a uniform constant for all compactly supported u ∈ C0,1

d (Ω).
This contradiction completes the proof of the theorem. ⊓⊔

As in [37], from (3.18) we can also obtain the following thickness condition
on R

n \Ω.

Theorem 3.7. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Suppose that there exist r0 6 R0/100, q > 0, and a constant C > 0
such that the inequality

H̃−q
δ(x)(B(x, 2δ(x)) ∩ ∂Ω) > Cδ(x)−q |B(x, δ(x))| (3.24)

holds for all x ∈ Ω with δ(x) < r0. Then there exists C1 > 0 such that

H̃−q
r (B(w, r) ∩ (Rn \Ω)) > C1r

−q|B(w, r)| (3.25)

for all w ∈ ∂Ω and 0 < r < r0.

Proof. Let w ∈ ∂Ω and 0 < r < r0. If

|B(w, r
2 ) ∩ (Rn \Ω)| >

1
2 |B(w, r

2 )|,

then it is easy to see that (3.25) holds with C1 = 2−QC0/2. Thus, we may
assume that

|B(w, r
2 ) ∩Ω| >

1
2 |B(w, r

2 )|,

which, by (2.8), gives

|B(w, r
2 ) ∩Ω| > 2−QC0 |B(w, r)|/2. (3.26)

Now, to prove (3.25), it is enough to show that

H̃−q
r (B(w, r) ∩ ∂Ω) > C1r

−q |B(w, r)|. (3.27)

To this end, let {Bi}
∞
i=1, Bi = B(zi, ri) with zi ∈ ∂Ω and 0 < ri 6 r be a

covering of B(w, r) ∩ ∂Ω. Then if

∑

i

|Bi| > (2−QC0)2|B(w, r)|/4,
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it follows that (3.27) holds with C1 = 1
4 (2−QC0)2. Hence we are left with

considering only the case

∑

i

|Bi| < (2−QC0)2|B(w, r)|/4. (3.28)

Using (2.8), (3.26), and (3.28), we can now estimate

|(B(w, r
2 ) ∩Ω) \

⋃

i

2Bi| > |B(w, r
2 ) ∩Ω| − 2QC−1

0

∑

i

|Bi|

> 2−QC0|B(w, r)|/2 − 2−QC0|B(w, r)|/4

= 2−QC0|B(w, r)|/4.

Thus, by a covering lemma (see [52, p. 9]), we can find a sequence of
pairwise disjoint balls B(xk, 6δ(xk)) with xk ∈ (B(w, r

2 ) ∩ Ω) \
⋃
i

2Bi such

that

|B(w, r)| 6 C|(B(w, r
2 ) ∩Ω) \

⋃

i

2Bi| 6 C
∑

k

|B(xk, 30δ(xk))|.

This, together with (2.8) and (3.24), gives

|B(w, r)|r−q
6 C

∑

k

|B(xk, δ(xk))|δ(xk)−q (3.29)

6 C
∑

k

H̃−q
δ(xk)(B(xk, 2δ(xk)) ∩ ∂Ω)

since δ(xk) < r
2 for all k.

We next observe that we can further assume that

δ(x) < r
4 for all x ∈ B(w, r

2 ) ∩Ω. (3.30)

In fact, if there exits x ∈ B(w, r
2 ) ∩ Ω such that δ(x) > r

4 , then there
exists x0 ∈ B(w, r

2 ) ∩ Ω such that δ(x0) = r
4 by the continuity of δ. Thus,

B(x0, 2δ(x0)) ⊂ B(w, r) and, in view of the assumption (3.24), we obtain

H̃−q
r (B(w, r) ∩ ∂Ω) > CH̃−q

δ(x0)(B(x0, 2δ(x0) ∩ ∂Ω))

> Cδ(x0)−q|B(x0, δ(x0))| > Cr−q|B(w, r)| ,

which gives (3.27). Now, the inequality (3.30), in particular, implies that

B(xk, 2δ(xk)) ∩ ∂Ω ⊂ B(w, r) ∩ ∂Ω ⊂
⋃

i

Bi,

and hence for every k one has



Inequalities of Hardy–Sobolev Type in Carnot–Carathéodory Spaces 137

H̃−q
2δ(xk)(B(xk, 2δ(xk) ∩ ∂Ω)) 6

∑

{i∈N|Bi∩B(xk,2δ(xk)) 6=∅}

|Bi|r
−q
i . (3.31)

