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Gaussian elimination is the go to method for all basic linear classes including
this one. We go summarize the main ideas.

1. Matrix multiplication

The rule for multiplying matrices is, at first glance, a little complicated. If A is
m× n and B is n× p then C = AB is defined and of size m× p with entries

cij =

n∑
k=1

aikbkj

The main reason for defining it this way will be explained when we talk about linear
transformations later on.

THEOREM 1.1.

(1) Matrix multiplication is associative, i.e. A(BC) = (AB)C. (Henceforth,
we will drop parentheses.)

(2) If A is m × n and Im×m and In×n denote the identity matrices of the
indicated sizes, AIn×n = Im×mA = A. (We usually just write I and the
size is understood from context.)

On the other hand, matrix multiplication is almost never commutative; in other
words generally AB 6= BA when both are defined. So we have to be careful not to
inadvertently use it in a calculation. Given an n × n matrix A, the inverse, if it
exists, is another n× n matrix A−1 such that

AA−I = I, A−1A = I

A matrix is called invertible or nonsingular if A−1 exists. In practice, it is only
necessary to check one of these.

THEOREM 1.2. If B is n × n and AB = I or BA = I, then A invertible and
B = A−1.

Proof. The proof of invertibility of A will need to wait until we talk about deter-
minants. Assuming this and AB = I. Multiply both sides on the left by A−1 to
get

A−1AB = A−1I

which simplifies to

IB = A−1

or B = A−1. If BA = I the argument is similar. �
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2. Elementary row operations

Given a matrix A, we can try to simplify it by preforming 3 types of elementary
row operations:

I Add a multiple of one row to another.
II Interchange two rows

III Multiply a row by a nonzero number.

A matrix is elementary if can be obtained from the identity by a single elementary
row operation.

THEOREM 2.1. If A is an n ×m matrix and E and elementary n × n matrix,
then EA is the same thing as doing the corresponding elementary row operation on
A.

Rather than giving a detailed proof, let us consider a few examples

E1 =

(
1 0
x 1

)
, E2 =

(
0 1
1 0

)
, E3 =

(
x 0
0 1

)
, A =

(
a b
c d

)
Then we can see by multiplying

E1A =

(
a b

c + xa d + xb

)
, E2A =

(
c d
a b

)
, E3A =

(
xa xb
c d

)
,

that this is exactly what the theorem says.

QUESTION 2.2. What happens if we multiply the other way AE?

Another important fact is:

THEOREM 2.3. An elementary matrix is invertible (or nonsingular).

Proof. We have to check this for each of the three types. We just treat type I. given
an elementary matrix E, corresponding to adding x times row i to row j, E−1 is
the elementary matrix corresponding to adding −x times row i to row j. �

3. Gaussian elimination

A matrix is in reduced row echelon form (RREF for short) if it looks like

(3.1)

1 ∗ 0 . . .
0 0 1 . . .
0 0 0 . . .


More precisely,

(1) The first nonzero entry of a row (called a pivot) is 1 .
(2) A pivot is the only nonzero entry in its column.
(3) Rows of 0’s have to be at the bottom of the matrix.

THEOREM 3.1 (Gaussian Elimination). Any matrix A can be taken to a reduced
row echelon matrix B by a finite sequence of elementary row operations. Further-
more, B depends only on A and not on the specific sequence of operations.

Note that the statement is not true if B only in echelon form.

Proof. To prove that B exists, we just have to describe the algorithm and prove
that it works. We do this in informal terms:
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(1) We’ll use a “pointer”, which is really a pair of integers to tell us what
entry of A we’re looking at as the algorithm progresses. We’ll refer to this
location (entry, row or column) as the current location. Initially, set the
pointer to (1, 1).

(2) If the current entry of A (e.g. a11) is zero switch the current row with the
first row below it with a nonzero entry in the current column. If no such
row exists, advance the pointer by (1, 1) and repeat the algorithm from step
2.

(3) Multiply current row by a constant so that it leads with 1.
(4) Subtract multiples of the current row from rows above and below it to clear

the current column.
(5) Advance the pointer by (1, 1), if possible, then repeat from step 2, otherwise

stop.

The proof that the algorithm is correct can be done by mathematical induction,
but we won’t go into details.

Next, we have to prove that if we have two sequences of elementary matrices
E1, . . . , EN and E′1, . . . , E

′
M such that B = EN . . . E1A and B′ = E′M . . . E′1A are

both in RREF, then B = B′. Note that B′ = CB where

C = E′M . . . E′1E
−1
1 . . . E−1N

Suppose that B is as in (3.1), then

CB =

c11 ∗c11 0 . . .
0 0 c22 . . .
0 0 0 . . .


The only way this is in RREF is if c11 = 1, c22 = 1 etc. This forces B = B′. �

The last part of the theorem says that B is really a function of A. A lot of
software, such as MATLAB, will compute this.

4. Solving equations

The original raison d’etre for linear algebra is to understand solutions of systems
of linear equations. In matrix form, we are given a matrix A and a column vector
B, then we want to find all column vectors X such that

(4.1) AX = B

The easiest strategy is to form the augmented matrix [A|B]. The notation means
append B as the last column of A. Take it to RREF, or just to some intermediate
stage that’s simpler than the original. Then solve the new simpler system. The
obvious question is why is this the same as solving the original system? To answer
this, list the elementary matrices E1, . . . , EN corresponding the operations used in
the order they appear. Set C = EN . . . E1. Then the new system is

(4.2) CAX = CB

THEOREM 4.1. The systems (4.1) and (4.2) have the same solutions.

