On the Structure of positive radial solutions for quasilinear equations

Haiyan Wang

Department of Integrative Studies Arizona State University West Phoenix, Arizona 85069, U.S.A. E-mail address: wangh@asu.edu

Abstract

This paper deals with the existence, multiplicity and nonexistence of positive radial solutions to the problem $\operatorname{div}(A(|\nabla u|)\nabla u) + \lambda k(|x|)f(u) = 0$ in $R_1 < |x| < R_2$, $x \in \mathbb{R}^n$, u = 0 on $|x| = R_1$ and $|x| = R_2$. We are particularly interested in the effects of the parameter λ on the problem under a general assumption on the function A(|p|), which covers the two important cases $A \equiv 1$ and $A(|p|) = |p|^{m-2}, m > 1$. In this paper we assume that $k, f \in C([0, \infty), [0, \infty))$ and $k(t) \not\equiv 0$ on any subinterval of $[R_1, R_2]$. Let $f_0 = \lim_{u \to 0^+} [\frac{f(u)}{A(u)}]/u$ and $f_\infty = \lim_{u \to \infty} [\frac{f(u)}{A(u)}]/u$. We prove that if either $f_0 = 0$ and $f_\infty = \infty$ (superlinear), or $f_0 = \infty$ and $f_\infty = 0$ (sublinear), then for all $\lambda > 0$ the problem has a positive radial solution. In addition, we assume that f(u) > 0 for u > 0. Then either $f_0 = f_{\infty} = 0$, or $f_0 = f_{\infty} = \infty$, guarantee the existence of two positive radial solutions for certain intervals of λ . On other hand, either f_0 and $f_{\infty} > 0$, or f_0 and $f_{\infty} < \infty$, imply the nonexistence of positive radial solutions for certain intervals of λ . Furthermore, all the results are valid for Dirichlet/Neumann boundary conditions.