Here, we used the fact that ri < 2δ(xk) since xk 6∈ 2Bi. From (3.29) and
(3.31), after changing the order of summation, we obtain

|B(w, r)|r−q
6 C

∑

i

∑

{k∈N|Bi∩B(xk,2δ(xk)) 6=∅}

|Bi|r
−q
i (3.32)

6 C
∑

i

C(i)|Bi|r
−q
i ,

where C(i) is the number of balls B(xk, 2δ(xk)) that intersect Bi. Note
that if Bi ∩ B(xk, 2δ(xk)) 6= ∅, then, since ri < 2δ(xk), we see that
Bi ⊂ B(xk, 6δ(xk)). Hence C(i) 6 1 for all i since, by our choice, the balls
B(xk, 6δ(xk)) are pairwise disjoint. This and (3.32) give

|B(w, r)|r−q
6 C

∑

i

|Bi|r
−q
i ,

and the inequality (3.27) follows as the coverings {Bi}i of B(w, r) ∩ ∂Ω are
arbitrary. This completes the proof of the theorem. ⊓⊔

The thickness condition (3.25) that involves the Hausdorff content will
now be shown to imply the uniform (X, p)-fatness of R

n \Ω. To achieve this
we borrow an idea from [29].

Theorem 3.8. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Suppose that there exist r0 6 R0/100, 1 < q < p, and a constant

C > 0 such that the inequality

H̃−q
r (B(w, r) ∩ (Rn \Ω)) > Cr−q|B(w, r)| (3.33)

holds for all w ∈ ∂Ω and 0 < r < r0. Then there exists C1 > 0 such that the

R
n \Ω is uniformly (X, p)-fat with constants C1 and r0.

Proof. Let z ∈ ∂Ω, and let 0 < r < r0. We need to find a constant C1 > 0
independent of z and r such that

capp(K,B(z, 2r)) > C1r
−p|B(z, r)|, (3.34)

where K = (Rn \Ω) ∩B(z, r). From (3.33) we have

H̃−q
r (K) > Cr−q|B(z, r)|. (3.35)

Let ϕ ∈ C∞
0 (B(z, 2r)) be such that ϕ > 1 on K. If there is x0 ∈ K such

that
|ϕ(x0) − ϕB(x0,4r)| 6 1/2,
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then

1 6 ϕ(x0) 6 |ϕ(x0) − ϕB(x0,4r)| + |ϕB(x0,4r)| 6 1/2 + |ϕB(x0,4r)|.

By Lemma 3.1, the doubling property (2.8), and (2.12), we obtain

1/2 6 |ϕB(x0,4r)| 6 C
(
rp|B(z, r)|−1

∫

B(z,2r)

|Xϕ|pdx
) 1

p

,

which gives (3.34). Thus, we may assume that

1/2 < |ϕ(x) − ϕB(x,4r)| for all x ∈ K.

Under such an assumption, using the covering argument in Theorem 5.9
in [29], the inequality (3.34) follows from (3.35) and Theorem 2.1. ⊓⊔

Finally, we summarize in one single theorem the results obtained in The-
orems 3.4, 3.6, 3.7, and 3.8.

Theorem 3.9. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0 and let 1 < p < ∞. There exists 0 < r0 6 R0/100 such that the

following statements are equivalent:

(i) The set R
n \ Ω is uniformly (X, p)-fat with constants c0 and r0 for

some c0 > 0, i.e.,

capp((Rn \Ω) ∩B(w, r), B(w, 2r)) > c0r
−p|B(w, r)|

for all w ∈ ∂Ω and 0 < r < r0.

(ii) There exists 1 < q < p and a constant C > 0 such that

|u(x)| 6 Cδ(x)
(
M4δ(x)(|∇u|

q)(x)
) 1

q

for all x ∈ Ω with δ(x) < r0 and all compactly supported u ∈ C0,1
d (Ω).

(iii) There exists 1 < q < p and a constant C > 0 such that

H̃−q
δ(x)(B(x, 2δ(x)) ∩ ∂Ω) > Cδ(x)−q |B(x, δ(x))|

for all x ∈ Ω with δ(x) < r0.

(iv) There exists 1 < q < p and a constant C > 0 such that

H̃−q
r (B(w, r) ∩ (Rn \Ω)) > Cr−q|B(w, r)|

for all w ∈ ∂Ω and 0 < r < r0.
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Remark 3.10. As an example in [37] shows, we cannot replace the set R
n\Ω

in statement (iv) in Theorem 3.9 with the smaller set ∂Ω.

