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Chapter 1

Some module theory

Basic Refs for this chapter.

1. Atiyah, Macdonald, Intro to commutative algebra

2. Harris, Algebraic geometry. A first course.

3. Rotman, Introduction to homological algebra.

1.1 Modules

We with work with not necessarily commutative rings, always with 1. There are
many important examples which aren’t commutative; matrix rings for example,
and the following:

Example 1.2. Let G be a group. The integral group ring ZG is the set of finite
formal linear combinations

∑
g∈G ngg, ng ∈ Z. The addition is obvious. The

multiplication is

(
∑

ngg)(
∑

mhh) =
∑
g,h

ngmhgh

This is not commutative unless G is abelian. RG for any commutative ring R
is defined the same way.

Let R be a ring. Since it may not be commutative, we have to be careful to
distinguish left and right modules. Left R-module is an abelian group M with
a multiplication R×M →M satisfying

1 ·m = m

(r1r2) ·m = r1 · (r2 ·m)

(r1 + r2) ·m = r1m+ r2m

r · (m1 +m2) = rm1 + rm2
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A right module is an abelian group N with a multiplication N×R→ N satisfy-
ing a similar list of conditions. The opposite ring Rop is R as an additive group
with multiplication reversed. We have R ∼= Rop if R is commutative, but not
in general. A right module R is the same thing as a left Rop-module. Thus we
may as well work with left modules, henceforth called modules, although there
are few situations where it is convenient to work with right modules as well.

Example 1.3. A left (right) ZG module is the same thing as an abelian group
with a left (right) action by G.

A homomorphism of R-modules f : M → N is an abelian group homo-
morphism satisfying f(rm) = rf(m). The collection of R-modules and ho-
momorphisms forms a category ModR (NB: Rotman denotes this by RMod;
if we want to consider right modules in these notes, we use ModRop .) Let
HomR(M,N) be the set of homomorphisms. Since the sum of homomorphisms
is a homomorphisms, this is an abelian group. However, in the noncommuta-
tive case it is not an R-module. It can be made into a module when M or N
have additional structure. Given another ring S, an (R,S)-bimodule N is an
abelian group with a left R-module structure and a right S-module structure
such that (rm)s = r(ms). Equivalently, N is left R× Sop-module. In this case,
HomR(M,N) is a right S-module by fs(m) = f(m)s. Similarly when M is a
(R, T )-bimodule, HomR(M,N) is a left T -module.

Given a homomorphism f : M → N , we get an induced homomorphisms

f∗ : HomR(X,M)→ HomR(X,N)

f∗ : HomR(N,Y )→ HomR(M,Y )

by f∗(g) = f ◦ g and f∗(h) = h ◦ f . This maps Hom(X.−) (resp. Hom(−, Y ))
into a covariant (resp. contravariant) functor from ModR → Ab (cat. of abelian
groups).

Recall that sequence of modules

. . . L
f→M

g→ N . . .

is exact if ker g = im g etc.

Theorem 1.4. If
0→ L→M → N → 0

is exact, then

0→ Hom(X,L)→ Hom(X,M)→ Hom(X,N)

and
0→ Hom(N,Y )→ Hom(M,Y )→ Hom(L, Y ))

are exact.

Proof. In class, or see Rotman, or better yet, check yourself.
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The theorem says that Hom(X,−) and Hom(−, Y ) are left exact functors.
In general, these are not exact:

Example 1.5. If R = Z, consider

0→ Z 2→ Z→ Z/2→ 0

Applying Hom(Z/2,−) yields

0→ 0→ 0→ Z/2

and Hom(−,Z/2) yields

0→ Z/2 =→ Z/2 0→ Z/2

The final maps are not surjective in either case.

1.6 Projective modules

An R-module P is called projective if HomR(P,−) is exact. More explicitly,
this means given a diagram with solid arrows

P

��~~
M // N // 0

We can find a not necessarily unique dotted arrow making this commute.
A module M is free if it isomorphic to a possibly infinite direct sum

⊕
I R.

Equivalently M has a basis (which is a generating set with no relations). A
map of a basis to any module extends, uniquely, to a homomorphism of the free
module.

Lemma 1.7. A free module is projective.

Proof. Suppose that F is free with basis ei. Given a diagram

F

f

��f̃~~
M

p // N // 0

choose mi ∈ M such that p(mi) = f(ei). Then ei 7→ mi extends to the dotted
homomorphism.

Lemma 1.8. If P is projective, then given any surjective homomorphism f :
M → P , there is a splitting i.e. a homomorphism s : P → M such that
f ◦ s = id.

5



Proof. Use
P

id
��s~~

M // P // 0

Theorem 1.9. P is (finitely generated and) projective iff it is a direct summand
of a (finitely generated) free module F , i.e. there exists K such that F ∼= P ⊕K.

Proof. Suppose that P is projective. We can choose a surjection π : F → P ,
with F free. By the lemma, we have splitting s : P → F . Note that s is
injective, so P ∼= s(P ). One checks that F = kerπ ⊕ s(P ).

Suppose that F = P ⊕ F is free. Given

P

g

��g̃~~
M // N // 0

we can extend g to f : F → N by f = g ⊕ 0. Since F is projective, we have a
lift f̃ : F →M . So g̃ = f̃ |P will fill in the above diagrem.

If P is finitely generated then F can be chosen to be finitely generated, and
visa versa.

Now let’s assume basic constructions/facts about commutative rings, in-
cluding localization and Nakayama’s lemma, which can be found in Atiyah-
Macdonald.

Theorem 1.10. A finitely generated projective module over commutative noethe-
rian local ring is free.

Proof. Let (R,m) be a comm. noeth. local ring, and P a fin. gen. projective
R-module. Let k = R/m be the residue field, and let n = dimP ⊗R k. Choose
a set of elements p1, . . . , pn ∈ P reducing to a basis of P ⊗ k. By Nakayama’s
lemma pi spans P . Therefore we have a surjection f : Rn → P , sending ei → pi.
Let K = ker f . Arguing as above, we see that

Rn = P ⊕K

We necessarily have K ⊗ k = 0, so K = 0 by Nakayama.

Corollary 1.11. If P is a fin. gen. projective module over commutative noethe-
rian ring, then it is locally free, i.e. Pp is free for every p ∈ SpecR.

We will see the converse later.
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1.12 Projective modules versus free modules

There exists projective modules which are not free. Here is a cheap class of
examples.

Example 1.13. Let R1, R2 be nontrivial rings, and let n,m > 0 be unequal
integers. Set R = R1 ×R2. Then

Pnm = Rn1 ×Rm2

is an R module. It is projective because Pnm ⊕ Pmn = Rn+m. However, it is
not free. When Ri are commutative, we can argue as follows. If p ∈ SpecR1 ⊂
SpecR, then Pnm,p = Rnp , while the localization at p ∈ SpecR2 is Rmp . A free
module would have the same rank at each prime.

This sort of example is impossible if R is commutative with SpecR con-
nected. Nevertheless other examples exist in such cases. Let us assume that R
is commutative noetherian and that finitely generated projective modules are
the same as locally free modules. If R is Dedekind domain with nontrivial class
group (see Atiyah-Macdonald the definition), then we can find an ideal I ⊂ R
which is not principal. I would not be free, although it would be locally free
because the localizations are PIDs.

Here we outline an important class of examples assuming a bit of algebraic
geometry (see Harris). Let f(x1, . . . , xn) be a nonzero polynomial over an al-
gebraically closed field k. Let X = V (f) = {a ∈ kn | f(a) = 0} be the
hypersurface defined by f . The coordinate ring is R = k[x1, . . . , xn]/(f). X can
be identified with the maximal ideal spectrum of R by the Nullstellensatz. Let
us assume that X is smooth, which means that the gradient ( ∂f∂xi

) is never zero

on X. It follows that Ui = X − V ( ∂f∂xi
)) is an open cover of X in the Zariski

topology. The module of vector fields T = {(g1, . . . , gn) ∈ Rn |
∑ ∂f

∂xi
gi = 0}

The localization T∂f/∂xi
is free over R∂f/∂xi

with basis

(0, . . . 0,− ∂f

∂xj

(
∂f

∂xi

)−1

︸ ︷︷ ︸
ith place

, 0, . . . , 1︸︷︷︸
jth place

, . . . 0), j 6= i

It follows that T is locally free. For suitable f , one can show that T is not free
by showing that the tangent bundle is nontrivial. It may be worth spelling out
the dictionary

Algebra Geometry
Projective module Vector bundle

Free module Trivial vector bundle

Topological vector bundles on affine space (over C) are trivial because it is
contractible. Using this analogy Serre conjectured that projective modules over
polynomial rings were free. This was solved affirmatively by Quillen and Suslin
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Theorem 1.14 (Quillen-Suslin). If k is a field, projective modules over k[x1, . . . , xn]
are trivial.

An account can be found in Rotman Section 4.8.

1.15 Injective modules

A module E is injective if Hom(−, E) is exact. Equivalently given the solid
diagram

E

0 // M //

OO

N

``

it can be filled in as indicated. Although the notion is dual to projectivity, it is
harder to characterize. We only succeed in a special case.

Theorem 1.16 (Baer’s criterion). E is injective if and only if the above property
holds when N = R and M = I is a left ideal.

Proof. Suppose that the extension property for an ideal. Given

E

M
⊆ //

g

OO

N

``

we have to construct an extension as indicated. Let M ⊆ M ′ ⊆ N with an
extension g′ : M ′ → E of g. We can assume this is maximal by Zorn’s lemma.
Suppose that M ′ 6= N . Choose y ∈ N , y /∈M ′. Define

I = {r ∈ R | ry ∈M ′}

This is a left ideal. Let h : I → E be given by h(r) = g′(ry). Then by
assumption, we have an extension h̃ : R → E. Let M ′′ = M + Ry. The map
g′′ : M ′′ → E given by

g′′(x+ ry) = g′(x) + h̃(r), x ∈M ′

can be seen to be well defined (see Rotman pp 118-119). It extends g′. However,
this contradicts the maximality of (M ′, g′).

Theorem 1.17. If R is commutative integral domain, an injective module E is
divisible, i.e. given x ∈ E, r ∈ R, ∃y ∈ E, ry = x. The converse holds if R is a
PID.
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Proof. Since R is a domain (r) ∼= R. Therefore h : (r)→ E given by h(r) = x is
well defined. We have an extension h̃ : R→ E. Then y = h̃(1) satisfies ry = x.

Suppose that R is a PID and E is divisible. We have to check Baer’s criterion.
Any ideal I = (r) for some r ∈ R. The above argument can be reversed to show
that any h : (r)→ E extends to R→ E.

Corollary 1.18. Q,Q/Z,R, . . . are injective Z-modules.

Given an abelian group A, the character group

A∗ = HomZ(A,Q/Z)

This is divisible, and therefore injective as a Z-module. We have a canonical
map A→ A∗∗ given by sending a to

â(f) = f(a)

Proposition 1.19. If A 6= 0, then A∗ 6= 0. The map A→ A∗∗ is injective.

Proof. In general, if a ∈ A is nonzero, let A0 be the subgroup generated by a.
Since Q/Z has elements of arbitrary finite order, A∗0 6= 0. Since Q/Z is injective,
the map

Hom(A,Q/Z)→ Hom(A0,Q/Z)

is surjective.
For the second statement, it is enough to observe that given a 6= 0, there

exists f ∈ A∗ with â(f) = f(a) 6= 0 by the previous argument.

Corollary 1.20. Any abelian group embeds into an injective abelian group.

As we’ll see below, this holds more generally for similar reasons.

1.21 Tensor products

If you are familiar with tensor products over a commutative ring, then there are
few necessary modifications to make things work in general.

• Tensor products only makes sense between right and left modules.

• The tensor product is only an abelian group in general.

Here is the precise statement.

Theorem/Def 1.22. If M is a right R-module, and N a left R-module, there
exists an abelian group and biadditive operation

⊗ : M ×N →M ⊗R N

satisfying mr ⊗ n = m⊗ rn. Furthermore, this is the universal such object.
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See Rotman, Section 2.2, for the construction and precise explanation of the
last part. The construction shows that elements of M ⊗R N are finite sums∑
mi⊗ni. If M is an (T,R) bimodule, and N a (R,S) bimodule, then M⊗RN

is an (T, S)-bimodule satisfying t(m ⊗ n)s = tm ⊗ ns. The universal property
of tensor products can be translated into the following adjointness statement.

Theorem 1.23. Suppose that M is a right R-module, N an (R,S) bimodule,
and Q a right S-module, then there is a natural isomorphism

HomS(M ⊗S N,Q) ∼= HomR(M,HomS(N,Q))

where f on the left goes to the map

m 7→ (n 7→ f(m⊗ n))

on the right.

Proof. Rotman, Sect 2.2.1.

Theorem 1.24. If M (resp. N) is a right (resp. left) module, M ⊗R − (resp.
−⊗R N) are right exact functors.

Proof. Given an exact sequence

0→ A→ B → C → 0

of left modules, we have to show that

M ⊗R A→M ⊗R B →M ⊗R C → 0

is exact. By prop 2.42 of Rotman, it suffices to prove the dual statement that

0→ HomZ(M ⊗A,X)→ HomZ(M ⊗B,X)→ HomZ(M ⊗ C,X) (1.1)

is exact for any abelian group X. From the initial sequence, we see that

0→ HomZ(C,X)→ HomZ(B,X)→ HomZ(C,X)

is exact. Therefore

0→ HomR(M,HomZ(C,X))→ HomR(M,HomZ(B,X))→ HomR(M,HomZ(C,X))

is exact. But this can be identified with (1.1) by the previous theorem.
The exactness statement for the left module N follows from working over

Rop because we can identify

N ⊗R A = A⊗Rop A

10



A right/left module is called flat if tensor product with respect to it is exact.
For a left module X to be flat, it is enough to know that

M ⊗X → N ⊗X

is injective whenever M → N is injective.

Theorem 1.25.

(a) X is flat if all of its finitely generated submodules are flat.

(b) Projective modules are flat.

(c) If R is a (commutative) PID, a module is flat if and only if it is torsion
free.