Proof. Suppose that X is solution of (4.2) . Then multiplying both sides by C−1

on the left and simplifying shows that X also satisfies (4.1). Multiplying (4.1) on
the left by C shows the converse. �
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Suppose A is n× n, is invertible and we happen to know what A−1 is, then the
solution to (4.1) is simply

X = A−1B

So how to we find A−1? The algorithm, called Gauss-Jordan elimination goes as
follows:

(1) Form [A|I]
(2) Do elementary row operations to get it to [L|R], such that L is in RREF.
(3) There are two possibilities either L is I or it has a row of zeros. In the first

case, R = A−1. In the second case, A−1 does not exist.

To show this works, we need

THEOREM 4.2.

(1) Suppose that E1, . . . , EN are elementary matrices such that

EN . . . E1[A|I] = [I|R]

Then R = A−1.
(2) Suppose that E1, . . . , EN are elementary matrices such that

EN . . . E1[A|I] = [L|R]

where C has a row of zeros, then A is not invertible.

Proof. In case (1), we can see that

EN . . . E1[A|I] = [EN . . . E1A|EN . . . E1I]

Comparing this to what we are given, we obtain

EN . . . E1A = I

EN . . . E1I = R

From theorem 1.2

A−1 = EN . . . E1

This is R by the second equation.
The proof of (2) will be given later on �

5. LU decomposition

A square matrix is called upper (respectively lower) triangular if all entries below
(resp. above) the diagonal are zero. A triangular matrix will be called a unit
triangular matrix if it has 1’s on the diagonal. Instead of taking a square matrix
all the way to RREF, it is simpler, and often just as useful, to take it to upper
triangular form. For example, solving the systen

AX = B

when A is upper triangular is easy. Start with the last equation,

annxn = bn

this tells the value for xn assuming the coefficient is nonzero. Then back substitute
into the second to last

an−1,n−1xn−1 + an−1,nxn = bn−1

to find xn−1 etc. We can summarize this by the following
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THEOREM 5.1. If A is upper triangular with no zeros on the diagonal, the
solution to the previous equation is given by

xn =
bn
ann

xn−1 =
bn−1 − an−1,nxn

an−1,n−1
. . .

(5.1)

Furthermore A−1 exists and is again upper triangular.

Proof. The first part follows from we said above. To prove the statement about
the inverse, we apply the first part to where B are the columns of the identity. If
B = (0 . . . 0, 1, 0 . . .)T is the ith column of I, then solution of

AX = B

gives the ith column of A−1. The formulas (5.1) show that

xn = . . . xi+1 = 0

This says that entries below the diagonal are zero. �

COROLLARY 5.2. A lower triangular matrix A with nonzero diagonals is in-
vertible, and A−1 is lower triangular.

Proof. If AT is upper triangular so (AT )−1 is upper triangular. One can check that
this is the same thing as (A−1)T . Therefore A−1 is lower triangular. �

It is clear we can take A to an upper triangular matrix by elementary row
operations. In good cases, we use only operations of type I, where we add a multiple
of one row to a row below it. This means that we can find a sequence of elementary
matrices Ei which are unit lower triangular such that

EN . . . E1A = U

where U is upper triangular. Setting L = E−11 . . . E−1N , we see that it is unit lower
triangular. Therefore

A = LU

is a product of a unit lower triangular matrix with an upper triangular matrix. If
such a factorization is possible, then we say that A admits an LU decomposition.
Unfortunately, it is not always possible. For instance,(

0 1
1 1

)
does not admit an LU factorization. In this case, we can fix the problem by
switching rows. A matrix is called a permutation matrix if is obtained from the
identity by permuting rows, or equivalently by a sequence of elementary operations
of type II.

THEOREM 5.3. Most invertible matrices admit a unique LU decomposition. If
A admits an LU decomposition, then L and U are unique. Given an invertible A,
there exists a permutation matrix P such that PA admits an LU decomposition.
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“Most” is not a precise mathematical term. The actual statement is that the set
of invertible matrices admitting LU decompositions is dense in the set of all invert-
ible matrices. Intuitively this means that given any matrix a small perturbation of
coefficients will yield one admitting such a decomposition.

Proof. We give a proof in the 2 × 2 case. We do this directly rather than using
Gaussian elimination.We have to solve(

1 0
l21 1

)(
u11 u12

0 u22

)
=

(
a11 a12
a21 a22

)
or

u11 = a11

u12 = a12

l21u11 = a21

l21u12 + u22 = a22

This is very easy to solve. The first two equations give us the values for u11, u12,
and

l12 =
a21
u11

u22 = a22 − l12u12

gives the remaining variables. If a11 = 0 then these solutions won’t be valid. In
this case, we choose P in advance to switch the rows.

�

Given
PA = LU

as above, we can find the inverse

A−1 = U−1L−1P

easily. The obvious question is why bother with this since we already have a
method for computing the inverse? The answer is that Gauss-Jordan is good for
hand computation, but not as good for implementing on a computer. In this case,
we need an algorithm which is both efficient and numerically stable in the sense
that we can control round off errors. In classic Gaussian elimination, you might
divide by a very small number, which can magnify the round-off error. This is a
big topic, and we won’t have much more to say about it in the future.
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