
Chapter 16

The Spin group

We return to the study of rotations. We saw earlier a rotation can be rep-
resented by a 3 ⇥ 3 matrix in SO(3). However, as we saw this description is
cumbersome for doing calculations. We will give an alternative based on the
ring of quaternions which makes this easy. Define the spin group

Spin = {q 2 H | |q| = 1}

Using theorem 15.2, we can see that this is a subgroup of H⇤, so it really is
a group. The word “spin” comes from physics (as in electron spin); at least I
think it does. Usually this group is called Spin(3), but we won’t consider any
of the other groups in this series.

Lemma 16.1. If q 2 Spin and v 2 H is imaginary, then qvq is imaginary.

Proof. Re(v) = 0 implies that v = �v. Therefore

qvq = qvq = �qvq

This implies qvq is imaginary.

We will identify R3 with imaginary quaternions by sending [x, y, z] to xi +
yj+zk. The previous lemma allows us to define a transformation Rot(q) : R3 !
R3 by Rot(q) = qvq for q 2 Spin. This is a linear transformation, therefore it
can be represented by a 3⇥ 3 matrix.

Lemma 16.2. Rot : Spin ! GL3(R) is a homomorphism.

Proof. We have that Rot(q1q2) = Rot(q1)Rot(q2) because Rot(q1q2)(v) = q1q2vq2q1 =
Rot(q1)Rot(q2)(v). And the lemma follows.

Lemma 16.3. Rot(q) is an orthogonal matrix.

Proof. We use the standard characterization of orthogonal matrices that these
are exactly the square matrices for which |Av| = |v| for all vectors v. If v 2 R3,
|Rot(q)(v)|2 = |qvq|2 = |q|2|v|2|q|2 = |v|2.
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Lemma 16.4. Rot(q) 2 SO(3).

Proof. There are a number of ways to see this. Geometrically, an orthogonal
matrix lies in SO(3) if it takes a right handed orthonormal basis to another right
handed basis. In terms of the vector cross products, right handed means that
the cross product of the first vector with the second vector is the third. In the
exercise 7 of the last chapter, we saw that the imaginary part of the product of
two imaginary quaternions is the vector cross product of the corresponding vec-
tors. The right handed basis i, j, k gets transformed to Rot(q)i,Rot(q)j,Rot(q)k.
Since qiqqjq = qijq = qkq, we have Rot(q)i ⇥ Rot(q)j = Rot(q)k. So this is
again right handed.

Lemma 16.5. If r is an imaginary quaternion with |r| = 1, and a, b 2 R satisfy
a2 + b2 = 1, then Rot(a+ br) is a rotation about r.

Proof. Let q = a+ br. It clearly satisfies |q| = 1. The lemma follows from

Rot(q)(r) = (a+ br)r(a� br) = (ar � b)(a� br) = r

It remains to determine the angle.

Theorem 16.6. For any unit vector r viewed as an imaginary quaternion,

Rot(cos(✓) + sin(✓)r)

is R(2✓, r).

Proof. Pick a right handed system orthonormal vectors v1, v2, v3 with v3 = r.
Then by exercise 7 of the last chapter, v1v2 = v3, v2v3 = v1, and v3v1 = v2. Let
q = cos(✓) + sin(✓)r. We have already seen that Rot(q)v3 = v3. We also find

Rot(q)v1 = (cos ✓ + sin ✓v3)v1(cos ✓ � sin ✓v3)

= (cos2 ✓ � sin2 ✓)v1 + (2 sin ✓ cos ✓)v2

= cos(2✓)v1 + sin(2✓)v2

and

Rot(q)v2 = (cos ✓ + sin ✓v3)v2(cos ✓ � sin ✓v3)

= � sin(2✓)v1 + cos(2✓)v2

which means that Rot(q) behaves like R(2✓, r).

Corollary 16.7. The homomorphism Rot : Spin ! SO(3) is onto, and SO(3)
is isomorphic to Spin /{±1}.

Proof. Any rotation is given by R(2✓, r) for some ✓ and r, so Rot is onto. The
kernel of Rot consists of {1,�1}. Therefore SO(3) ⇠= Spin /{±1}.

So in other words, a rotation can be represented by an element of Spin
uniquely up to a plus or minus sign. This representation of rotations by quater-
nions is very economical, and, unlike R(✓, r), multiplication is straigthforward.
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16.8 Exercises

1. Suppose we rotate R3 counterclockwise once around the z axis by 90�, and
then around the x axis by 90�. This can expressed as a single rotation.
Determine it.

2. Given a matrix A 2 M
nn

(C). Define the adjoint A⇤ = ĀT . In other words
the ijth entry of A⇤ is a

ji

. (This should not be confused with the matrix
built out of cofactors which also often called the adjoint.) A matrix A
called unitary if A⇤A = I and special unitary if in addition detA = 1.
Prove that the subset U(n) (or SU(n)) of (special) unitary matrices in
GL

n

(C) forms a subgroup.

3. Let a+ bi+ cj+ dk 2 Spin, and let A 2 M22(C) be given by (15.1). Prove
that A 2 SU(2). Prove that this gives an isomorphism Spin ⇠= SU(2).

4. Consider the quaternion group Q = {±1,±i,±j,±k} studied in a previous
exercise. Show this lies in Spin and that its image in SO(3) is the subgroup

8
<

:

2

4
±1 0 0
0 ±1 0
0 0 ±1

3

5 | there are 0 or 2 �1’s

9
=

;

Find the poles (see chapter 14) and calculate the orders of their stabilizers.

5. Let

V = { 1p
3
[1, 1, 1]T ,

1p
3
[�1,�1, 1]T ,

1p
3
[�1, 1,�1]T ,

1p
3
[1,�1,�1]T }

and let

T̃ = {±1,±i,±j,±k,
1

2
(±1± i± j ± k)}

be the subgroup of Spin defined in an exercise in the previous chapter.
Show that the image T of T̃ in SO(3) has order 12, and that it consists
of the union of the set of matrices in exercise 5 and

{R(✓, r) | ✓ 2 {⇡
6
,
⇡

3
}, r 2 V }

6. Continuing the last exercise. Show that the T acts as the rotational sym-
metry group of the regular tetrahedron with vertices in V .
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