Proof. Suppose that M → N is injective. If M ⊗X → N ⊗X is not injective,
then some nonzero element

∑
mi ⊗ xi lies in the kernel. This would lie in the

kernel of M ⊗X0 → N ⊗X0, where X0 ⊂ X is the submodule generated by the
xi. Therefore X0 is not flat.

Suppose that X is projective. Then it is direct summand of RI . Consider
the commutative square

M I d // N I

M ⊗X a //

c

OO

N ⊗X

b

OO

Then M ⊗X is summand of M I , so c is injective. Also d is injective because it
is a sum of injective maps. Therefore a is injective by commutativity.

Suppose that R is a PID. If X is torsion free, all of its finitely generated
submodules are free. Therefore X is flat. Suppose that X is not torsion free.
Then tx = 0 for some nonzero x ∈ X, t ∈ R. Then 1⊗ x would lie in the kernel
of t : R→ R tensored with X. So X would not be flat.

The converse to (b) is not true.

Example 1.26. Q is a flat Z-module by (c) above. However, it is not projective,
because Q is divisible but a submodule of a free module cannot be.

The converse does hold under appropriate finiteness conditions, see Rotman
theorem 3.56.

Now suppose that M is a left R-module, then

M∗ = HomZ(M,Q/Z)

is naturally a right R-module. Applying this to Rop, we see that this operation
also takes right R-modules to left modules.

Proposition 1.27. If F is a free R-module, then F ∗ is injective.

11



Proof. We have a natural isomorphism

HomR(−, F ∗) ∼= HomZ(−⊗R F,Q/Z)

Since F is flat, and Q/Z is divisible, the functor on the right is exact.

The following is of fundamental importance. It generalizes what we proved
for abelian groups.

Theorem 1.28. Every R-module embeds into an injective module.

Proof. Let M be a module. Choose a surjection F → M∗, with F a free right
module. Then we have injections

M →M∗∗, M∗∗ → F ∗

Composing these gives an injection of M into F ∗, which is an injective module.
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Chapter 2

Homology

Basic Refs:

1. Hatcher, Algebraic topology

2. Rotman, Intro to homological algebra

3. Spanier, Algebraic topology

4. Weibel, An introduction to homological algebra

2.1 Simplicial complexes

Homology came out of algebraic topology. So we review the basic constructions
for intuition and motivation. Recall that a (simple) graph consists of a set of
vertices V , and a set of edges E between pairs of vertices. An edge can be
regarded as a 2-element subset of V . A simplicial complex is a generalization,
where one also allows triangles etc. More formally, it is a pair S = (V,Σ)
consisting of a set V and a collection of finite nonempty subsets Σ of V called
simplices. We require that all singletons are in Σ, and any nonempty subset of
σ ∈ Σ is also in Σ. If σ ∈ Σ, has cardinality i+ 1, it is called an i-simplex.

Example 2.2. In the example below

1

2

3

4

5

6
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V = {1, 2, . . . 6} and Σ consists of the 2-simplices {1, 2, 6}, {2, 3, 4}, {4, 5, 6} and
all nonempty subsets of them.

Simplices in the above sense, are combinatorial models for simplices in the
geometric sense. The standard geometric n-simplex ∆n is the convex hull of
unit vectors (1, 0, . . .), (0, 1, 0 . . .), . . . ∈ Rn+1. Just as a graph gives rise to a
topological space, where edges are replaced by arcs, a simplicial complex can
also be turned in a topological space |S|, where n-simplices are replaced by
spaces homeomorphic to geometric simplices. (see Spanier Chap 3 for details).

An orientation on a 2-simplex {v1, v2} is a simply an ordering: either [v1, v2]
or [v2, v1]. In general, an orientation of σ = {v1, v2, . . . vn} is an An-orbit of
orderings (where An ⊂ Sn is the alternating group). Thus every simplex has
exactly two orientations. Given an oriented simplex [v0, . . . , vn], we identify
−[v0, . . . , vn] with the same simplex with opposite orientation. Its boundary is
the formal sum

∂[v0, . . . , vn] = [v1, . . . , vn]− [v0, v2, . . . , vn] + . . . =
∑
i

(−1)i[v0, . . . , v̂i, . . . vn]

We call finite formal linear combination of n-simplices, as above, an n-chain.
These form a free abelian group Cn(S). The above formula determines a homo-
morphism

∂n : Cn(S)→ Cn−1(S)

We usually drop the subscript, and write ∂. Here is the key fact.

Proposition 2.3. ∂n−1∂n = 0, or more succinctly ∂2 = 0.

Proof. We do this when n = 2

∂2[v0v1v2] = ∂([v1v2]− [v0v2] + [v0v1]) = (v1 − v2)− (v0 − v2) + (v0 − v1) = 0

The general case is not essentially harder. Expand ∂2[v0 . . . vn], then one can
see that the term [v0, . . . v̂i . . . v̂j . . .] occurs twice with opposite sign.

Elements of the kernel ∂ are called cycles, and elements of the image of ∂
are called the boundaries.

Corollary 2.4. Every boundary is a cycle.

One can ask about the converse. In general, the answer is no. A measure of
the failure is

Definition 2.5. The nth homology group of S is

Hn(S) =
Zn(S)

Bn(S)

where
Zn(S) = ker ∂n

Bn(S) = im ∂n+1

14



Example 2.6. Let S be the simplicial complex of example 2.2. Then γ =
[2, 4] + [4, 6] + [6, 2] is a cycle which is not a boundary, so H1(S) 6= 0. In
fact, with enough patience, one can show that H1(S) is the infinite cyclic group
generated by γ.

There is a dual notion. The group of cochains

Cn(S) = HomZ(Cn(S),Z)

This has a coboundary homomorphism

d : Cn(S)→ Cn+1(S)

defined by the dual to ∂.

Definition 2.7. The nth cohomology group of S is

Hn(S) =
ker d : Cn(S)→ Cn+1(S)

im d : Cn−1(S)→ Cn(S)

Cohomology is roughly dual to homology (this is correct when homology is
torsion free, but otherwise the precise relation is more subtle), so it may not be
clear at first why it is useful. However, cohomology does carry extra structure,
namely a product, called cup product

Hn(S)×Hm(S)→ Hn+m(S)

which makes cohomology into a graded ring. Given n and m cochains f and g,
their product is given by the formula

(f ∪ g)[v0, ..., vn+m] = f [v0, ..., vn]g[vn, ..., vn+m]

A fact, which is at first glance, is surprising is that homology and cohomology
on depends on the topological space |S|, and not on the triangulation. This
can be done comparing to singular (co)homology, which doesn’t depend on a
triangulation. The group of singular chains Sn(X), of a space X, is the free
abelian groups generated by continuous maps from ∆n → X. The boundary
is essentially identical to the formula given previously. We refer to Hatcher or
Spanier for a detailed treatment.

2.8 Complexes

We now abstract the ideas from the first section.

Definition 2.9. A chain complex, or just complex, is a collection of abelian
groups (or modules) Cn, n ∈ Z and homomorphisms (called differentials) d :
Cn → Cn−1 satisfying d2 = 0. The nth homology is

Hn(C•) =
ker d : Cn → Cn−1

im d : Cn+1 → Cn

15



It is technically convenient to allow the index to lie in Z. Although in
practice, we may only be given Cn, n ≥ 0. In which case, we set Cn = 0 when
n < 0 We will refer to such complexes as positive.

The following is obvious.

Lemma 2.10. The sequence C• is exact iff Hn(C•) = 0 for all n. In this case,
C• is also called acyclic.

One can define a cochain complex C• in similar fashion, except that differ-
entials go the other way. Its cohomology

Hn(C•) =
ker d : Cn → Cn+1

im d : Cn−1 → Cn

We note that using a change of variable

Cn = C−n

allows us to convert cochain complexes to complexes. Thus there is no real
difference between these notions.

Definition 2.11. A morphism of complexes, or chain map, f : C• → D• is
a collection of homomorphisms f : Cn → Dn, such that df = fd. With this
notion, the collection of complexes of R-modules becomes a category C(ModR).

The following is straightforward.

Lemma 2.12. A morphism of complexes f : C• → D• induces a homomorphism
of homology groups f∗ : Hn(C•) → Hn(D•). In fact, Hn gives a functor from
C(ModR)→ModR.

A simplicial map of simplicial complexes f : S = (V,Σ) → S′ = (V ′,Σ′)
is a map of sets f : V → V ′ such that the image of any simplex of S is a
simplex of S′. It should be clear that a simplicial map f induces a morphism
C•(S) → C•(S

′), and therefore homomorphisms f∗ : Hn(S) → Hn(S′). More
generally, continuous maps for space induce chain maps on the singular chain
complex, and therefore homomorphisms on homology.

We define an sequence of morphisms of complexes

C• → C ′• → C ′′•

be exact if each sequence
Cn → C ′n → C ′′n

is exact in the usual sense. The following result is fundamental. It will be used
many times over.

Theorem 2.13. If 0→ C• → C ′• → C ′′• → 0 is an exact sequence of complexes,
then there is a long exact sequence

. . . Hn(C•)→ Hn(C ′•)→ Hn(C ′′• )
∂→ Hn−1(C•) . . .
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The unlabelled maps in the above sequence are the obvious ones, the map ∂,
called a connecting map, is somewhat more mysterious, but it will be explained
below. Rotman (prop 6.9) gives a proof of this theorem. We will give different
argument. The starting point is the following standard fact, which is in fact a
special case of the theorem.

Proposition 2.14 (Snake lemma). Given a commutative diagram

A //

f

��

B //

g

��

C //

h
��

0

0 // A′ // B′ // C ′

with exact rows, there is an exact sequence

ker f → ker g → kerh
∂→ coker f → coker g → cokerh

The first (resp. last) map above is injective (resp. surjective) if A → B (resp.
B′ → C ′) is injective (resp. surjective).

Proof. We only explain the connecting map. The remain details are straightfor-
ward, and best checked in private. Given c ∈ kerh ⊆ C, we can lift it to b ∈ B.
Since g(b) maps to 0, in C ′, it lies in A′. One can check that the image a of g(b)
in coker f does not depend on the choice of b. Set ∂c = a.

Proof of theorem 2.13. Let us write

Zn = ker d : Cn → Cn−1

Bn = im d : Cn−1 → Cn

etc. Apply the snake lemma to

0 // Cn+1
//

d

��

C ′n+1
//

d′

��

C ′′n+1
//

d′′

��

0

0 // Cn // C ′n // C ′′n // 0

to get an exact sequence of kernels

0→ ker d→ ker d′ → ker d′′

and an exact sequence of cokernels

coker d→ coker d′ → coker d′′ → 0

(We won’t use the fact that these sequences fit together.) These can be rewritten
as

0→ Zn+1 → Zn+1 → Z ′′n+1

17



and
Cn/Bn → C ′n/B

′
n → C ′′n/B

′′
n → 0

Using these for m = n, n+ 2 yields a diagram

Cm/Bm //

d

��

C ′m/B
′
m

//

d′

��

C ′′m/B
′′
m

//

d′′

��

0

0 // Zm−1
// Z ′m−1

// Z ′′m−1

Apply the snake lemma on more time to get a six term exact sequence

Hm(C•)→ Hm(C ′•)→ Hm(C ′′• )
∂→ Hm−1(C•) . . .

These can be spliced together to obtain the infinite sequence.

2.15 Homotopy

We go back to topology to borrow another key idea. Let I = [0, 1]. Two
continuous maps f, g : X → Y between topological spaces are homotopic if there
is a continuous map F : X × I → Y , called a homotopy, such that f = F |X×{0}
and g = F |X×{1}. This means that f can be deformed to g. It’s easy to check
that it is an equivalence relation. The importance stems from the following fact

Theorem 2.16. If f, g : X → Y are homotopic, then the induced maps f∗, g∗ :
Hn(X)→ Hn(Y ) are identical.

Here is an extremely useful consequence.

Corollary 2.17. Given a pair of continuous map f : X → Y and g : Y → X
such that f ◦ g and g ◦ f are homotopic to the identities, then f induces an
isomorphism between the homology of X and Y .

A space is contractible X if the identity is homotopic to a constant map.
For example, Rn is contractible.

Corollary 2.18. A contractible space has zero homology in positive degrees.

The key idea for proving the theorem is to introduce and algebraic version
of homotopy, which will be very important for us.

Definition 2.19. If f, g : C• → D• are two morphisms between complexes, a
chain homotopy between them is a collection of homorphisms F : Cn → Dn+1

such that dF + Fd = f − g. f and g are called chain homotopic if F exists.

To make sense of the last equation, we can draw the diagram

Cn
d //

f−g
��

F

||

Cn−1

F||
Dn+1

d // Dn

18



A couple of remarks: After the theorem is proved, we will drop “chain” and
just say that f and g are homotopic, and we will refer to F as a homotopy.
Some authors take dF −Fd = f − g. It’s easy to go from one convention to the
other by Fn 7→ (−1)nFn, where Fn denotes the map in degree n.

Theorem 2.20. If f, g : C• → D• are chain homotopic, then f∗ : Hn(C•) →
Hn(D•) and g∗ : Hn(C•)→ Hn(D•) coincide.

Proof. Let F be chain homotopy. Given a ∈ Hn(C•), we can represent it by
α ∈ Cn such that dα = 0. f∗(a) is the coset of f(α). We have

f(α) = dF (α) + Fd(α) + g(α) = d(F (α)) + g(α)

which implies that f(a) = g(a).

Let us indicate to proof of theorem 2.16, referring to pp 112-113 of Hatcher
for precise details. The continuous maps f, g induce chain maps f̃ , g̃ : S•(X)→
Sn(Y ) on the singular chain complex. We have to construct a chain homotopy
F̃ between these. Recall that elements of Sn(X) are linear combinations of
continuous maps ∆n → X. Such a map induces a continuous map from the
prism ∆n × I → X × I. There is a natural, and purely combinatorial, way
to subdivide the prism ∆n × I into a finite union of n + 1 simplicies. When
composed with F , these simplices give elements of Sn+1(Y ). Let F̃ (∆n → X)
denote the sum of these elements with appropriate coefficients of the form ±1 (
chosen so that adjacent interior faces cancel). Then one checks that this gives
the desired chain homotopy.