4 Hardy Inequalities on Bounded Domains

Our first result in this section is the following Hardy inequality which is a
consequence of Theorem 3.4 and the Ls boundedness of the Hardy–Littlewood
maximal function for s > 1. We remark that no assumption on the smallness
of the diameter of the domain is required, as opposed to the Poicaré inequality
(2.11) and Sobolev inequalities established in [23].

Theorem 4.1. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Suppose that R
n\Ω is uniformly (X, p)-fat with constants c0 > 0 and

0 < r0 6 R0/100. There is a constant C > 0 such that for all ϕ ∈ C∞
0 (Ω)

∫

Ω

|ϕ(x)|p

δ(x)p
dx 6 C

∫

Ω

|Xϕ|p dx. (4.1)

Proof. Let Ωr0 = {x ∈ Ω : δ(x) > r0}, and let ϕ ∈ C∞
0 (Ω). By Theorem 3.4,

we can find 1 < q < p such that

∫

Ω

|ϕ(x)|pδ(x)−pdx =

∫

Ωr0

|ϕ(x)|pδ(x)−pdx +

∫

Ω\Ωr0

|ϕ(x)|pδ(x)−pdx

6 r−p
0

∫

Ω

|ϕ(x)|pdx + C

∫

Ω

(
M4r0(|Xϕ|q)(x)

) p
q

dx

6 C

∫

Ω

|Xϕ(x)|pdx.

In the last inequality above, we used the Poincaré inequality (2.10) and
the boundedness property of M4r0 on Ls(Ω), s > 1 (see [52]). The proof of
Theorem 4.1 is then complete. ⊓⊔

To state Theorems 4.3 and 4.5 below, we need to fix a Whitney decompo-
sition of Ω into balls as in the following lemma, whose construction can be
found, for example, in [33] or [18].

Lemma 4.2. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. There exists a family of balls W = {Bj} with Bj = B(xj , rj) and a

constant M > 0 such that
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(a) Ω ⊂ ∪jBj ,

(b) B(xj ,
rj

4 ) ∩B(xk,
rk

4 ) 6= ∅ for j 6= k,

(c) rj = 10−3 min{R0/diam(Ω), 1}dist(Bj , ∂Ω),

(d)
∑

j

χ4Bj (x) 6 MχΩ(x).

In (c),
diam(Ω) = sup

x,y∈Ω
d(x, y)

is the diameter of Ω with respect to the CC metric. In particular, we have

rj 6 10−3R0.

We can now go further in characterizing weight functions V on Ω for which
the embedding ∫

Ω

|ϕ(x)|p V (x)dx 6 C

∫

Ω

|Xϕ|pdx

holds for all ϕ ∈ C∞
0 (Ω). Here, the condition on V is formulated in terms of

a localized capacitary condition adapted to a Whitney decomposition of Ω.
Such a condition can be simplified further in the setting of Carnot groups as
we point out in Remark 4.4 below. In the Euclidean setting, it was used in
[26] to characterize the solvability of multi-dimensional Riccati equations on
bounded domains.

Theorem 4.3. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Let V > 0 be in L1
loc(Ω). Suppose that R

n \Ω is uniformly (X, p)-fat
with 1 < p < Q. Then the embedding

∫

Ω

|ϕ(x)|p V (x)dx 6 C

∫

Ω

|Xϕ|pdx, ϕ ∈ C∞
0 (Ω), (4.2)

holds if and only if

sup
B∈W

sup
K⊂2B

K compact

∫

K

V (x)dx

′⋂
limitsp(K,Ω)

6 C, (4.3)

where W = {Bj} is a Whitney decomposition of Ω as in Lemma 4.2.

