
MA 261 On LAGRANGE MULTIPLIERS based on Stewart’s text

We assume that you are familiar with the standard tests for extrema when we
have a function f of more than one independent variable; we usually study f(x, y)
but the same ideas work for f(x, y, z), etc. The important thing is being clear
on the difference between independent and non-independent variables. In this
introduction we and examples we write the variable as (x, y) or (x, y, z), but use
vector notation in describing the general principle.

1 Independent Variables

Suppose we want to find the extrema of f(x, y) where (x, y) ranges over some
domain D (for convenience we always assume that f has continuous partials). The
standard method is (a) to identify the possible interior extrema by finding points
(x, y) where∇f(x, y) = 0. This is where the issue of the variables being independent
arises, since when they are independent, we may leave (x, y) in any direction and
check whether f increases or decreases in that direction (that is why directional
derivatives are introduced.) we introduced directional derivatives in the previous
lecture). Only if ∇f(x, y) = 0 will the directional derivative of f in any direction
from (x, y) be zero, which means that there is no obvious direction in which to go
from (x, y) where f would increase or decrease, and so (x, y) has to be considered
a point at which f might attain an extremum.

Step (a) is followed by (b): identifying the possible extrema taken on the bound-
ary of D, the situation discussed here.

2 Dependent variables

The situation is different when we look for points on the boundary of D at which
the extrema occur; this is analogous to checking at the ‘endpoints’ when f is defined
on [a, b], and f might have an extremum at either x = a, x = b without f ′(a) or
f ′(b) vanishing. In two variables this usually that means that a given portion of ∂D
(the boundary of D) is represented by one of the forms (i) y = g(x), (ii) x = g(y),
or (iii) (x, y) = (x(t), y(t)), so that t is a parameter.

It is important to see in that situation we have lost an independent variable!
In case (i) we are saying that only x is independent, so that once x is given we
know y – that can’t occur were the variables inependent. In (ii) y is the only
independent variable, and in (iii) only t is independent. So, for example, in (i),
we have f(x, y) = f(x, g(x)) = F (x), in case (ii) f(x, y) = F (y), and in (iii)
f(x, y) = f(x(t), y(t)) = F (t) [I am using the letter F for a different function in
each case]. When (x, y) ∈ ∂D, the variables are not independent, so we are not
able to move (x, y) in any direction we choose and remain on the boundary. That
is the reason f might have an extremum at (x, y) without ∇f(x, y) being zero.



(When we consider a function f of n variables defined in a region D, there will
in general be n− 1 independent variables on ∂D.)

In our earlier homework, when doing these problems without Lagrange multi-
pliers, we would simply study f on this portion of ∂D by going back to one-variable
maximum/minimum techniques from calculus, and so identify all possible extrema
on the boundary. This can lead to many cases, when the boundary has pieces which
are of various types (i)–(iii). [There will be examples given.]

3 Näıve way to handle boundary situation

The Lagrange method is a more insightful – and simple – way of handling the
situation that the number of independent variables is reduced — that is what we
mean by there being a constraint. As we have mentioned, the constraint is that
either y = g(x), x = h(y) or x = x(t), y = y(t), etc., which as we have observed
reduces the number of independent variables.

4 Lagrange’s insight

Lagrange had an insight that uses geometry and some elementary vector analysis.
The exposition I am giving here covers §14.8 in (my opinion) a simpler way, and
always leads to “one less equation” in a system of simultaneous equations. No
matter how we approach these problems, solving these systems requires methods
improvised for each problem – we do not use any general method.

Our problem is to
extremize f(x) subject to the ‘constraint’ g(x) = 0 :

here x = (x1, x2, . . . , xk) is a vector.
It is governed by an elementary fact about vectors.

Principle: Let x = (x1, x2 . . . , xk) and y = (y1, y2, . . . , yk) be be vectors (in our
context usually k = 2 or 3.) Then x ‖ y if and only if all ratios xi/yi(i = 1, 2, . . . , k)
are the same; the understanding is that if we have xj = 0 for some j, then the
corresponding entry yj must also be zero.
(You should check with a few examples: for what λ is (1, 4, 9) ‖ (−2,−8, λ)? How
would your answer change if you replace only 4 with 6? Or 9 with 0?)

Let us apply this to the situation of extremizing f subject to our constraint
g = 0, and let x = (a, b) be a point we are testing as a possible extrema. Then
Lagrange: in order that f have an extrema at x it is necessary that

∇f(x) ‖ ∇g(x). (1)

Note. The word multiplier arises from the usual formulation of this principle: it
asserts that at a potential extrema we have the equation

∇f(x) = λ∇g(x),



where λ is a scalar. You should check that these two ways of expressing the Lagrange
principle are the same; the (slight) advantage in the formulation I prefer is that the
scalar λ usually has no physical significance, and in practice (that is, homework
problems!) means introducing λ simply gives is an extra equation to consider, with
no extra information.