Definition 2.21. A contracting homotopy of a complex C• is a homotopy be-
tween identity and 0. A morphism f : C• → D• is a homotopy equivalence if
there exists a morphism g : D• → C• such that g ◦ f and f ◦ g are homotopic to
the identities of C• and D•.

As a corollary to theorem 2.20, we obtain

Proposition 2.22. A complex is acyclic if it possesses a contracting homotopy.
A homotopy equivalence induces an isomorphism on homology.

2.23 Mapping cones

We can define the category C(ModR) of complexes of R-modules, where the
objects are complexes and morphisms were defined above. Given complexes
C•, D•, Hom(C•, D•) has the structure of an abelian group compatible with
composition. Furthermore, standard constructions and notions such as di-
rect sums, kernels, cokernels and exact sequences make sense within C(ModR).
This amounts to saying that this is an abelian category. See Rotman section
5.5 for the precise definition. Given complexes C•, D•, let Null(C•, D•) ⊂
Hom(C•, D•) be the subset of morphisms homotopic to 0. This is easily seen
to be a subgroup. Let K(ModR) denote the category with the same objects
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as before, but morphisms from C• to D• are homotopy classes of morphisms
in C(ModR), or equivalently cosets Hom(C•, D•)/Null(C•, D•). This is still
an additive category since for example, the set of morphisms form and abelian
group, but it is not abelian. Among other problems, the kernel and cokernel of
a morphism need not exist in the homotopy category. If f and g are homotopic
maps, then the complexes ker f (resp. coker f) and ker g (resp. coker g) need
not be isomorphic in K(ModR). Fortunately, there is a reasonable substitute.
Given a morphism f : A• → B•, we form a new complex C(f)• called the
mapping cone by

C(f)n = Bn ⊕An−1

with differential
d(x, y) = (dx− f(y), dy)

This is also analogue of a topological notion, which is explained on pp 18-24 of
Weibel’s book.

Lemma 2.24. If f and g are homotopic, then C(f)• and C(g)• are isomorphic.

Proof. Let F be a homotopy from f to g. Then (x, y) 7→ (x − F (y), y) is
morphism of C(f)→ C(g) with inverse (x, y) 7→ (x+ F (y), y).

The mapping cone can play the role of either the kernel or the cokernel under
appropriate conditions. Let us explain the second. Suppose that

0→ A•
f→ B•

g→ C• → 0

is exact in C(ModR), and that for each n there are splittings

sn : Cn → Bn

for g. Note that we do not require that the splittings are compatible with
differentials.

Lemma 2.25. The morphism C(g)• → C• given by (x, y) 7→ g(y) is an iso-
morphism in K(ModR) with inverse

z 7→ (sn(z), sn−1d(z)− dsn(z))

We omit the proof, which is a long calculation. Under these conditions, we
see that the connecting map Hn(C•)→ Hn−1(A•) is induced by the projection
C(g)• → A•−1.
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Chapter 3

Ext groups

Refs.

1. Atiyah-Macdonald, Commutative algebra

2. Rotman, Homological algebra

3.1 Extensions

Given two R-modules A and C, an extension of C by A is a short exact sequence

0→ A→ B → C → 0

(NB: This terminology is opposite of what Rotman uses, but it is better aligned
with the notation to be introduced.) Let us say that another extension

0→ A→ B′ → C → 0

is equivalent to the first if they can be put into a commutative diagram

0 // A //

id

��

B //

φ

��

C //

id

��

0

0 // A // B′ // C // 0

Lemma 3.2. The map φ above is an isomorphism. Equivalence of extensions
is an equivalence relation.

Proof. The first statement, which is a special case of the 5-lemma, is an easy
diagram chase. We will omit the proof. Since this implies that φ−1 exists, we
see that this relation is symmetric. It is obviously reflexive, and transitive (use
the composite of φ and the corresponding map in the third extension).
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Let ext(C,A) denote the set of equivalence classes of extensions. Our goal
is to compute this. First observe that this set has a distinguished element

0→ A→ A⊕ C → C → 0

which we call the trivial extension, and denote this by 0. We say that an
extension

0→ A
j→ B

p→ C → 0

splits if there is a homomorphism i : C → B such that p ◦ i = id.

Lemma 3.3. An extension splits iff it is equivalent to the trivial extension.

Proof. Given a split extension as above, define φ : A ⊕ C → B by φ(a, c) =
j(a) + s(c). Conversely, if we have such a morphism the s(c) = φ(0, c) gives a
splitting.

We can now compute it in one case.

Proposition 3.4. C is projective if and only if ext(C,A) = {0} for every A.

Proof. If C is projective, we proved early that any surjective morphism to C
splits. Therefore ext(C,A) = 0.

Conversely, suppose ext(C,A) for every A. Given

P

f

��
0 // K // M

π // N // 0

let L = {(m, p) ∈ (M,P ) | f(m) = π(p)} be the pullback. Then we have an
extension

0→ K → L→ P → 0

This has a splitting s : P → L by assumption. Composing this with the
projection L→M , yields a map P →M lifting f .

In order to try to compute ext(C,A) in general, we can try to reduce C to
a projective module. We choose a surjection π : P → C, with P projective.
We could take P to be a free module on a set of generators for P , for example,
Then form the sequence

0→ K
i→ P

π→ C → 0

Define

πExt(C,A) = coker(Hom(P,A)→ Hom(K,A))

We will prove the following later in more form.

Proposition 3.5. The isomorphism class of πExt(C,A) is independent of f .
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Henceforth, we write Ext(C,A) for πExt(C,A).

Theorem 3.6. There is a bijection ext(C,A) ∼= Ext(C,A) preserving 0.

Proof. Given f : K → A, let

Qf = P ⊕A/{(i(k), f(k)) | k ∈ K}

be the pushout. The fits into an extension

0→ A→ Qf → C → 0

If f = F |K , with F ∈ Hom(P,A), then φ(p, a) = (F (p), a) is an equivalence to
the trivial extension. Similarly, one can check that if g : K → A is another map
such that g − f lies in the image of Hom(P,A), then

0→ A→ Qg → C → 0

is equivalent to the previous extension. Therefore we have constructed a map
from Ext(C,A)→ ext(C,A) preserving 0.

Given an extension of C by A,

0 // K //

f

��

P //

g

��

C //

id
��

0

0 // A // B // C // 0

we can find g and therefore f using the projectivity of P . This can be checked
to give the inverse ext(C,A)→ Ext(C,A).

Corollary 3.7. ext(C,A) has the structure of an abelian group.

See Rotman section 7.2.1 for an explicit description of the group structure
in terms of extensions.

Example 3.8. Let R = Z. Consider the exact sequence

0→ Z n→ Z→ Z/nZ→ 0

where n 6= 0. Then “Hom-ing” into A yields

A
n→ A→ Ext(Z/nZ, A)→ 0

Therefore Ext(Z/nZ, A) ∼= A/nA. The calculation can be upgraded to calculate
Ext(B,A) for any finitely generated abelian group, Writing B =

⊕
Z/nZ⊕ZN ,

Ext(Z/nZ, A) ∼=
⊕
A/niA.

So far we have been borrowing ideas from topology. Now we are in a position
to repay the debt. We defined the cohomology of a simplicial complex earlier,
and said that it is roughly dual to homology. Here is a the precise statement.
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Theorem 3.9 (Universal coefficient theorem). Given a simplicial complex S,
there is an isomorphism

Hn(S) ∼= Hom(Hn(S),Z)⊕ Ext(Hn−1(S),Z)

The argument is slightly simpler for finite simplicial complexes. So let us
assume this. Then the result will be a consequence of the following result from
pure homological algebra.

Theorem 3.10. If F• is a complex of finitely generated free abelian groups,
there is an isomorphism

Hn(Hom(F•,Z)) ∼= Hom(Hn(F•),Z)⊕ Ext(Hn−1(F•),Z)

Proof. Let Bn ⊆ Zn ⊆ Fn be the subgroups of boundaries and cycles. These
are free abelian by basic algebra. Therefore the exact sequences

0→ Zn → Fn → Bn−1 → 0

is split. It follows that

0→ Hom(Bn−1,Z)→ Hom(Fn,Z)→ Hom(Zn,Z)→ 0

is also split exact. This can be viewed as an exact sequence of cochain complexes
where the complexes on the left and right have zero differential. Having zero
differential implies that Hom(Bn−1,Z) and Hom(Zn,Z) are the cohomology
groups. The long exact sequence for cohomology is

Hom(Zn−1,Z)→ Hom(Bn−1,Z)→ Hn(Hom(Fn,Z))→ Hom(Zn,Z)→ Hom(Bn,Z)

Using the exact sequences

0→ Zn → Bn → Hn(F•)→ 0

we can write the previous sequence as

0→ Ext(Hn−1,Z)→ Hn(Hom(Fn,Z))→ Hom(Hn,Z)→ 0

Finally, note that Ext is a torsion group and Hom is torsion free, so this must
split canonically.

3.11 Projective resolutions

Let M be an R-module. Choose a projective module P0 and a surjection P0 →
M . Let K0 be the kernel. Choose a surjection from another projective module
P1 → K0. Let K1 be the kernel of this, and repeat. Composing Pi → Ki−1

with Ki−1 → Pi−1 yields an exact sequence

. . . P2 → P1 → P0 →M → 0

where each Pi is projective. This is called a projective resolution of M . We
have proved that such things exist.

24



Lemma 3.12. Every module possesses a projective resolution.

Such resolutions are not unique, because choices are involved. However, they
are unique in a weaker sense that any two projective resolutions are homotopy
equivalent.

Theorem 3.13. If Q• → M → 0 is an exact sequence, so perhaps another
projective resolution. Then there exists a morphism f : P• → Q• such that

P0

f

��   
Q0

// M

commutes. This is unique up to homotopy, i.e. any other morphism is homo-
topic to f .

Proof. A morphism f is a collection of homomorphisms fn : Pn → Qn, which
can be inductilvely The first map f0 exists by projectivity of P0

P0

��f0~~
Q0

// M

Suppose fn, fn−1 . . . have been constructed. Let us write d• and d′• for the
differentials of P• and Q•. Then we have that fn−1dn = d′nfn. So that
d′nfndn+1 = fn−1dndn+1 = 0. Therefore fndn+1 ⊆ ker d′n = im d′n+1. So
we have a diagram

Pn+1

��fn+1zz
Qn+1

// im d′n+1

Projectivity of Pn+1 shows the existence of fn+1 making this commute.
Given a second morphism g : P• → Q•, we have to construct a homotopy h

between, that is sequence of maps hn : Pn → Qn+1 satisfying

fn − gn = dn+1hn + hn−1dn

This is again constructed by induction, using projectivity of each Pn. See p342
of Rotman for details.

Remark 3.14. The same proof actually something stronger, namely that if
P• → M is a complex, with each Pn projective, then f : P• → Q• exists and is
unique up to homotopy.

Corollary 3.15. If Q• → M is another projective resolution, there exists a
homotopy equivalence f : P• → Q•. (Recall that this means that there is g :
Q• → P• such that f ◦ g and g ◦ f are homotopic to the identities.)
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3.16 Higher Ext groups

Given a pair of modules M and N fix a projective resolution P• → M . Let
∂ : Pn → Pn−1 denote the maps. Since P• is exact, it forms a complex i.e.
∂2 = 0. Then

Cn = Hom(Pn, N)

carries maps
d : Cn → Cn+1

dual to ∂. We necessarily have d2 = 0, so C• forms a cochain complex.

Theorem/Def 3.17. The isomorphism classes of the cohomology groups

ExtnR(M,N) = Hn(HomR(P•, N))

depend only on M and not on the choice of resolution P•.

Proof. If Q• is another projective resolution, we have morphisms f : P• → Q•
and g : Q• → P• such that f ◦g and g ◦f are homotopic to the identities. These
induces morphisms between Hom(P •, N) and Hom(Q•, N) whose compositions
are again homotopic to the identities. This implies that they have isomorphic
cohomology by proposition 2.22.

Corollary 3.18. There are isomorphisms

Ext0R(M,N) ∼= HomR(M,N)

and
Ext1R(M,N) ∼= Ext(M,N)

where the last group is the one constructed in a previous section.

Proof. Given a projective resolution P• →M , we can form an exact sequence

0→ K → P0 →M → 0

where K = imP1 → P0. Then

0→ Hom(M,N)→ Hom(P0, N)→ Hom(K,N)

and
0→ Hom(K,N)→ Hom(P1, N)

are exact. This implies that

Hom(M,N) = H0(Hom(P•, N))

The proof of the second isomorphism is similar.
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The previous theorem is not that useful as stated. In fact, we will show that
Extn(−,−) is a functor in both variables, and that it fits into natural exact
sequences. It are these properties that make it a powerful tool.

Theorem 3.19. If g : N → N ′ is a morphism there is an induced morphism
g∗ : ExtnR(M,N)→ ExtnR(M,N ′). This makes ExtnR(M,−) a covariant functor
from ModR → Ab. If

0→ N → N ′ → N ′′ → 0

is exact, then there is a long exact sequence

. . . ExtnR(M,N)→ ExtnR(M,N ′)→ ExtnR(M,N ′′)→ Extn+1
R (M,N) . . .

Proof. Fix a projective resolution P• → M . Then we get a morphism of com-
plexes

Hom(P•, N)→ Hom(P•, N
′)

The induced map on cohomology yields

ExtnR(M,N)→ ExtnR(M ′, N)

Suppose that
0→ N → N ′ → N ′′ → 0

is exact. Since Pi is projective, Hom(Pi,−) is an exact functor. Therefore we
get a short exact sequence of complexes

0→ Hom(P•, N)→ Hom(P•, N
′)→ Hom(P•, N

′′)→ 0

This yields a long exact sequence

. . . ExtnR(M,N)→ ExtnR(M,N ′)→ ExtnR(M,N ′′)→ Extn+1
R (M,N) . . .

Theorem 3.20. If h : M →M ′ is a morphism, there is an induced morphism
h∗ : ExtnR(M ′, N) → ExtnR(M,N). This makes ExtnR(−, N) into a contravari-
ant functor from ModR → Ab. If

0→M →M ′ →M ′′ → 0

is exact, then there is a long exact sequence

. . . ExtnR(M ′′, N)→ ExtnR(M ′, N)→ ExtnR(M,N)→ Extn+1
R (M ′′, N) . . .