Remark 4.4. In the setting of a Carnot group G with homogeneous dimen-
sion Q, we can replace capp(K,Ω) by capp(K,G) in (4.3) since, if B ∈ W
and K is a compact set in 2B, we have

c capp(K,Ω) 6 capp(K,G) 6 capp(K,Ω). (4.4)
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The second inequality in (4.4) is obvious. To see the first one, let ϕ ∈ C∞
0 (G),

ϕ > 1 on K, and choose a cut-off function η ∈ C∞
0 (4B) such that 0 6 η 6 1,

η ≡ 1 on 2B and |Xη| 6
C
rB

, where rB is the radius of B. Since ϕη ∈ C∞
0 (Ω),

ϕη > 1 on K, we have

capp(K,Ω) 6

∫

Ω

|X(ϕη)|pdg

6

∫

G

|Xϕ|pdg + C

∫

4B\2B

|ϕ|p

rp
B

dg

6

∫

G

|Xϕ|pdg + C

∫

G

|ϕ|p

ρ(g, g0)p
dg,

where g0 is the center of B, and we denoted by ρ(g, g0) the pseudo-distance
induced on G by the anisotropic Folland–Stein gauge (see [18, 20]). To bound
the third integral on the right-hand side of the latter inequality, we use the
following Hardy type inequality:

∫

G

ϕp

ρ(g, g0)p
dg 6 C

∫

G

|Xϕ|p dg, ϕ ∈ C∞
0 (G), (4.5)

which is easily proved as follows. Recall the Folland-Stein Sobolev embedding
(see [20])



∫

G

|ϕ|
pQ

Q−p dg




Q−p
pQ

6 Sp



∫

G

|Xϕ|p dg




1
p

, ϕ ∈ C∞
0 (G). (4.6)

Observing that for every g0 ∈ G one has g →
1

ρ(g, g0)p
∈ LQ/p,∞(G), from

the generalized Hölder inequality for weak Lp spaces due to Hunt [32] one
obtains with an absolute constant B > 0

∫

G

ϕp

ρ(g, g0)p
dg 6 B



∫

G

|ϕ|
pQ

Q−p dg




Q−p
Q

||ρ(·, g0)−p||LQ/p,∞(G)

6 C

∫

G

|Xϕ|p dg,

where in the last inequality we used (4.6). This proves (4.5). In conclusion,
we find

capp(K,Ω) 6 C

∫

G

|Xϕ|pdg,
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which gives the first inequality in (4.4).

Proof of Theorem 4.3. That the emdedding (4.2) implies the capacitary con-
dition (4.3) is clear. To prove the converse, let {ϕj} be a Lipschitz partition
of unity associated with the Whitney decomposition W = {Bj} (see [24]),
i.e., 0 6 ϕj 6 1 is Lipschitz with respect to the CC metric, supp ϕj ⋐ 2Bj ,
|Xϕj | 6 C/diam(Bj), and

∑

j

ϕj(x) = χΩ(x).

Moreover, by property (d) in Lemma 4.2, there is a constant C(p) such that




∑

j

ϕj(x)




p

= C(p)
∑

j

ϕj(x)p.

Then for any ϕ ∈ C∞
0 (Ω) we have

∫

Ω

|ϕ(x)|p V (x)dx 6 C
∑

j

∫

Ω

|ϕjϕ(x)|p V (x)dx

6 C
∑

j

∫

4Bj

|X(ϕjϕ)|pdx

by (4.3) and [13, Theorem 5.3]. Thus, from Theorem 4.1 and Lemma 4.2 we
obtain

∫

Ω

|ϕ(x)|p V (x)dx

6 C
∑

j

∫

4Bj

|Xϕ|pdx + C
∑

j

[diam(Bj)]−p

∫

4Bj

|ϕ|pdx

6 C

∫

Ω

|Xϕ|pdx + C

∫

Ω

|ϕ|pδ−p(x)dx

6 C

∫

Ω

|Xϕ|pdx.

This completes the proof of the theorem. ⊓⊔

In view of [13, Theorem 1.6], the above proof also gives the following
Fefferman–Phong type sufficiency result [17].

Theorem 4.5. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Let V > 0 be in L1
loc(Ω). Suppose that R

n \Ω is uniformly (X, p)-fat
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with 1 < p < Q. Then the embedding

∫

Ω

|ϕ(x)|p V (x)dx 6 C

∫

Ω

|Xϕ|pdx, ϕ ∈ C∞
0 (Ω), (4.7)

holds if for some s > 1, V satisfies the following localized Fefferman–Phong

type condition adapted to Ω:

sup
B∈W

sup
x∈2B

0<r<diam(B)

∫

B(x,r)

V (y)sdy 6 C
|B(x, r)|

rsp
(4.8)

where W = {Bj} is a Whitney decomposition of Ω as in Lemma 4.2.

Let Ls,∞(Ω), 0 < s < ∞, denote the weak Ls space on Ω, i.e.,

Ls,∞(Ω) =
{
f : ‖f‖Ls,∞(Ω) <∞

}
,

where
‖f‖Ls,∞(Ω) = sup

t>0
t |{x ∈ Ω : |f(x)| > t}|

1
s .