Once we identify the points where (1) holds, we have to compute f at each, and
then the maximum of f among points which satisfy the constraint will be where
f takes on the largest value among these points; a similar remark will lead to the
minimum of f .

5 Some examples

Let’s see how this works with some of the homework and examples in the text.
We should always identify f and g. We then use the Lagrange principle, and what
will come out is that the coordinates at a possible extremum must satisfy a certain
relation. In other to find the exact values of the coordinates at these possible
extrema, however, we have to return to the constraint g = 0, since if our constraint
were g = c, c a constant (with c 6= 0), the Lagrange equation would be the same,
and so would be a relation between the variables. (Our first example is an exception
to this principle, because the relation (1) is more subtle, since the coordinates at
the extrema will be zero.) I start with a complicated example, which was done
earlier by other methods.
P. 962, No. 39. Find a point on the surface z2 = xy + 1 closest to the origin.

Step I: Find f , g. Well, it is f that we wish to minimize, so

f = (x− 0)2 + (y − 0)2 + (z − 0)2 = x2 + y2 + z2;

where x, y, z are restricted to the surface; thus

g(x, y, z) = z2 − xy

(the constraint is g = 1).
Step II: Write the Lagrange equation for this case; we can cancel common

factors. This leads to

∇f ‖ ∇g : (x, y, z) ‖ (−y,−x, 2z). (2)

(Note that without the constraint of g = 1, there is a trivial solution: f has an
absolute minimum when x = y = 0, but the points (0, 0, 0) does not satisfy the
constraint z2 = 1 + xy.)

Step III: Using our Principle, manipulate (2) to get a relation that must be
satisfied at a possible extremum.

I always assume first that (∗) none of the coordinates are zero. So if these
vectors are parallel, then (looking at the first two coordinates only) we see that
x/y = y/x so x = ±y which means that x/y = ±1. But then that common ratio



(±1) of the first two coordinates in (2) would have to be the same for the ratio of
third coordinates, and so the same as 2z/z; however, unless z = 0, 2z/z can’t be
±1. In other words, we are at a dead end!

This means the extrema will occur when z = 0 or, when we recall the case
excluded in (∗), that x = 0; if x = 0, then by our principle concerning parallel
vectors, we’d have y = 0 too.

This means the only possible points to check are (0, 0,±1) (the ±1 is the value
of z when x = y = 0), and in addition, returning to the case that z = 0 we would
have as possibilities the points (1,−1, 0) and (−1, 1, 0). At these points we compute
f : x2 + y2 + z2, and see that the extrema occur at (0, 0,±1): the closest point(s)
on the surface are distance 1 from the origin.
P. 966, Example 1. Here f = xyz, and g = 2xz + 2yz + xy (so the constraint is
that g = 12).

Step II: We see that ∇f ‖ ∇g when

(yz, xz, xy) ‖ (2z + y, 2y + x, 2x + 2y).

When we divide, it is simplest to put the entries of the left-hand vector in the
denominators, since the algebra is simpler. Indeed, if x, y or z is zero, the box has
no volume, so we may assume that xyz 6= 0.

Step III: Looking at the (ratio of) first two coordinates and cross-multiplying,
we find that 2xz2+xyz = 2y2z+xyz, or that x = y. Then if we look at the (ratio of)
first and third coordinates in the same way, we find that 2xyz+xy2 = 2xyz+2y2z,
or, more simply, x = 2z. In summary, x = y = 2z, and since 2xz + 2yz + xy =
12, we find that x = 2 = y, z = 1. (Notice that you get a different answer if
2xz + 2yz + xy = 100 we would have a box of different size, but as we mentioned
at the beginning of the §, the same relations between the variables x, y, z would
remain.
P. 968, Example 3. Now f = x2 + 2y2, g = x2 + y2 − 1 (when we look inside the
circle of radius one, x and y are independent variables, and the Lagrange method
is not relevant there).

Step II: ∇f ‖ ∇g means that we have

(x, 2y) ‖ (x, y).

So now we see that the extrema occue when either x or y is zero, otherwise we’d
have nonsense thinking the vectors parallel: 2 6= 1. So we need consider f only at
(0 ± 1), (±1, 0).

P. 971, No. 9 (This is a problem in three variables:) Maxtimize f(x, y, z) = xyz; g :
x2 + 2y2 + 3z2 = 6) So ∇f ‖ ∇g occurs when

(yz, xz, xy) ‖ (x, 2y, 3z).

If xyz = 0, then f = 0. So if xyz 6= 0, we may put the entries of the second vector
in the denominators, and see that an extemum will occur when

x2z = 2y2z; x2y = 3z2y.



That gives the relation that x = ±y, x = ±√3z. We now use that g = 6; note
again that if the constraint were that g = 100, we would have the same relation
between x, y, and z, but the specific number would be different. This produces eight
points where extrema may occur, dependingon the choice of sign for each of the
coordinates. A minimum will occur when exactly one or three of x, y, z is negative
and the other positive, and a maximum occurs when either all three variables are
positive or exactly two are negative.