Proof. If P ′• → M ′ is a projective resolution, the above remark 3.14 allows us
to construct a morphism h̃ : P• → P ′• unique up to homotopy. This induces a
morphism

Hom(P ′•, N)→ Hom(P•, N)

which induces h∗. If ` : M ′ → M ′′ is another morphism. Choose a projective
resolution P ′′• → M ′′ and construct the corresponding morphism ˜̀ : P ′• → P ′′• .
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The uniqueness shows that `̃ ◦ h and ˜̀◦ h̃ are homotopy equivalent. This implies
(` ◦ h)∗ = h∗ ◦ `∗. Therefore we have a functor.

For the last statement, we claim that we can construct projective resolutions
fitting into a diagram

�� �� ��||
0 // P0

//

i

��

P ′0 //

f

��

P ′′0 //

��g}}

0

0 // M // M ′ // M ′′ // 0

with exact rows. To prove this, choose resolutions P• and P ′′• , and set P ′• =
P• ⊕ P ′′• as a graded module. Since P ′′0 is projective, we can construct g above.
Set f : P0 ⊕ P ′′0 →M ′ to i+ g. The differentials of P ′• are built similarly.

From the claim, we have an exact sequence of complexes

0→ P• → P ′• → P ′′• → 0

which, by construction, is split as a sequence of graded modules. It follows that

0→ Hom(P ′′• , N)→ Hom(P ′•, N)→ Hom(P•, N)→ 0

is an exact sequence of complexes. Applying theorem 2.13 to this, gives a long
exact sequence of Ext groups.

Example 3.21. If R = Z, using the projective resolution,

0→ Z n→ Z→ Z/nZ→ 0

we find that
Ext1(Z/nZ, A) = A/nA

and
Exti(Z/nZ, A) = 0

for i > 1.

3.22 Characterization of projectives and injec-
tives

Theorem 3.23. Let P be an R-module. The following are equivalent.

(a) P is projective.

(b) ExtnR(P,M) = 0 for all n > 0 and for all modules M .
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(c) Ext1R(P,M) = 0 for all modules M .

Proof. If P is projective, then P = P is a projective resolution. Therefore (b)
follows. Clearly (b) implies (c). If (c) holds, then for any exact sequence

0→ K →M → N → 0

we have
HomR(P,M)→ HomR(P,N)→ Ext1R(P,K) = 0

This implies that P is projective.

We prove an analogous characterization for injectives. However, due to the
asymmetry of the definition, the proof will be completely different.

Theorem 3.24. Let E be an R-module. The following are equivalent.

(a) E is injective.

(b) Ext1R(M,E) = 0 for all modules M .

(c) ExtnR(M,E) = 0 for all n > 0 and for all modules M .

Proof. Suppose that E is injective. Injectivity will imply that given an exact
sequence

0→ E
i→ N →M → 0

we can find a homomorphism r : N → E such that r ◦ i = id. This means
that the sequence splits. By an earlier characterization, Ext1R(M,E) is the
equivalence class of extensions as above. Therefore it must be zero. Conversely,
if (b) holds then any extension must split. So E can be seen to be injective.

Clearly (c) implies (b). We just have to prove the converse. We use induction
on n and a trick called “dimension shifting”. Following Grothendieck, algebraic
geometers also refer this type of argument more broadly as “devissage”, which
translates roughly as “untwisting”. Suppose that (c) holds for a fixed n > 0 for
all M . Given M we can find an exact sequence

0→ K → P →M → 0

with P projective. Then we have an exact sequence

ExtnR(K,E)→ Extn+1
R (M,E)→ Extn+1

R (P,E)

The group on the left is zero by induction, while the group on the right is zero
by projectivity of P .

For the remainder of this section, let us assume that R is commutative.
Then HomR(M,N) is naturally an R-module via (rf)(m) = rf(m) = f(rm).
Therefore

ExtnR(M,N) = Hn(HomR(P•, N))
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is also an R-module. Moreover, the previous arguments can be modified to show
that this structure is independent of the resolution.

Recall that if S ⊂ R is a multiplicatively closed set, we can form a new ring
S−1R by inverting elements of S. This operation extends to an exact functor
S−1 : ModR →ModS−1R. See Atiyah-Macdonald for details.

Lemma 3.25. If P is projective, then S−1P is projective.

Proof. P is projective if and only if it is a summand of a free module. The last
condition is stable under localization.

Suppose now in addition that R is noetherian. If M is finitely generated
over R, then we can find a surjection

Rn0 →M → 0

for some n0. Since the kernel is finitely generated (by noetherianness), we can
prolong this to an exact sequence

Rn1 → Rn0 →M → 0

and so on to obtain

Lemma 3.26. If M is finitely generated, then it has a free resolution by finitely
generated free modules.

Lemma 3.27. If M is finitely generated, then for any multiplicative set

S−1HomR(M,N) ∼= HomS−1R(S−1M,S−1N)

Proof. If M = Rn, then this amounts to the isomorphism

S−1(Mn) = (S−1M)n

We can form a commutative diagram

0 // S−1Hom(M,N) //

f

��

S−1Hom(Rn0 , N) //

∼=
��

S−1Hom(Rn1 , N)

∼=
��

0 // Hom(S−1M,S−1N) // Hom(S−1Rn0 , S−1N) // Hom(S−1Rn1 , S−1N)

The last two maps are isomorphisms by what we said above. Therefore f is an
isomorphism by a diagram chase.

Combining the last two lemmas, we find that

Theorem 3.28. If M is finitely generated, then

S−1ExtnR(M,N) ∼= ExtnS−1R(M,N)
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Corollary 3.29. A finitely generated R-module P is projective if and only if it
is locally free.

Proof. Suppose that P is finitely generated and locally free. We have to show
that E = Ext1R(P,N) = 0 for any N . It suffices to prove that localizations of
Ep = 0 at primes p ∈ SpecR. By the theorem

Ep = Ext1Rp
(Pp, Np) = 0

for any p ∈ SpecR.
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Chapter 4

Cohomology of groups

Refs.

1. Brown, Cohomology of groups

2. Rotman, Intro to homological algebra

3. Weibel, An intro to homological algebra

4.1 Group cohomology

Given a group G, a left ZG-module will simply be called a G-module. It is
the same thing as an abelian group with an action by G. Let Z stand for the
group of integers with trivial G-action. Fix a G-module A. We define the 0th
cohomology by

H0(G,A) = HomZG(Z, A)

Lemma 4.2. H0(G,A) is isomorphic to the subgroup of invariant elements
AG = {a ∈ A | ∀g ∈ G, ga = a}.

Proof. The image of 1 ∈ Z under an element of H0(G,A) = HomZG(Z, A) lies
in AG, and conversely.

Corollary 4.3. The functor A 7→ AG is left exact, i.e. given a sequence of
G-modules

0→ A→ B → C → 0

we obtain an exact sequence

0→ AG → BG → CG

The answer to the question of what comes next is higher cohomology

Hn(G,A) = ExtnZG(Z, A)

Using the properties of Ext established earlier
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Theorem 4.4. Given a short exact sequence of G-modules, as above, we have
a long exact sequence

. . . Hn(G,A)→ Hn(G,B)→ Hn(G,C)→ Hn+1(G,A) . . .

extending the previous sequence.

Example 4.5. If G = {1} is trivial, then Hn(G,A) = 0 for any A and n > 0.
This because ZG = Z and Z is projective over it.

Nontrivial examples will have to wait.

4.6 Bar resolution

Group cohomology can be computed using an explicit projective resolution, that
we now define. The map

ε : ZG→ Z
defined by ∑

ngg =
∑

ng

is a surjective G-module homomorphism. We will extend this to a free resolution
of Z. Let Bn is the free abelian group generated by the (n + 1) fold product
Gn+1 = G×G× . . . G. This is a G-module, where g ∈ G acts by g(g0, . . . , gn) =
(gg0, . . . , ggn). We define a maps ε : B0 → Z as above, and

d : Bn → Bn−1

by

d(g0, . . . , gn) =
∑

(−1)i(g0, . . . , ĝi, . . . gn)

Lemma 4.7. d2 = 0.

Proof. The calculation is similar to what we did for the simplicial chain complex.

Proposition 4.8. The complex

. . . B1 → B0 → Z0

is exact.

Proof. Set B−1 = Z and d0 = ε. We have to show that the extended complex
B• is acyclic. Let h : Bn → Bn+1 be defined by

h(g0, . . . , gn) = (1, g0, . . . , gn), n ≥ 0

h(1) = 1, n = −1

One sees that
(dh+ hd)(g0, . . . , gn) = (g0, . . . , gn)

so that h is a contracting homotopy.
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Since Bn is a free ZG-module with basis (1, g1, . . . , gn), we obtain

Corollary 4.9. B• is a free resolution of Z

B• is called the bar or standard resolution. The first name comes from the
bar notation

[g1| . . . , |gn] = (1, g1, g1g2, g1g2g3, . . .)

With this notation, the differential is given by

d[g1, . . . , |gn] = g1[g2| . . . |gn]+

n−1∑
i=1

(−1)i[g1| . . . |gi−1|gigi+1|gi+2| . . .]+(−1)n[g1| . . . |gn−1]

It is often convenient to work with a smaller complex called the normalized
bar resolution

B̄• =
B•

{[g1|g2| . . .] | . . .] | ∃i, gi = 1}

Proposition 4.10. B̄• is also a free resolution of Z.

Proof. Rotman, theorem 9.38.

4.11 Low degree cohomology

Recall
Hn(G,A) = ExtnZG(Z, A)

We have already seen what this means when n = 0. Let us look at the next few
cases. A derivation or crossed homomorphism is a map f : G → A satisfying
f(gh) = f(g) + gf(h), g, h ∈ G. If a ∈ A, then f(g) = ga− a is an example of a
derivation, called an inner derivation.

Lemma 4.12. H1(G,A) is isomorphic to the quotient of the group of deriva-
tions from G to A by the subgroup of inner derivations.

Proof. We can compute

H1(G,A) = H1(Hom(B•, A)) =
kerHom(B1, A)→ Hom(B2, A)

imHom(B0, A)→ Hom(B1, A)

Elements of the numerator, called 1-cocycles, areG-homomorphisms f : B1 → A
such that

f(d[g|h]) = f(g[h]− [gh] + [g]) = 0

This means that 1-cocycles are derivations. We have to divide this space of
these by the space of 1-coboundaries, which are elements in imHom(B0, A).
These can be seen to be inner derivations.

Corollary 4.13. If G acts trivially on A, then H1(G,A) = HomGroups(G,A).
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Given groups G and N , an extension of G by N is an exact sequence of
groups

1→ N → E → G→ 1

This means that N is a normal subgroup of E, such that E/N = G. We will
focus on the case where N = A is abelian. The action of E on itself by conju-
gation stabilizes A, because it is normal. Therefore we have a homomorphism
E → Aut(A). The image of A is trivial because A is abelian, this homomor-
phism factors through G. Therefore A is naturally a G-module. Conversely,
given a G-module, we can ask whether it arises from an extension. The answer
is yes.

Proposition 4.14. The semidirect product G n A is G × A as a set. When
equipped with a product

(g, a)(h, b) = (gh, a+ gb)

it becomes a group, fitting into an extension

0→ A→ GnA→ G→ 1

such that the G-module structure on A is the given structure.

Proof. See Rotman theorem 9.5.

We can now ask what are all possible extensions of G by A, with given G-
module structure? Of course, to get a reasonable answer we work up to the
equivalence, where two extensions are equivalent if they fit into the following
diagram

1 // A //

=

��

E //

��

G //

=

��

1

1 // A // E′ // G // 1

Theorem 4.15 (Schreier). There is a bijection between the set of equivalence
classes of extensions of G by A with given G-module structure, and H2(G,A).
The equivalence class of GnA corresponds to 0.

Proof. First we compute H2(G,A) using the normalized bar resolution. It is
the group of 2-cocycles modulo the subgroup of 2-coboundaries. A 2-cocycle is
a map f : B̄2 → A such that f ◦ d = 0, and a 2-coboundary is a map of the
form k ◦ d for some k : B̄1 → A. More explicity a 2-cocycle is given by a map
f : G×G→ A satisfying

gf(h, `)− f(gh, `) + f(g, h`)− f(g, h) = 0

f(g, 1) = f(1, g) = 0
(4.1)

Classically a 2-cocycle is also called a “factor set”. A cocycle f is a 2-coboundary
if there exists a function k : G→ A, called a 1-cochain, such that k(1) = 0 and

f(g, h) = gk(h)− k(gh) + k(g) := dk(g, h)
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We now summarize the basic construction, and refer to Rotman section 9.1.2
for the remaining details. Given a 2-cocycle f , define E(f) = G × A as a set
with product

(g, a)(h, b) = (gh, a+ gb+ f(g, h))

Note that E(0) = GnA. Using the identities (4.1), we can see that multiplica-
tion is associative

[(g, a)(h, b)](`, c) = (gh`, a+ gb+ ghc+ f(g, h) + f(gh, `))

= (gh`, a+ gb+ ghc+ gf(h, `) + f(g, h`)) = (g, a)[(h, b)(`, c)],

(1, 0) is the identity, and

(g, a)−1 = (g−1,−g−1a− g−1f(g, g−1))

So E(f) is a group. Furthermore, it fits into an extension

0→ A→ E(f)
π→ G→ 1

where π is projection on the first factor. If we modify f by adding a coboundary
associated to a cochain k : G → A, then (g, a) 7→ (g, a + k(g)) defines an
equivalence E(f) ∼= E(f + dk). So the equivalence class of the above extension
depends only on the cohomology class associated to f . This gives the map from
H2 to the set of equivalence classes of extensions.

Conversely, given an extension

0→ A→ E
π→ G→ 1

choose a set theoretic map s : G → E such that π ◦ s = id. Define f(g, h) =
s(x)s(y)s(xy)−1. Since π(f(g, h)) = 1, we must have f(g, h) ∈ A. This can be
seen to define a 2-cocycle such that E = E(f). A different choice of s will define
another cocycle differing from f by a coboundary. This gives the inverse from
equivalence classes of extensions to H2(G,A).