Equivalently, one can take

‖f‖Ls,∞(Ω) = sup
E⊂Ω: |E|>0

|E|
1
s−

1
r



∫

E

|f |rdx




1
r

for any 0 < r < s. For s = ∞ we define

L∞,∞(Ω) = L∞(Ω).

From Theorem 4.8 we obtain the following corollary, which improves a
similar result in [16, Remark 3.7] in the sense that not only does it cover the
subelliptic case, but also require a milder assumption on the boundary.

Corollary 4.6. Let Ω ⊂ R
n be a bounded domain with local parameters C0

and R0. Suppose that R
n \Ω is uniformly (X, p)-fat for 1 < p < Q, where Q

is the homogeneous dimension of Ω. If v ∈ L
Q
γ ,∞(Ω) for some 0 6 γ 6 p,

then the embedding (4.7) holds for the weight V (x) = δ(x)−p+γv(x).

Proof. Let W = {Bj} is a Whitney decompositon of Ω as in Lemma 4.2. For

x ∈ 2B, B ∈ W , 0 < r < diam(B), and 1 < s < Q
γ we have

∫

B(x,r)

V (y)sdy 6 Cr−sp+sγ

∫

B(x,r)

v(y)sdy.
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It is then easily seen from the Hölder inequality and the doubling property
(2.8) that

∫

B(x,r)

V (y)sdy 6 Cr−sp|B(x, r)| ‖v‖
s

L
Q
γ

,∞
(Ω)

(
r

|B(x, r)|
1
Q

)sγ

6 Cr−sp|B(x, r)| ‖v‖
L

Q
γ

,∞
(Ω)

.

By Theorem 4.5, we obtain the corollary. ⊓⊔

The results obtained in Corollary 4.6 do not in general cover the case in
which v(x) has a point singularity in Ω, such as V (x) = δ(x)−p+γd(x, x0)−γ ,
with 0 6 γ 6 p and 1 < p < Q(x0) for some x0 ∈ Ω, where Q(x0) is
the homogeneous dimension at x0. The reason is that it may happen that

Q(x0) < Q and hence d(·, x0)−γ 6∈ L
Q
γ ,∞(Ω). However, by the upper estimate

in (2.5), we still can obtain the inequality (4.7) for such weights as follows.

Corollary 4.7. Let Ω ⊂ R
n be a bounded domain with local parameters

C0 and R0. Given x0 ∈ Ω, suppose that R
n \ Ω is uniformly (X, p)-fat for

1 < p < Q(x0). Then for any 0 6 γ 6 p the embedding (4.7) holds for the

weight

V (x) = δ(x)−p+γd(x, x0)−γ .

Proof. Let W = {Bj} be a Whitney decomposition of Ω as in Lemma 4.2.

For x ∈ 2B, B ∈ W , 0 < r < diam(B), and 1 < s < Q(x0)
γ we have

∫

B(x,r)

V (y)sdy 6 C r−sp+sγ

∫

B(x,r)

d(y, x0)−γsdy. (4.9)

Thus, if x 6∈ B(x0, 2r), then

∫

B(x,r)

V (y)sdy 6 C
|B(x, r)|

rsp

since for such x we have d(y, x0) > r for every y ∈ B(x, r). On the other
hand, if x ∈ B(x0, 2r) then from (4.9) we find

∫

B(x,r)

V (y)sdy 6 C rsγ−sp

∫

B(x0,3r)

d(y, x0)−γsdy

= C rsγ−sp
∞∑

k=0

∫

3r

2k+1 6d(y,x0)<
3r

2k

d(y, x0)−γsdy
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6C rsγ−sp
∞∑

k=0

( r

2k

)−γs ∣∣B(x0,
3r
2k )
∣∣ .

Thus, in view of (2.5) and the doubling property (2.8), we obtain

∫

B(x,r)

V (y)sdy 6 C rsγ−sp
∞∑

k=0

( r
2k

)−γs( 1

2k

)Q(x0)

|B(x0, 3r)|

6 C
|B(x0, 3r)|

rsp

∞∑

k=0

( 1

2k

)Q(x0)−γs

6 C(x0)
|B(x, r)|

rsp
.

