On the Structure of positive radial solutions for

 quasilinear equationsHaiyan Wang
Department of Integrative Studies
Arizona State University West
Phoenix, Arizona 85069, U.S.A.
E-mail address: wangh@asu.edu

Abstract

This paper deals with the existence, multiplicity and nonexistence of positive radial solutions to the problem $\operatorname{div}(A(|\nabla u|) \nabla u)+\lambda k(|x|) f(u)=0$ in $R_{1}<|x|<R_{2}, x \in \mathbb{R}^{n}, u=0$ on $|x|=R_{1}$ and $|x|=R_{2}$. We are particularly interested in the effects of the parameter λ on the problem under a general assumption on the function $A(|p|)$, which covers the two important cases $A \equiv 1$ and $A(|p|)=|p|^{m-2}, m>1$. In this paper we assume that $k, f \in C([0, \infty),[0, \infty))$ and $k(t) \not \equiv 0$ on any subinterval of $\left[R_{1}, R_{2}\right]$. Let $f_{0}=\lim _{u \rightarrow 0^{+}}\left[\frac{f(u)}{A(u)}\right] / u$ and $f_{\infty}=\lim _{u \rightarrow \infty}\left[\frac{f(u)}{A(u)}\right] / u$. We prove that if either $f_{0}=0$ and $f_{\infty}=\infty$ (superlinear), or $f_{0}=\infty$ and $f_{\infty}=0$ (sublinear), then for all $\lambda>0$ the problem has a positive radial

solution. In addition, we assume that $f(u)>0$ for $u>0$. Then either $f_{0}=f_{\infty}=0$, or $f_{0}=f_{\infty}=\infty$, guarantee the existence of two positive radial solutions for certain intervals of λ. On other hand, either f_{0} and $f_{\infty}>0$, or f_{0} and $f_{\infty}<\infty$, imply the nonexistence of positive radial solutions for certain intervals of λ. Furthermore, all the results are valid for Dirichlet/Neumann boundary conditions.