4.16 Applications to finite groups

Given a subgroup H ⊂ G of a group, a G-module M is naturally also an H-
module. ZG is a free ZH-module. Therefore the bar resolution of Z over ZG
can be viewed as a resolution by free ZH-modules. This yields a natural map,
called restriction

Res : Hn(G,M)→ Hn(H,M)

for any G-module.
If H has finite index, then we can define map in the opposite direction called

corestriction or transfer

Cor : Hn(H,M)→ Hn(H,M)
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The idea is as follows. Choose a set of representatives g1, . . . , gN of G/H. For
n = 0, we define

Cor : MH = H0(H,M)→ H0(G,M) = MG

by

Cor(m) =
∑
i

gim

This is independent of the choice of representatives. For higher n, we can use a
dimension shifting technique. Embed M into an injective ZG-module E (which
we proved to exist) Then

H1(G,M) = H0(G,E/M)/ imH0(H,E)

Hn(G,M) = Hn−1(G,E/M), n > 1

So the definition of Cor can be reduced to n = 0. A detailed construction can
be found in Rotman section 9.6, or also in Brown’s book.

Lemma 4.17. If H ⊂ G is a subgroup of index N < ∞, the composition of
restriction and corestriction

Hn(G,M)→ Hn(H,M)→ Hn(G,M)

is multiplication by N .

Sketch. This can be reduced to the case n = 0 by construction. If m ∈ MG,
then the composition of the above maps sends

m 7→
N∑
i=1

gim =

N∑
i=1

m = Nm

Theorem 4.18. If G is a finite group of order N , then for any G-module M
and n > 0, we have NHn(G,M) = 0.

Proof. Let H = {1}. Then multiplication by N is the same as the composite

Hn(G,M)→ Hn(1,M)→ Hn(G,M)

But Hn(1,M) = 0 when n > 0.

Theorem 4.19 (Schur-Zassenhaus). Let G be a finite group of order mn, where
(m,n) = 1. If K is a normal subgroup of order n, then G is a semidirect product
of K by G/K.

Proof. We prove this when K is abelian. The general case can be reduced to this
with additional work. If K is abelian, it suffices to prove that H2(G/K,K) = 0.
Let µ : K → K be multiplication by m. This is an isomorphism of G-
modules, because m is coprime to |K|. Therefore this induces an isomorphism
µ∗ : H2(G/K,K)→ H2(G/K,K). On the other hand µ∗ is the same as multi-
plication by m. But this is zero by the previous theorem.

37



4.20 Topological interpretation

Suppose that X is a topological space. Let G be a group such that each g ∈ G,
defines a homeomorphism g : X → X. Also suppose that g1(g2(x)) = (g1g2)(x)
for g1, g2 ∈ G. Then we say that G acts on X. We give the set of orbits X/G
the quotient topology. In general, this can be quite wild, even when X is nice.
However, it has reasonable properties if the action is fixed point free and proper,
which means that every point x ∈ X has an open neighbourhood U such that
gU ∩ U = ∅ when g 6= 1. For example, the action of Zn on Rn by translation
satisfies these conditions, and Rn/Zn is the n-torus.

Theorem 4.21. If X is contractible, and G has a fixed point free and proper
action, then H∗(X) ∼= H∗(G,Z).

Proofs can be found in Brown’s or Weibel’s books. Since Rn is contractible,
we obtain:

Corollary 4.22. Group cohomology of Zn is given by Hi(Zn,Z) = Hi(Rn/Zn,Z)

Standard methods from algebraic topology allows us to compute the coho-
mology of the torus.

Hi(Rn/Zn,Z) = Z(n
i) (4.2)

More canonically, the answer can be expressed as an exterior power.
When n = 1, we can prove this algebraically as follows. Let us write G = Z.

We can identify ZG ∼= Z[t, t−1] where N ∈ G corresponds to tN . Then

0→ Z[t, t−1]
t−1→ Z[t, t−1]→ Z→ 0

gives a free resolution. Therefore for any Z[t, t−1]-module M , we can Hom this
resolution into it to obtain the complex

M
t−1→ M

So that

Hi(G,M) =


ker(t− 1) : M →M i = 0

coker(t− 1) : M →M i = 1

0 i > 1

When M = Z, we obtain Z in degrees 0 and 1, which is consistent with (4.2).
We will return to deal with the the case n > 1 later on.
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Chapter 5

Derived Functors and Tor

Refs.

1. Cartan, Eilenberg, Homological algebra

2. Grothendieck, Sur quelques points d’algèbre homologique, Tohoku 1957

3. Mitchell, Theory of categories

4. Rotman, Intro to homological algebra.

5. Weibel, An introduction to homological algebra

5.1 Abelian categories

We start with some category theory. A category A is called abelian if it behaves
like the category ModR. Rotman section 5.5 treats abelian categories in some
detail. Most other books on homological algebra do as well. Let’s write down a
long list list of conditions on category A, which hold when A = ModR.

A1. HomA(M,N) is an abelian group for every pair of objects M,N .

A2. Composition satisfies f ◦ (g + h) = f ◦ g + f ◦ h whenever both sides are
defined. Similary, (g + h) ◦ f = g ◦ f + h ◦ f when this makes sense.

A3. There is a zero object satisfying HomA(0,M) = HomA(M, 0) = 0 for all
M .

A4. For any pair of objects M,N we can form a direct sum, characterized
up to isomorphism by Hom(M ⊕N,T ) = Hom(M,T )⊕Hom(N,T ) and
Hom(T,M ⊕N) = Hom(T,M)⊕Hom(T,N)

A5. Given a morphism f : M → N , we can form an object ker f with a mor-
phism ker f → M characterized by Hom(T, ker f) = kerHom(T,M) →
Hom(T,N).
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A6. Given f : M → N , we can form an object coker f with a morphism
M → coker f , characterized by Hom(coker f, T ) = kerHom(N,T ) →
Hom(M,T ).

A7. Given f : M → N , there exists an object im f with morphisms M → im f
and im f → N such that their composition is f . We also require that im f
is both coker(ker f → M) and ker(N → coker f). (A bit more precisely,
these are canonically isomorphic.)

A category is called additive if A1-A4 hold, and it is called abelian if they
all hold. The last axiom is the hardest to fathom. It is trying to capture
the idea that in ModR, f can be factored through a surjective homomorphism
M → im f followed by an injective homomorphism im f → N . Since injectivity
and surjectivity are not categorical notions, we replace them by saying that they
are kernels or cokernels. To appreciate further subtleties, see example 5.5.

Example 5.2. ModR is an abelian category.

Example 5.3. The category of finitely generated modules over a left noetherian
ring is abelian. In particular, this applies to finitely generated abelian groups.

Example 5.4. The category of free abelian groups is additive but not abelian,
because cokernels need not exist.

Example 5.5. The category of Hausdorff topological abelian groups and contin-
uous homomorphisms satisfies A1-A6. The operations are the usual ones except
for the cokernel. The cokernel of f : M → N in this category is the quotient
N/f(M). However, if f(M) is not closed, the map from coker(ker f → M) =
M/ ker f to ker(N → coker f) = f(M) is not an isomorphism. So A7 fails.

Here is a simple yet powerful observation.

Proposition 5.6. If A is abelian (resp. additive), then so is the opposite cat-
egory Aop. This has the same objects as A but arrows are reversed, so that
HomAop(N,M) = HomA(M,N).

Proof. The axioms are self dual.

Therefore

Example 5.7. ModopR is an abelian category. (NB: This should not be confused
with ModRop .)

Given an abelian category, we can do most of what we have done so far in
class. In particular, we can talk about exact sequences, injectives, projectives,
complexes, and homology. We also note the following remarkable fact:
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Theorem 5.8 (Freyd-Mitchell). Any small1 abelian category can be embedded
into a category modules over a ring in such a way that Hom’s are the same,
and exact sequences are the same.

A proof can be found in Mitchell’s book. Since we will mostly be working
with explicit examples, we won’t really need it. But it is reassuring to know
that one can pretend that an abstract abelian category is a category of modules,
without loosing too much. Also this means that various standard results such
as the 5-lemma, snake lemma, etc. can be extended to an arbitrary abelian
category.

In order to do more homological algebra, we need the following.

Definition 5.9. An abelian category has enough injectives if for every object
M , there exists an injective object I and a morphism f : M → I such that
ker f = 0.

Example 5.10. ModR has enough injectives.

Example 5.11. ModopR has enough injectives. This is because an injective in
ModopR is a projective module, and every module is the quotient of a projective
module.

Example 5.12. The category of finitely generated abelian groups does not have
enough injectives.

5.13 Derived functors

Definition 5.14. A functor F : A → B between additive categories is called
additive if F (f + g) = F (f) + F (g), for every f, g ∈ Hom(M,N).

Lemma 5.15. If F is additive, then F (M ⊕N) ∼= F (M)⊕ F (N).

Proof. There are morphisms i : M →M⊕N , j : N →M⊕N , p : M⊕N →M ,
and q : M ⊕ N → N such that pi = idM , qj = idN , pj = 0, qi = 0, and ip +
jq = idM⊕N . The existence of such a collection of morphisms satisfying these
relations characterizes the direct sum. The collection F (i), . . . would satisfy the
same relations, therefore F (M ⊕N) must be isomorphic to F (M)⊕ F (N).

Definition 5.16. An additive (covariant) functor F : A→ B from one abelian
category from one category to another is left (right) exact if whenever

0→M → N → P → 0

1This is a set theoretic condition. In Gödel-Bernays, or similar set theory, one distinguishes
between sets and classes. Classes are allowed to be very big, but sets are not. For example,
one can form the class of all sets, but it wouldn’t be a set. One is not allowed to form the
class of all classes, thus avoiding the standard paradox of Cantor’s set theory. A category is
called small if the collection of the objects and morphisms form a set as opposed to a proper
class.
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is exact,
0→ F (M)→ F (N)→ F (P )

(resp.
F (M)→ F (N)→ F (P )→ 0

is exact.) A functor which both right and left exact is called exact.

We can also handle contravariant functors F : A → B by treating them as
covariant functors from F : Aop → B. These are left or right exact if the second
form is.

Let us fix a left exact functor F : A→ B, and let assume that A has enough
injectives. An injective resolution of an object M is an exact sequence

0→M → I0 → I1 . . .

with Ii injective. By an argument dual to what we did for projective resolutions,
we can see

Lemma 5.17. Every M possesses an injective resolution.

By arguments similar to what we did for Ext, we have

Theorem/Def 5.18. We define the right derived functors

RiFM = Hi(F (I•))

The isomorphism class of these objects do not depend on the resolution.

Theorem 5.19. RiF extend to additive functors from A→ B with R0F = F .
Given a short exact sequence

0→M1 →M2 →M3 → 0

there is a long exact sequence

. . . RiFM1 → RiFM2 → RiFM3 → Ri+1FM1 . . .

Derived functors were introduced by Cartan and Eilenberg in their book in
the mid 1950’s in order to unify several disparate theories. Grothendieck carried
the story further in his landmark paper shortly thereafter.

Example 5.20. Fix a module N , and consider the left exact functor HomR(−, N) :
ModopR → Ab. The right derived functors

RiHomR(−, N) = ExtiR(−, N)

by definition.

However, if we fix M , and consider HomR(M,−) : ModR → Ab we can also
take derived functors. A much less obvious fact is
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Theorem 5.21.
RiHomR(M,−) ∼= ExtiR(M,−)

Since Rotman does not appear to do this, we indicate the proof. A δ-functor
is a sequence of functors F i : A→ B such that for any exact sequence

0→M1 →M2 →M3 → 0

there is a long exact sequence

. . . F iM1 → F iM2 → F iM3 → F i+1M1 . . .

such that the connecting maps are natural in the appropriate sense. For ex-
ample, the sequence of right derived functors F i = RiF forms a delta functor.
A functor F is called effacable if for any M , there exists an exact sequence
0→M → I such that F (I) = 0.

Theorem 5.22. Suppose that if F i is a δ-functor such that for any i > 0 F i is
effacable. Then F i = RiF 0.

Proof. This follows from the results of chap II sections 2.2-2.3 of Grothendieck.

Proof of theorem 5.21. By results proved earlier Exti(M,−) is a δ-functor. Fur-
thermore if i > 0 and I is injective, Exti(M, I) = 0. Therefore Exti(M,−) is
effacable. So the result follows from the previous theorem.

A right exact functor F : A → B is the same thing as a left exact functor
F ′ : Aop → Bop. So that we can take right derived of F ′. When the story is
translated back to F , we arrive at the notion of a left derived functor. To be
explicit, given M , choose a projective resolution

. . . P1 → P0 →M → 0

We need to assume that A has enough projectives to guarantee this exists. Set

LiF = Hi(F (P•))

The key properties are:

• These are independent of the choice of resolution.

• These are additive functors from A→ B such that L0F = F .

• A short exact sequence

0→M1 →M2 →M3 → 0

gives rise to a long exact sequence

. . . LiM1 → LiM2 → LiM3 → Li−1M1 . . .
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5.23 Tor functors

Given a right R-module M , consider the functor T : ModR → Ab defined by

T (N) = M ⊗R N

This is a right exact functor. We define

TorRi (M,N) = LiT

Then given
0→ N1 → N2 → N3 → 0

we get an exact sequence

. . . T orR1 (M,N1)→M ⊗R N1 →M ⊗R N2 →M ⊗R N3 → 0

This will allow us to compute this in principle, but we still need a few more
tricks.

Proposition 5.24. If N is flat, then Tori(M,N) = 0 for i > 0.

Proof. This follows from the construction

Tori(M,N) = LiT (N) = Hi(P• ⊗N)

where P• →M → 0 is a projective resolution. Since N is flat,

. . . P1 ⊗N → P0 ⊗N →M ⊗N → 0

is exact. This means that P• ⊗N has no homology in positive degrees.