Thus, by Theorem 4.5, we obtain the corollary. ⊓⊔

Remark 4.8. If we have γ = p in Corollary 4.7, then we do not need to
assume R

n \ Ω to be uniformly (X, p)-fat. In fact, to obtain the embedding
(4.7) in this case, we use [13, Theorem 1.6], the Poincaré inequality (2.10),
and a finite partition of unity for Ω.

5 Hardy Inequalities with Sharp Constants

In this section, we collect, without proofs, for illustrative purposes some the-
orems from the forthcoming article [15]. The relevant results pertain certain
Hardy–Sobolev inequalities on bounded and unbounded domains with a point
singularity which are included in them.

We begin by recalling that when X = {X1, . . . , Xm} constitutes an or-
thonormal basis of bracket generating vector fields in a Carnot group G,
then a fundamental solution Γp for −Lp in all of G was constructed in [14].
For any bounded open set Ω ⊂ R

n one can construct a positive fundamental
solution with generalized zero boundary values, i.e., a Green function, in the
more general situation of a Carnot–Carathéodory space. Henceforth, for a
fixed x ∈ Ω we denote by Γp(x, ·) such a fundamental solution with singular-
ity at some fixed x ∈ Ω. This means that Γp(x, ·) satisfies the equation

∫

Ω

|XΓp(x, y)|p−2 < XΓp(x, y), Xϕ(y) > dy = ϕ(x) (5.1)

for every ϕ ∈ C∞
0 (Ω).

We recall the following fundamental estimate, which is Theorem 7.2 in [5].
Let K ⊂ Ω ⊂ R

n be a compact set with local parameters C0 and R0. Given
x ∈ K, and 1 < p < Q(x), there exists a positive constant C depending on
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C0 and p such that for any 0 < r 6 R0/2, and y ∈ B(x, r) one has

C

(
d(x, y)p

Λ(x, d(x, y))

) 1
p−1

6 Γp(x, y) 6 C−1

(
d(x, y)p

Λ(x, d(x, y))

) 1
p−1

. (5.2)

The estimate (5.2) generalizes that obtained by Nagel, Stein, and Wainger
[44] and independently by Sanchez-Calle [48] in the case p = 2.

For any given x ∈ K we fix a number p = p(x) such that 1 < p < Q(x)
and introduce the function

E(x, r)
def
=

(
Λ(x, r)

rp

) 1
p−1

. (5.3)

Because of the constraint imposed on p = p(x), we see that for every fixed
x ∈ K the function r → E(x, r) is strictly increasing, and thereby invertible.
We denote by F (x, ·) = E(x, ·)−1, the inverse function of E(x, ·), so that

F (x,E(x, r)) = E(x, F (x, r)) = r.

We now define for every x ∈ K

ρx(y) = F

(
x,

1

Γ (x, y)

)
. (5.4)

We emphasize that, in a Carnot group G, one has for every x ∈ G, Q(x) ≡
Q the homogeneous dimension of the group, and therefore the Nagel–Stein–
Wainger polynomial is, in fact, just a monomial, i.e., Λ(x, r) ≡ C(G)rQ. It
follows that there exists a constant ω(G) > 0 such that

E(x, r) ≡ ω(G) r(Q−p)/(p−1). (5.5)

Using the function E(x, r) in (5.3), it should be clear that we can recast
the estimate (5.2) in the following more suggestive form:

C

E(x, d(x, y))
6 Γp(x, y) 6

C−1

E(x, d(x, y))
. (5.6)

As a consequence of (5.6) and (5.4), we obtain the following estimate: there

exist positive constants C and R0 depending on X1, . . . , Xm and K such that

for every x ∈ K and every 0 < r 6 R0 one has for y ∈ B(x, r)

C d(x, y) 6 ρx(y) 6 C−1 d(x, y). (5.7)

We can thus think of the function ρx as a regularized pseudo-distance

adapted to the nonlinear operator Lp. We denote by

BX(x, r) = {y ∈ R
n | ρx(y) < r},
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the ball centered at x with radius r with respect to the pseudo-distance ρx.
Because of (5.7), it is clear that

B(x,Cr) ⊂ BX(x, r) ⊂ B(x,C−1r).