Theorem 5.25. Suppose that R is a (commutative) integral domain with field
of fractions K. If f ∈ R is nonzero,

Tori(M,R/fR) =

{
{m ∈M | fm = 0} if i = 1

0 if i > 1

Tori(M,K/R) =

{
{m ∈M | ∃f ∈ R, fm = 0} if i = 1

0 if i > 1

Remark 5.26. “Tor” is short for “torsion”. The theorem partly explains why
this name makes sense.

Proof. We have an exact sequence

0→ R
f→ R→ R/fR→ 0
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Since R is flat, we obtain

0 = Tori(M,R)→ Tori(M,R/fR)→ Tori−1(M,R) = 0

for i > 1. We can identify M ⊗ R = M and the map 1 ⊗ f with f . Therefore
we also have

0→ Tor1(M,R/fR)→M
f→M

The proof of the second isomorphism is similar. We use the sequence

0→ R→ K → K/R→ 0

and the fact that K is flat.

We note the following useful symmetry property.

Theorem 5.27. Under the identification of left (right) R-modules with right
(left) Rop-modules,

TorRi (M,N) ∼= TorR
op

i (N,M)

In particular, if R is commutative,

TorRi (M,N) ∼= TorRi (N,M)

Comments about the proof. The result is stated in theorem 7.1 in Rotman, but
the proof given there is incomplete. What’s missing is the fact that one can
compute Tor using a projective resolution of the second variable. See theorem
2.7.2 of Weibel for this. (We may do this later, if there is time.)

5.28 Homology of a group

Fix a group G and G-module i.e. ZG-module M . We regard Z as a left (and
also right) G-module with trivial G-action. Earlier we defined

Hi(G,M) = ExtiZG(Z,M)

In the current language, we could also define it as the right derived functors of
the left exact functor

M 7→MG

Recall that MG ⊂ M is the submodule of element invariant under G. It is the
largest submodule on which G acts trivially. Let MG be the largest quotient
module on which G acts trivially. More explicitly

MG = M/{gm−m | m ∈M, g ∈ G}

Lemma 5.29. Treating Z as a right ZG-module with trivial G action,

MG
∼= Z⊗ZGM
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Proof. We define a surjective ring homomorphism ε : ZG→ Z by

ε(
∑
i

nigi) =
∑
i

ni

Let I = ker ε. This is the two sided ideal generated by g − 1 with g ∈ G.
Consider the exact sequence

0→ I → ZG→ Z→ 0

Tensoring with M gives a sequence

I ⊗M → ZG⊗M → Z⊗M → 0

We can identify the middle module with M , and the image of the first map with
{(g − 1)m | g ∈ G,m ∈M}. So the lemma is now proved.

Corollary 5.30. M 7→MG is right exact.

We define group homology by

Hi(G,M) = TorZGi (Z,M)

The lemma shows that
H0(G,M) = MG

Before describing the next result, we recall that the commutator (or derived)
subgroup [G,G] ⊆ G is the normal subgroup generated by all commutators
ghg−1h−1. The quotient G/[G,G] can be characterized as the largest abelian
quotient of G.

Theorem 5.31. H1(G,Z) ∼= G/[G,G]

Proof. With the above notation, we have an exact sequence

TorZG1 (ZG,Z)→ TorZG1 (Z,Z)→ I ⊗ZG Z→ ZG⊗ZG Z r→ Z⊗ZG Z→ 0

By theorem 6.2

TorZG1 (ZG,Z) ∼= TorZG
op

1 (Z,ZG)

In fact g 7→ g−1 induces an isomorphism between ZG and ZGop. Therefore

TorZG
op

1 (Z,ZG) ∼= TorZG1 (Z,ZG) = 0

because ZG is flat. The map marked r above can be identified with the identity
Z→ Z. By definition H1(G,Z) = Tor1(Z,Z). Therefore, we can conclude

H1(G,Z) ∼= I ⊗ZG Z = I ⊗ZG ZG/I = I/I2

Let f : G→ I/I2 be given by f(g) = g − 1mod I2. Since

(gh− 1)− (g − 1)− (h− 1) = (g − 1)(h− 1) ∈ I2

f is a homomorphism. Since I/I2 is abelian, it factors through a homomorphism
f̄ : G/[G,G]→ I/I2. An explicit inverse is constructed on page 540 of Rotman,
So f̄ is an isomorphism.
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Chapter 6

Further techniques

Refs.

1. Matsumura, Commutative algebra

2. Rotman, Intro. to homological algebra

3. Weibel, An intro to homological algebra

6.1 Double complexes

Recall that we defined TorRi (N,−) as the right derived functor of N ⊗R −.
Given a left R-module M , consider the right exact functor

−⊗RM : ModRop → Ab

Let ∗TorRi (−,M) denote the left derived functors. We claim

Theorem 6.2. There is a natural isomomorphism ∗TorRi (N,M) ∼= TorRi (N,M)

We prove this by introducing a technique that is important on its own. A
double complex, or bicomplex, of modules (or more generally objects in an
abelian category) is a collection of modules (objects) C•• indexed by Z×Z, and
morphisms dh : Ci,j → Ci−1,j and dv : Ci,j → Ci,j−1 satisfying

d2
h = d2

v = dhdv + dvdh = 0 (6.1)

It is helpful to visualize this in the ij-plane. Then dh maps horizontally, and
dv vertically. If Cij = 0 for negative i or j, then we say this is a first quadrant
double complex. Here is a basic example.

Example 6.3. Suppose that P• and Q• are complexes of right and left modules
over a ring R. Set Cij = Pi ⊗R Qj with differentials

dh(p⊗ q) = dp⊗ q

dv(p⊗ q) = (−1)ip⊗ dq
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The first two relations of (6.1) say that the horizontal lines C•,j and vertical
lines Ci,• are complexes. The total complex

Tot(C)p =
⊕
i+j=p

Cij

Note that this is a finite direct sum, assuming our double complex is first quad-
rant. In general, this construction is only available for abelian categories with
infinite direct sums, such as ModR. We define the differential d : Tot(C)p →
Tot(C)p−1 by d = dh + dv. The relations (6.1) imply that d2 = 0.

Example 6.4. Continuing the previous example, Tot(P• ⊗ Q•) is called the
tensor product of the complexes P• and Q•.

The last relation of (6.1) also implies that after adjusting signs ±dv : C•,j →
C•,j−1 is a map of complexes. This implies that dv induces a map

d̄v : Hi(C•,j , dh)→ Hi(C•,j−1, dh)

It is easy to see that d̄2
v = 0 so that

. . . Hi(C•,j+1, dh)→ Hi(C•,j , dh)→ Hi(C•,j−1, dh) . . .

forms a complex. We now come to the key problem: Suppose we are given
Hi(C•,j , dh) and the maps d̄v for all i, j, can we compute the homology of the
total complex? The answer is almost. The precise statement is very complicated
in that it involves the notion of a spectral sequence. Rather than getting into
that now, we consider a special case which is sufficient to prove theorem 6.2.

Theorem 6.5. Suppose that C•• is a first quadrant double complex, and that
Hi(C•,j) = 0 for i > 0 and all j. Then Hi(Tot(C)•) is isomorphic to the ith
homology of

. . . H0(C•,i+1)→ H0(C•,i)→ H0(C•,i−1) . . .

Sketch. We define a new double complex C̃•• by adding the vertical line over
i = −1 to C•• as indicated below

H0(C•,j)

d̄v
��

C0,j

dv

��

±πoo C1,j
dhoo

dv

��
H0(C•,j−1) C0,j−1

±πoo C1,j−1
dhoo

where π denotes the natural projections. We have an exact sequence of com-
plexes

0→ Tot(C)→ Tot(C̃)→ (H0(C), d̄v)[−1]→ 0

where [−1] indicates a shift by −1. Applying lemma 2.73 of Weibel on pp 59-60
shows that the complex in the middle is acyclic. The long exact sequence for
homology does the rest.

48



There is an obvious symmetry here. If we interchange the roles of dh and
dv, we get an analogous statement.

Corollary 6.6. Suppose that Hj(Ci,•) = 0 for j > 0 and all i. Then Hi(Tot(C)•)
is isomorphic to the ith homology of

. . . H0(Ci+1,•)→ H0(Ci,•)→ H0(Ci−1,•) . . .

Proof of theorem 6.2. Let P• → N and Q• →M be projective resolutions. Let
Cij = P•⊗RQ• be the double complex given by tensor product as in 6.3. Since
Qj is flat,

. . . P1 ⊗Qj → P0 ⊗Qj → N ⊗Qj → 0

is exact. Therefore Hi(P• ⊗Qj) = 0 for i > 0, and

H0(P• ⊗Qj) ∼= N ⊗Qj

Thus, from theorem 6.5, we conclude that Hi(Tot(C)•) is isomorphic to

Hi(M ⊗Q•) ∼= Tori(N,M)

For similar reasons, we have isomorphisms

Hi(Tot(C)•) ∼= Hi(P• ⊗M) ∼= ∗Tori(N,M)

Putting these isomorphisms together proves the theorem.

6.7 Koszul complexes

Let R be a commutative ring for the rest of this section. Suppose that x ∈ R is
a nonzero divisor. Then

0→ R
x→ R→ R/(x)→ 0

is a free resolution of R/(x), which can be used to compute various Exts and
Tors. Let us denote this projective resolution by K(x), where K stands for
Koszul. To be clear K(x)0 = K(x)1 = R and all other terms are zero. This
is the building block for more general Koszul complexes. Given two elements
x1, x2 ∈ R, we define the Koszul complex as the tensor product K(x1, x2) =
K(x1) ⊗K(x2). Recall that this the total complex of the tensor product as a
double complex, which after identifying R⊗R = R is

R

x2

��

R
−x1

oo

x2

��
R R

x1

oo
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Therefore
K(x1, x2) = R→ R2 → R

with differentials
a 7→ (−x1a, x2a)

(a, b) 7→ x2a+ x1b

We say that the pair x1, x2 ∈ R is regular if x1 is a nonzero divisor in R,
x2 is (or more precisely reduces to) a nonzero divisor in R/(x1). Note that the
definition depends on the order.

Proposition 6.8. If x1, x2 is regular, then K(x1, x2) is a free resolution of
R/(x1, x2).

Proof. Since x1 is a nonzero divisor in R, K(x1) is non homology in postive
degrees. Therefore theorem 6.5 shows that K(x1, x2) has the same homology as

R/(x1)
x2→ R/(x1)

Since x2 is a nonzero divisor inR/(x1). The last complex resolvesR/(x1)/(x2) =
R/(x1, x2).

Given a finite sequence x1, . . . , xn ∈ R, define

K(x1, . . . , xn) = K(x1, . . . , xn−1)⊗K(xn)

inductively.

Lemma 6.9. K(x1, . . . , xn) is a complex of free modules. It has rank
(
n
i

)
in

degree i.

Proof. Since

K(x1, . . . , xn)i = K(x1, . . . , xn−1)i ⊗R⊕K(x1, . . . , xn−1)i−1 ⊗R

this follows by induction and Pascal’s triangle identity.

A better proof of the previous lemma comes by identifying K(x1, . . . , xn)i
with the exterior power ∧iRn. See Matsumura p 134.

A finite sequence x1, . . . , xn ∈ R is called regular if xi is a nonzero divisor
in R/(x1, . . . , xi−1) for each i. Proposition 6.8 extends to this the more general
case, with essentially the same proof.

Proposition 6.10. If x1, . . . , xn is regular, then K(x1, . . . , xn) is a free reso-
lution of R/(x1, . . . xn).

Earlier, we gave a computation of the group cohomology of G = Zn using
topology. We are now in a position to do it algebraically.

Theorem 6.11. Hi(G,Z) = Z(n
i).
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Proof. We can identify the group ring ZG = Z[x1, x
−1
1 , . . . , xn, x

−1
n ]. The se-

quence x1, . . . , xn is easily seen to be regular. Therefore K = K(x1, . . . , xn)
gives a free resolution of Z. So we can compute Hi(G,Z) as Hi(Hom(K,Z)).
The complex Hom(K,Z) is just

. . .Z( n
i+1) 0→ Z(n

i) 0→ Z( n
i−1) . . .

So the theorem follows.
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Chapter 7

Applications to
commutative algebra

Refs.

1. Eisenbud, Commutative algebra

2. Rotman, Intro. to homological algebra

3. Weibel, Intro. to homological algebra

7.1 Global dimensions

For this section, R is a not necessarily commutative ring. Given an R-module
M , we say that the projective dimension pd(M) ≤ n ∈ N ∪ {∞} if there exists
a projective resolution

. . . P1 → P0 →M → 0,

such that Pi = 0 for i > n. We say pd(M) = n, if pd(M) ≤ n and not for
anything smaller. Clearly pd(M) = 0 if and only if M is projective. We have to
following test

Proposition 7.2. The following are equivalent

1. pd(M) ≤ n

2. For all N , Extn+1
R (M,N) = 0

3. For all m > n and for all N , ExtmR (M,N) = 0.

Proof. This was a (slightly misstated) homework problem; or see Rotman prop
8.6.
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We define the (left) global dimension of R to be

gldim(R) = sup pd(M)

From the previous proposition, we deduce

Corollary 7.3. gldim(R) ≤ n if and only if Extn+1(M,N) = 0 for all M and
N .

Example 7.4. If R is a field, or more generally a division ring, all modules
are free by standard arguments in linear algebra. Therefore gldimR = 0.

Example 7.5. Let R = Z[t]/(t2 − 1). A previous homework problem showed
that group cohomology of Hi(Z/2, Z/2) = Exti(Z,Z/2) 6= 0 for all i. Therefore
gldimR =∞.

We can define the injective dimension id(M) of a module as the length of
the shortest injective resolution

0→M → I0 → I1 . . . In → 0

This is the same the projective dimension in ModopR . Therefore, we obtain a
result dual to the previous proposition.

Proposition 7.6. The following are equivalent

1. id(M) ≤ n

2. For all N , Extn+1
R (N,M) = 0

3. For all m > n and for all N , ExtmR (N,M) = 0.

By combining this with the previous corollary, we obtain

Corollary 7.7. gldimR = sup id(M).

Proposition 7.8. gldimR = sup pd(M) as M varies over finitely generated left
modules.

Proof. Let n = sup pd(M) over finitely generated modules. Given a module N ,
it suffices to show that id(N) ≤ n. Let

0→ N → E0 → E1 . . . En−1 → C → 0 (7.1)

be a resolution with Ei injective. If we can show that C is injective, then
we are done. We can use Baer’s criterion, which says that C is injective if
any homomorphism from a left ideal I → C extends to a homomorphism from
R→ C. From the sequence

Hom(R,C)→ Hom(I, C)→ Ext1(R/I,C)
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we see that it suffices to prove that Ext1(R/I,C) = 0. By breaking up (7.1)
into short exact sequences

0→ N → E0 → E0/N → 0

etc., we find that

Extn(R/I,E0)→ Extn(R/I,E0/N)→ Extn+1(R/I,N)→ Extn+1(R/I,E0) = 0

etc. Therefore we get isomorphisms

Extn+1(R/I,N) ∼= Extn(R/I,E0/N) . . . ∼= Ext1(R/I,C)

Since R/I is finitely generated, Extn+1(R/I,N) = 0.

7.9 Global dimension of commutative rings

From now on, let us assume that R is commutative and noetherian.

Theorem 7.10. The global dimension

gldim R = sup
p∈SpecR

gldim Rp

Proof. Suppose that M is finitely generated. Earlier we proved that

ExtiR(M,N)p = ExtiRp
(Mp, Np) (7.2)

Therefore ExtiR(M,N) = 0 for i > sup gldimRp. This proves gldimR ≤
sup gldimRp. So it remains to prove the opposite inequality. For this we need

Lemma 7.11. Any (finitely generated) Rp-module is isomorphic to Mp for some
(finitely generated) R-module M .

Proof. If M is a finitely generated Rp-module, we can find a presentation

Rnp
A→ Rmp →M→ 0

We can find a matrix B over R such that A = 1
fB with f /∈ p. It follows that

M = Mp where M = Rm/BRn.
If M is not finitely generated then we can take M = M regarded as an

R-module.

From the lemma along with (7.2), we obtain gldimRp ≤ gldimR.

To understand global dimensions of commutative noetherian rings, we can,
by the previous theorem, focus on the case where R commutative noetherian
local ring. We now assume this. Let m be the unique maximal ideal, and
k = R/m the residue field.
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Proposition 7.12. If M is a finitely generated R-module, then

pd(M) ≤ n ⇔ TorRn+1(M,k) = 0

Proof. If pd(M) ≤ n, then M has a projective resolution P• of length ≤ n,
therefore Torn+1(M,k) = Hi(P• ⊗ k) = 0.

For the converse, by dimension shifting, it is enough to consider n = 0. That
is assuming Tor1(M,k) = 0, we have to show that M is projective. Choose set
of generators mi ∈ M which reduce to a basis of M ⊗ k. Consider the map
Rn →M sending the ith basis vector of Rn to mi. We have an exact sequence

0→ K ⊗Rn →M → 0

After tensoring with k, we obtain

0 = Tor1(M,k)→ K ⊗ k → kn →M ⊗ k → 0

The last map is bijective by construction, therefore K ⊗ k = 0. This implies
K = 0 by Nakayama’s lemma.

The ring R is called regular if m can be generated by d elements, where
d = dimR is the Krull dimension (the maximal length of a chain of prime ideals
p0 ( p1 . . . ( pd). The importance of regularity comes from algebraic geometry.
A point x ∈ X in algebraic variety is nonsingular if and only if the corresponding
local ring is regular.

Example 7.13. If k is a field, then the localization = k[x1, . . . , xd](x1,...,xd) is
regular, since the maximal is generated by xi and d = dimR. In geometric
terms, this says that the origin of affine space Adk is nonsingular.

The following fundamental theorem gives an elegant characterization.

Theorem 7.14 (Auslander-Buschsbaum-Serre). A noetherian local ring R is
regular if and only if gldimR < ∞. The global dimension of R coincides with
the Krull dimension.

Proof. We only prove one direction. Suppose that R is regular, then we can
find d = dimR element x1, . . . , xd generating m. Then x1, . . . , xd is a regular
sequence by Eisenbud corollary 10.15. Therefore the Koszul complex K• =
K(x1, . . . , xd) gives a projective resolution of k of length d. It follows that
Tori(M,k) = Hi(M ⊗K•) = 0 for i > d. If M is finitely generated, this implies
that pd(M) ≤ d be the previous proposition. This implies gldimR ≤ d. Since
Tord(k, k) = k 6= 0, we must have equality.

Corollary 7.15. The localization of a regular local ring is regular local.

We define a commutative ring to be regular if all of its local rings are regular.
The last corollary says that regular local rings are regular in this sense. Given
a field k, a prime ideal I ⊆ k[x1, . . . , xn] defines an affine algebraic variety

X = V (I) = {a ∈ Ank | ∀f ∈ I, f(a) = 0}
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The ring k[x1, . . . , xn]/I is called the coordinate ring. X is called nonsingular
if the ring is regular.

Corollary 7.16. A regular ring of finite Krull dimension has finite global di-
mension. In particular, this is the case for the coordinate ring of a nonsingular
affine algebraic variety.

7.17 Regular local rings are UFDs

We will continue to assume rings are commutative. Recall that an integral
domain is a unique factorization domain, or a factorial ring, if every nonzero
element is a product of a unit times a product of irreducible elements in an
essentially unique way. We give some useful criteria for this property. First
recall that a prime ideal p is a minimal prime of an ideal I if it contains I and
there are no primes between I and p. The height of a prime ideal p is the length
of the longest chain p0 ( p1 . . . ( pn = p. In algebro-geometric terms minimal
primes correspond to irreducible components of V (I), and the height of p is the
codimension of the subvariety defined by p.

Proposition 7.18. Let R be a noetherian domain. The following are equivalent

1. R is a UFD .

2. Every minimal prime of a principal ideal is itself principal.

3. Every height one prime is principal.

If x ∈ R generates a prime ideal, and if R[x−1] is a UFD, then so is R.

Proof. This follows from proposition 3.11, corollary 10.6, and lemma 19.20 of
Eisenbud.

We will use the next lemma below.

Lemma 7.19. If P is a rank one projective module which admits a finite reso-
lution by finitely generated free modules, then P is free.

Proof. Combine proposition 19.16 and lemma 19.18 from Eisenbud.

Theorem 7.20 (Auslander-Buchsbaum). A regular local ring is a UFD.

Proof. If x ∈ R generates a prime, then it is enough to show that R[x−1] is
a UFD by the previous proposition. Suppose that q ∈ SpecR[x−1] is height
one, then it is enough to prove that it is principal by the same proposition. If
p ∈ SpecR[x−1], then R[x−1]p is a localization of R. By the corollary 7.15, it
is regular. Furthermore dimR[x−1]p < dimR. So by induction, we can assume
that it is a UFD. This shows that each Qp is principal, and therefore that Q
is projective. To show that is principal, it is enough to show that it free. We
can find an R-module Q′ such that Q = Q′[x−1]. Since R has finite global
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dimension, we can find a finite resolution of F• → Q′ by finitely generated
projective R-modules. Earlier we proved that any finitely generated projective
module over a noetherian local ring is free. Therefore F•[x

−1] → Q is a free
resolution. Lemma 7.19 implies that Q is free.

In algebraic geometry, it is important to study algebraic varieties in terms
of their codimension one subvarieties, called Weil divisors. The best behaved
among these are the Cartier divisors which are locally defined by a single equa-
tion f = 0. The above theorem guarantees than on a nonsingular variety (or
more generally regular scheme), all Weil divisors are Cartier.
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Chapter 8

Spectral sequences

Refs.

1. Brown, Cohomology of groups

2. Godement, Topologie algébrique et théorie de faisceux

3. Hochschild, Serre, Cohomology of group extensions, Trans AMS 1953

4. Rotman, Intro to homological algebra

5. Weibel, An intro to homological algebra

8.1 Filtrations

A decreasing filtration on an abelian group (or module) M is a collection of
subgroups (submodules) F pM ⊆ M , indexed by p ∈ N, such that F p+1M ⊆
F pM . Let us say that a filtration is an n-step filtration if Fn+1M = 0, and finite
this holds for some n. There are a couple of variants which arise in practice,
although not in these notes. The index p might take values in Z, or the filtration
might be increasing.

Example 8.2. Let R be a commutative ring, and I an ideal. The I-adic fil-
tration on a module M is F pM = IpM . This is finite, if for example, I is
nilpotent.

We define associated graded modules by

GrpFM = F pM/F p+1M

GrF (M) =
⊕
p

GrpFM
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A 1-step filtration is equivalent to the short exact sequence

0 // F 1M // M // M/F 1 //

=

0

Gr1M

=

Gr0M

So a filtration is a sort of generalization of this. We make another remark:
to know Gr(M) is not the same as knowing M , because there is an extension
problem to worry about. However, Gr(M) does give a lot of information.

We define a morphism of filtered modules f : (M,F )→ (N,F ) to be homo-
morphism f : M → N such that f(F pM) ⊆ F pN for all p. It is easy to see that
the category of filtered modules is an additive category. For instance the direct
sum is the usual one with

F p(M ⊕N) = F pM ⊕ F pN

Moreover it has kernels. The kernel of f : (M,F ) → (N,F ) in this category is
the usual kernel with filtration

F p ker f = F pN ∩ ker f

It also has cokernels:

F p coker f = imF pM → coker f

However, it is not abelian:

Example 8.3. Le M = Z with two filtrations 1-step filtrations F 0M = M,F 1M =
0 and G0M = M,G1M = M . Let f : (M,F ) → (M,G) be the identity. Even
though both kerf and coker f are zero, f is not an isomorphism of filtered abelian
groups. Such an example cannot occur in an abelian category.

While this may appear to be a mere technicality, the nonabelianness is the
source of a lot of the complications in homological algebra.

8.4 Filtered complexes and double complexes

A complex in the category of filtered modules is called a filtered complex. To
simplify the discussion, we focus exclusively on the case of cochain complexes.
The case of chain complexes is similar. Then be more explicit, a filtered com-
plex consists of a complex (C•, d) such that each Cn carries a filtration F pCn

satisfying d(F pCn) ⊂ F pCn+1.

Example 8.5. Given any complex C•, define

F pCj =

{
Cj if j ≥ p
0 otherwise

This defines a filtration called the stupid filtration (or bête filtration if you want
to sound sophisticated). (C•, F ) is a filtered complex.
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Before giving some more examples, we note that double cochain complex is
as defined as earlier with a few modifications. We need a collection of modules
Cij , i, j ∈ Z and homomorphisms going “up” i.e. dh : Ci,j → Ci+1,j and
dv : Ci,j → Ci,j+1. These satisfy the same relations as before

d2
h = d2

v = dhdv + dvdh = 0

These imply that

Tot(C)n =
⊕
i+j=n

Cij

becomes a complex under d = dh + dv.

Example 8.6. Tot(C) becomes a filtrated complex with respect to either the
horizontal or vertical filtrations

F phTot(C)n =
⊕

i+j=n, i≥p

Cij

F pv Tot(C)n =
⊕

i+j=n, j≥p

Cij

Given a filtered complex (C•, F ), F pC• ⊂ C• is a subcomplex, and GrpFC
•

is a quotient of that. So it is a complex in its own right, and it is often simpler
than C•

Example 8.7. Given the stupid filtration GrpFC
• = Cp[−p], where the notation

indicates Cp shifted p-places to the right, or in other words the complex

. . . 0→ Cp︸︷︷︸
degree p

→ 0 . . .

Example 8.8. If (T, F ) = (Tot(C), Fh) as in example 8.6, then

GrpFT = Cp,•[−p]

A similar statement holds for Fv.

A morphism of filtered complexes is a morphism of complexes preserving the
given filtrations. This induces a morphism of the associated graded complexes.
Recall that we call a complex C• positive if Cn = 0 for n < 0.

Theorem 8.9. Suppose that C• and D• are positive complexes with filtrations
F , which are finite on each Ci and Di. Suppose also that f : (C•, F )→ (D•, F )
is a morphism induces and isomorphism Hi(GrpFC

•)→ Hi(GrpFD
•) for all i, p.

Then f induces an isomorphism

Hi(C•)→ Hi(D•)

for all i.

60



Proof. We give a proof under the stronger assumption that Fn+1Ci = 0 for n
independently of i. Then we prove the theorem by induction on n. For n = 0,
there is nothing to prove. Suppose that the theorem holds for n − 1. Then
consider the diagram

0 // Fn−1C• //

f ′

��

C• //

f

��

GrnFC
• //

f ′′

��

0

0 // Fn−1D• // D• // GrnFD
• // 0

where f ′, f ′′ are induced by f . We get an induced diagram

. . . // Hi(Fn−1C•) //

f ′

��

Hi(C•) //

f

��

Hi(GrnFC
•) //

f ′′

��

. . .

. . . // Hi(Fn−1D•) // Hi(D•) // Hi(GrnFD
•) // . . .

The arrows labelled by f ′ and f ′′ are isomorphisms by induction or the assump-
tions of the theorem. Therefore the arrow labelled by f is an isomorphism by
the five lemma.

As a corollary, we obtained a cohomological version of theorem 6.5. The
original theorem can be proved in a similar fashion.

Corollary 8.10. Suppose that C•• is a first quadrant double complex, and that
Hi(C•,j) = 0 for i > 0 and all j. Then Hi(Tot(C)•) is isomorphic to the ith
cohomology of

. . . H0(C•,i−1)→ H0(C•,i)→ H0(C•,i+1) . . .

Proof. Let
Ki = H0(C•,i) = kerC0,i → C1,i

This defines a subcomplex of Tot(C). The inclusion defines a morphism of
filtered complexes (K,F ) → (Tot(C)•, Fv), where F is the stupid filtration.
The above assumptions imply that H∗(GrpFK

•) → H∗(GrFv
Tot(C)•) is an

isomorphism. So the corollary follows from the theorem.