Our main assumption is that for any p > 1 the fundamental solution of
the operator Lp satisfy the following

Hypothesis. For any compact set K ⊂ Ω ⊂ R
n there exist C > 0

and R0 > 0 depending on K and X1, . . . , Xm such that for every x ∈ Ω,

0 < R < R0 for which BX(x, 4R) ⊂ Ω, and a.e. y ∈ B(x,R) \ {x} one has

|XΓp(x, y)| 6 C−1

(
d(x, y)

Λ(x, d(x, y))

) 1
p−1

. (5.8)

We mention explicitly that, as a consequence of the results in [44] and [48],
the assumption (5.8) is fulfilled when p = 2. For p 6= 2 it is also satisfied in
any Carnot group of Heisenberg type G. This follows from the results in [5],
where for every 1 < p < ∞ the following explicit fundamental solution of
−Lp was found:

−Γp(g) =





p−1
Q−pσ

− 1
p−1

p N(g)−
Q−p
p−1 , p 6= Q,

σ
− 1

Q−1

Q logN(g), p = Q,

(5.9)

where we denoted by N(g) = (|x(g)|4 + 16|y(g)|2)
1
4 the Kaplan gauge on G

(see [34]), and we set σp = Qωp with

ωp =

∫

{g∈G|N(g)<1}

|XN(g)|p dg.

We note that the case p = 2 of (5.9) was first discovered by Folland [19] for
the Heisenberg group and subsequently generalized by Kaplan [34] to groups
of Heisenberg type. The conformal case p = Q was also found in [28].

We stress that the hypothesis (5.8) is not the weakest one that could be
made, and that to the expenses of additional technicalities, we could have
chosen substantially weaker hypothesis.

We now recall the classical one-dimensional Hardy inequality [27]: let 1 <

p < ∞, u(t) > 0, and ϕ(t) =

t∫

0

u(s)ds. Then

∞∫

0

(
ϕ(t)

t

)p

dt 6

(
p

p− 1

)p
∞∫

0

ϕ′(t)pdt.
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Here is our main result.

Theorem 5.1. Given a compact set K ⊂ Ω ⊂ R
n, let x ∈ K and 1 <

p < Q(x). For any 0 < R < R0 such that BX(x, 4R) ⊂ Ω one has for

ϕ ∈ S1,p
0 (BX(x,R))

∫

BX (x,R)

|ϕ|p
{
E′(x, ρx)

E(x, ρx)

}p

|Xρx|
p dy 6

(
p

p− 1

)p ∫

BX(x,R)

|Xϕ|p dy.

When Λ(x, r) is a monomial (thus, for example, in the case of a Carnot group)
the constant on the right-hand side of the above inequality is best possible.

We do not present here the proof of Theorem 5.1, but refer the reader to the
forthcoming article [15]. Some comments are in order. First of all, concerning
the factor |Xρx|

p on the left-hand side of the inequality in Theorem 5.1, we
emphasize that the hypothesis (5.8) implies that Xρx ∈ L∞

loc. Secondly, as is
shown in [15], one has

(
Q(x) − p

p− 1

)p
1

ρp
x

6

{
E′(x, ρx)

E(x, ρx)

}p

6

(
Q− p

p− 1

)p
1

ρp
x
. (5.10)

As a consequence of Theorem 5.1 and (5.10) we thus obtain the following

Corollary 5.2. Under the same assumptions of Theorem 5.1, one has for

ϕ ∈ S1,p
0 (BX(x,R))

∫

BX (x,R)

|ϕ|p

ρp
x
|Xρx|

p dy 6

(
p

Q(x) − p

)p ∫

BX (x,R)

|Xϕ|p dy. (5.11)

Thirdly, it is worth observing that, with the optimal constants, neither
Theorem 5.1 nor Corollary 5.2 can be obtained from Corollary 4.7.

We mention in closing that for the Heisenberg group Hn with p = 2 Corol-
lary 5.2 was first proved in [22]. The inequality (5.11) was extended to the
nonlinear case p 6= 2 in [45]. For Carnot groups of Heisenberg type and also for
some operators of Baouendi–Grushin type the inequality (5.11) was obtained
in [11]. In the case p = 2, various weighted Hardy inequalities with optimal
constants in groups of Heisenberg type were also independently established in
[36]. An interesting generalization of the results in [45], along with an exten-
sion to nilpotent Lie groups with polynomial growth, was recently obtained
in [39]. In this latter setting, an interesting form of the uncertainty principle
connected to the case p = 2 of the Hardy type inequality (5.11) was estab-
lished in [10]. These latter two references are not concerned however with the
problem of finding the sharp constants.
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30. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate
Elliptic Equations. Oxford Univ. Press, Oxford (1993)
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