8.11 Spectral sequences

Now let us assume that (C•, F ) is a positive filtered complex, and that FCi is
finite for each i. The question we want to consider is: Suppose that we know
H∗(GrpFC

•) for all p, can we determine H∗(C•)? The answer is no in general.
However, we can determine the associated graded GrpFH

i(C•) with respect to
the filtration

im[H∗(F pC•)→ H∗(C•)]
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and this is good enough for many applications. The method for doing this in-
volves a so called spectral sequence. One can think of this as mathematical ma-
chine which starts with E1 = Hi(GrpFC

•) at stage r = 1, and computes groups
E2, E3 . . . at successive stages and arrive at the answer E∞ = GrpFH

i(C•) at
stage r � 0. For the bookkeeping, we need to keep track of three indices, the
filtration index p, the cohomological degree i, and the stage or page number r.
It is traditional to use the complementary degree q = i−p instead of i (although
not everyone does this). With this in mind, we can write down formulas. Define
the cycle group

Zpqr = {x ∈ F pCp+q | dx ∈ F p+r}

When r = 1, x 7→ [x] gives a surjection

Zpq1 = {x ∈ F pCp+q | dx ∈ F p+1} → Hp+q(GrpC•) (8.1)

When r � 0, x 7→ [x] gives a surjection

Zpqr = {x ∈ F pCp+q | dx = 0} → GrpFH
p+q(C•) (8.2)

We need to divide Zpqr by subgroups of boundaries. Set

Bpqr = dZp−r+1,q+r−2
r−1 + Zp+1,q−1

r−1

One can check that this is a subgroup of Zpqr , so we may take the quotient

Epqr =
Zpqr
Bpqr

(8.3)

These formulas are not used in practice. What is important is the structure:

Theorem 8.12.

(a)
Epq1 = Hp+q(GrpFC

•)

(b) There is an inclusion dZpqr ⊂ Zp+r,q−r+1
r preserving B∗∗r . Therefore d

induces a map
dr : Epqr → Ep+r,q−r+1

r

satisfying d2
r = 0. There is an isomorphism

Epar+1
∼=

ker dr : Epqr → Ep+r,q−r+1
r

im dr : Ep−r,q+r−1
r → Epqr

(c) The sequence of groups Epq1 , Epq2 , . . . become isomorphic at some point.
The common value is denoted by Epq∞ . One has

Epq∞
∼= GrpFH

p+q(C•)
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A collection (Epqr , dr) satisfying (b) is called a spectral sequence. If (c) holds
for some filtration on C•, we say that the spectral sequence abuts or converges
to H∗(C•). In symbols

Epq1 ⇒ Hp+q(C•)

We now make a few remarks about the proof. It is clear from the above defi-
nition (8.3) that Epqr stabilizes as r → ∞. It is also relatively straight forward
to check that the kernel of (8.1) (resp. (8.2)) is Bpq1 (resp. Bpq∞). The proof of
(b) can be found on pp 77-78 of Godement, which is the source that we what
followed (but be aware the notation there is slightly different). Rotman and
Weibel also discuss spectral sequences.

Once part (b) of theorem is established, there is another way to see why
the groups Epqr stabilize. Let us suppose for simplicity that F •Cn is an n-step
filtration for each n. Then plotting Epqr in the pq-plane, we see that the nonzero
terms are concentrated in the first quadrant – consequently one calls this a first
quadrant spectral sequence.

Ep−r,q+r−1
r

dr

((
Epqr

dr

((
Ep+r,q−r+1
r

It is clear that for r large enough, the two groups on the end fall outside the
first quadrant, and are therefore zero. This means that

Epqr+1 =
kerEpqr → 0

0
= Epqr

We give two examples.

Example 8.13. If C• is a postive complex with the stupid filtration. Then

Epq1 = Hp+q(Cp[−p]) = Hq(Cp) =

{
Cp if q = 0

0 otherwise

Under the first isomorphism d1 is the same as d : Cp → Cp+1. Therefore the
E1 page consists of a copy of C• on the p-axis, and zeros elsewhere. It follows
that

Epq2 = Epq∞ =

{
Hp(C•) if q = 0

0 otherwise

Example 8.14. Given a double complex C••, let (T, F ) = (Tot(C), Fh). Then
the spectral sequence is

Epq1 = Hq(Cp•, dv)⇒ Hp+q(T •)
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One often just writes the E2 page

Epq2 = Hp(Hq(C••, dv), dh)

There is a similar spectral sequence with dv, dh reversed.

The first example is fairly trivial, but the second is important. Among other
things, it can be used to give a complete proof of theorem 8.9.

8.15 The Hochschild-Serre spectral sequence

So far our the discussion has been somewhat abstract. It is helpful to look at an
explicit example. Let G be a group with a normal subgroup K. Let H = G/K.
Given a G module M , we can regard it as a K-module. Suppose that m ∈MK ,
g ∈ G and k ∈ K. Then g−1kg ∈ K so g−1kgm = m. This implies kgm = gm,
so that gm ∈ MK . Therefore MK is a G-module. Since K acts trivially on it,
H0(K,M) = MK is an H-module. By dimension shifting, we get an natural
H-module structure on higher cohomology Hi(K,M) as well.

Theorem 8.16 (Lyndon-Hochschild-Serre). There is a spectral sequence

Epq2 = Hp(H,Hq(K,M))⇒ Hp+q(G,M)

Hochschild and Serre gave several constructions in their original paper.
These include giving explicit filtrations on the normalized bar complex, and ap-
plying theorem 8.12. This can also be deduced from the more general Grothendieck
spectral sequence explained in the next chapter. Rather than going into the de-
tails now, we want to explain some applications.

Corollary 8.17. If the orders of K and H are finite and coprime, for n > 0
there is a split exact sequence

0→ Hn(H,MK)→ Hn(G,M)→ Hn(K,M)H → 0

Proof. We proved earlier that when Γ is finite and i > 0, for any M , Hi(Γ,M) is
|Γ|-torsion. In particular, when q > 0, Hq(K,M) are |K|-torsion, or equivalently
a Z/|K|-module. Since |H| is invertible in Z/|K|, it follows that multiplication
by |H| is an automorphism on Hq(K,M). On the other hand if p > 0, then
Hp(H,Hq(K,M)) is |H|-torsion. Therefore we conclude that Epq2 is concen-
trated on the p and q axes. This must also hold for Epq∞ = GrpHp+q(G,M).
This tells us that the filtration on Hn(G,M) is a 1-step filtration, and so it
gives rise to an exact sequence

0→ En0
∞ → Hn(G,M)→ E0n

∞ → 0

Since d2 : E10
2 → E02

s goes between an |H|-torsion and a |K|-torsion group,
it must be zero. For similar reasons, we can conclude that all the differentials
are zero. It follows that Epq2 = Epq∞ . This proves that there is an exact sequence
as claimed in the corollary. Let V ⊆ Hn(G,M) be the maximal |H|-torsion sub-
module. Then V ∩Hn(H,MK) = 0, so V maps isomorphically to Hn(K,M)H .
Therefore the sequence splits.
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The cohomological dimension of G

cd(G) = sup{i | ∃M,Hi(G,M) 6= 0}

measures the size of G from the point of view of group cohomology. For a
topologiclal interpretation, see Brown, chapter VIII. The following should be
clear from the definition and earlier results

Proposition 8.18. We have cd(G) = pd(Z), where the second quantity is the
projective dimension of Z as a G-module.

Corollary 8.19. cd(Zn) = n.

Proof. The Koszul complex has length n, so pd(Z) ≤ n. We must have equality,
since Hn(Zn,Z) 6= 0, again using the Koszul complex.

Theorem 8.20. Given an extension

1→ K → G→ H → 1

we have cd(G) ≤ cd(H) + cd(K).

Proof. If i = p + q > cd(H) + cd(K), then p > cd(H) or q > cd(K). In either
case

Epq2 = Hp(H,Hq(K,M)) = 0

This implies
Epq3 = 0⇒ . . .⇒ Epq∞ = GrpHi(G,M) = 0

Since this holds for all p, Hi(G,M) = 0.

A group is called polycyclic if there exists a composition series

1 = G0 C G1 C G2 . . . C Gn = G

such that each quotient Gi/Gi−1 is cyclic. The condition is the same as solvable
when G is finite, but it is much stronger in general. When G is also torsion free,
we have that each Gi/Gi−1

∼= Z.

Corollary 8.21. If G is torsion free polycyclic, then cd(G) ≤ n, where n is the
length of the composition series written above.

Proof. This follows by the theorem, induction, and the fact that cd(Z) = 1.
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Chapter 9

Epilogue: Derived
categories

Refs.

1. Gelfand, Manin, Methods of homological algebra

2. Iverson, Cohomology of sheaves

3. Weibel, An introduction to homological algebra.

9.1 Derived categories

Let A be an abelian category. Let C(A) denote the category complexes in A
viewed as cochain complexes. Given morphisms f, g : C• → D•, recall that they
are homotopic if there is a collection of morphisms h : Ci → Di−1 such that
dh+hd = f − g. This defines an equivalence relation. Let K(A) denote the the
homotopy category, where objects are complexes, and morphisms are homotopy
classes of morphisms in C(A). The category C(A) is abelian, but K(A) is not.
The second category does not have kernels or cokernels in general. There is,
however, a substitute for exact sequences called distinguished triangles. These
are diagrams of the form

C•
f→ D• → Cone(f)→ C•[1]

The collection of these makes K+(A) into a so called triangulated category.
We won’t go into all that here, but instead refer to the books listed above
for details. A morphism f : C• → D• is called a quasi-isomorphism if the
induced map Hi(C•) → Hi(D•) is an isomorphism for each i. Examples of
quasi-isomorphisms obviously include isomorphisms C(A), and more generally
in K(A) (homotopy equivalences). A complex C• is called bounded below if Ci
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for i � 0. Let C+(A) ⊂ C(A) and K+(A) ⊂ K(A) denote the full subcate-
gories of bounded below complexes. We can generalize the existence of injective
resolutions in the following way.

Theorem 9.2. Assume that A has enough injectives. Then every bounded below
complex is quasi-isomorphic to a bounded below complex of injective objects.

Proof. Since we can always shift a bounded below to a positive complex, there
is no loss in proving the statement for positive complexes.Let C0 → C1 → . . .
be such a complex. Let

Bn(C•) = imCn−1 → Cn

Zn(C•) = kerCn → Cn+1

Of course,
Hn(C•) = Zn(C•)/Bn(C•)

By induction, we will construct a complex of injectives I0 → I1 . . . In with a
morphism f from C0 → C1 . . . Cn to the previous complex, such that f induces

Hi(C•) ∼= Hi(I•), i < n

0→ Cn/Bn(C•)
f̄→ In/Bn(I•)

For the initial step, we just choose an injective object I0 with an embedding

0→ C0 → I0

For the induction step, form the pushout

Cn/Bn(C•)
g //

f̄

��

Zn+1(C•)

��
In/Bn(I•)

h // P

Note that P = coker(g,−f̄), so it certainly exists in A. Choose an injective
object with an embedding

0→ P → In+1

Let
h′ : In/Bn(I•)→ In+1

denote the composition of h with above embedding. Then

Hn(I•) ∼= kerh′ ∼= kerh

A diagram chase (which is permitted by Freyd-Mitchell) show that

kerh ∼= ker g ∼= Hn(C•)
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Since In+1 is injective, we can choose a morphism Cn+1 → In+1 extending
Zn+1(C•)→ In+1. A further diagram chase shows that

0→ Cn+1/Bn+1(C•)→ In+1/Bn+1(I•)

is exact

The complex I• constructed in the proof will be called an injective resolution
of C•. When C• consists of a single object placed in degree 0, this is an injective
resolution in the previous sense.

Theorem 9.3. If I• is a bounded below complex of injectives, and C• → D• is
a quasi-isomorphism in C+(A), then

HomK+(A)(C
•, I•) ∼= HomK+(A)(D

•, I•)

Proof. See theorem I 6.1 of Iversen.

Corollary 9.4. Any two injective resolutions are homotopy equivalent.

Let A have enough injectives. Then we define the derived category D+(A) be
the full subcategory of K+(A) consisting of injective complexes. For each C• ∈
C+(A), let Q(C•) denote a fixed injective resolution. The previous theorem
implies that for each morphism f : C• → D•, there is a unique dotted arrow
making the diagram

C• //

f

��

Q(C•)

Q(f)

��
D• // Q(D•)

commute. This shows that Q defines a functor from K+(A) → D+(A). One
can show that Q takes quasi-isomorphisms to isomorphisms. In fact, this char-
acterizes the derived category

9.5 Composition of derived functors

Let A and B be abelian categories with enough injectives. If F : A → B
is a left exact functor, we can apply F term by term to get a functor F :
K+(A) → K+(B). We define a new functor, called the right derived functor
by RF : D+(A) → D+(B) by RF (C•) = Q(F (Q(C•))). In other words, apply
F term by term to an injective resolution of C•, and then take an injective
resolution of the result. This fits into a commutative diagram

K+(A)
Q //

F

��

D+(A)

RF
��

K+(B)
Q // D+(B)

This is related to the previous notion of derived functor as follows.
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Proposition 9.6. If M is an object, Hi(RF (M)) = RiF (M).

Proof. Hi(RF (M)) = Hi(Q(F (Q(M)))) = Hi(F (Q(M))) = RiF (M).

Let G : B → C be another left exact functor to an abelian category with
enough injectives. Then we can compose them to get a third left exact functor
G◦F : A→ C. We can ask about the relationship between the derived functors.
We give two answers. The cleanest uses derived categories. There is also an
older formulation using spectral sequences. Let us say that an object M of B
is G-acyclic if RiG(M) = 0 for all i > 0. For example, injective objects are
G-acyclic.

Theorem 9.7. Suppose that F takes injective objects to G-acyclic objects. Then

(a) (Verdier) R(G ◦ F ) ∼= RG ◦ RF

(b) (Grothendieck) There exists a first quadrant spectral sequence

Epq2 = RpFRqG(M)⇒ Rp+q(F ◦G)M

Proof. See chapter III section 7 of Gelfand-Manin.

Example 9.8. Let K ⊂ G be a normal subgroup of a group with quotient
H = G/K. We can factor

(−)G : G-mod→ Ab

as

G-mod
(−)K→ H-mod

(−)H→ Ab

The first functor takes injective G-modules to injective H-modules. Therefore
we have Grothendieck spectral sequence, which reduces to the Hochschild-Serre
spectral sequence.
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