
2. D-MODULES AND RIEMANN-HILBERT

DONU ARAPURA

The classical Riemann-Hilbert, or Hilbert’s 21st, problem asks whether every
representation of the punctured complex plane comes from a system of differential
equations with regular singular points. We describe a huge generalization of this,
which plays a key role in the later story.

1. D-modules

1.1. Weyl Algebra. Fix a positive integer n. The nth Weyl algebra Dn over C is
the ring of differential operators with complex polynomial coefficients in n variables.
More formally, Dn can be defined as the noncommutative C-algebra generated by
symbols x1, . . . xn, ∂1 = ∂

∂x1
, . . . ∂n = ∂

∂xn
subject to relations

xixj = xjxi

∂i∂j = ∂j∂i

∂ixj = xj∂i, if i 6= j

∂ixi = xi∂i + 1

The last two relations stem from the Leibnitz rule ∂i(xjf) = ∂i(xj)f+xj∂if . These
relations can be expressed more succinctly, using commutators as

[xi, xj ] = [∂i, ∂j ] = 0

[∂i, xj ] = δij

There is a sense in which Dn is almost commutative that I want to explain. From
the defining relations, it follows that any P ∈ Dn can be expanded uniquely as

P =
∑

αI,Jx
I∂J

where I, J ∈ Nn, xI = xI11 . . . xInn etc. The maximum value of J1 + . . . Jn occurring
in this sum is the order of P . We write FkDn for the space of operators of order
at most k. It is easy to see that FkFm ⊆ Fk+m. Thus the associated graded

Gr(Dn) =
⊕
k

Fk/Fk−1

inherits a graded algebra structure.

Lemma 1.2. Given P,Q ∈ Dn, we have order([P,Q]) < order(P ) + order(Q)

Sketch. It’s enough to check this when P,Q are monomials, i.e. expressions of the
form xI∂J . In this case, it is a straight forward consequence of induction and the
defining relations. �

Corollary 1.3. Gr(Dn) is commutative.
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Slightly more work yields:

Theorem 1.4. Gr(Dn) is isomorphic to the polynomial ring C[x1, . . . xn, ξ1, . . . ξn] =
R2n

I want to sketch a slightly nonstandard proof of this. First “quantize” Dn to
obtain a ring Hn which has an additional variable q subject to the relations that q
commutes with xi and ∂j and

[∂i, xj ] = qδij

The remaining relations are the same as for Dn: the x’s and ∂’s commute among
themselves. I will call Hn the Heisenberg algebra, since it nothing but the universal
enveloping algebra of the Heisenberg Lie algebra. We see from the relations that
Dn = Hn/(q−1) and the “classical limit” Hn/(q) is the polynomial ring R2n, where
(q − λ) is the two sided ideal generated by this element.

Now form the Rees algebra

Rees =
⊕

tkFk ⊂ C[t]⊗Dn

with t a central element. The theorem will follow from the next result which is
straightforward.

Lemma 1.5.
(1) Gr(Dn) ∼= Rees/(t)
(2) The map Rees → Hn sending xi 7→ xi, t∂j 7→ ∂j and t 7→ q is an isomor-

phism.

In more geometric terms, we have an identification between Gr(Dn) and the ring
of polynomial functions on the cotangent bundle T ∗Cn.

1.6. Dn-modules. The notion of a Dn-module gives an abstract way to think
about systems of linear partial differential equations in n-variables. Since the ring
Dn is noncommutative, we have to be careful about distinguishing between left-
modules and right Dn-modules. I will often be lazy, and refer to a left Dn-module
simply as a Dn-module. Here are some examples.

Example 1.7. Dn is automatically both a left and right Dn-module.

Example 1.8. Let Rn = C[x1, . . . xn] be the polynomial ring. This is a left Dn-
module where xi acts by multiplication, and ∂i by ∂

∂xi
.

Example 1.9. Given operators P1 . . . PN ∈ Dn, the left (resp. right) ideal
∑
DnPi

(resp.
∑
PiDn) are left (resp. right) Dn-modules. Likewise for the quotients

Dn/
∑
DnPi (resp. Dn/

∑
PiDn). Note that Dn/

∑
Dn∂i = Rn = C[x1, . . . , xn].

Example 1.10. Given a nonzero polynomial, Rn[f−1] = C[x1, . . . xn, f
−1] is a

Dn-module, where the derivatives act by differentiation of rational functions.

Example 1.11. Let F be any space of complex valued functions on Cn which is
an algebra over the polynomial ring and and closed under differentiation, then it
becomes a left Dn-module as above. In particular, this applies to holomorphic, C∞

and C∞ functions with compact support.

Example 1.12. The space of distributions is the topological dual of the space of
C∞ functions with compact support or test functions. This has a right module
structure defined a follows. Given a distribution δ, a test function φ and P ∈ Dn,
let δP (φ) = δ(Pφ).
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The first four examples above are finitely generated. (The last example requires

some thought. In the special case f = x1, we see immediately that x−N1 can be
obtained by repeated differentiation.)

Fix a space of functions F as in example 1.11. Given a left Dn-module M , define
the space of solutions by

Sol(M) = HomDn(M,F )

To justify this terminology consider the example 1.9 above. We see immediately
that there is an exact sequence

0→ Sol(M)→ F
∑
Pi−→ FN

Therefore Sol(M) is the space of solutions of the system Pi(f) = 0.
There is a symmetry between right and left modules that I will refer to as

“flipping”.

Lemma 1.13. There is an involution P 7→ P ∗ of Dn determined by x∗i = xi and
∂∗i = −∂i. Given a right Dn-module M , the operation P ·m = mP ∗ makes M into
a left module, which I denote by FlipR→L(M). This gives an equivalence between
the categories of (finitely generated) left and right modules. The inverse operation
will denote by FlipL→R.

Suppose that M is a finitely generated Dn-module. We define good filtration on
M to be a filtration FpM such that

(1) The filtration FpM = 0 for p� 0 and ∪FpM = M .
(2) Each FpM is a finitely generated Rn-submodule.
(3) FpDn · FqM ⊆ Fp+qM .

Lemma 1.14. Every finitely generated module possess a good filtration.

Proof. Write it as a quotient of some free module DN
n and take the image of

(FpDn)N �

The filtration is not unique, however it does lead to some well defined invariants.
Given a module with good filtration, the associate graded

Gr(M) =
⊕

FpM/Fp−1M

is a finitely generated Gr(Dn)-module. The annihilator of Gr(M) gives an ideal
in Gr(Dn) ∼= R2n. The zero set of this ideal defines a subvariety Ch(M,F ) ⊂
C2n called the characteristic variety or singular support. Since Gr(M) is graded
with respect to the natural grading on Gr(Dn), we see that, the annihilator is
homogeneous. Therefore

Lemma 1.15. Ch(M,F ) is invariant under the action of t ∈ C∗ by (xi, ξj) 7→
(xi, tξj).

We can view this another way. Consider the Rees module Rees(M,F ) = ⊕FpM .
This is a finitely generated module overHn such thatGr(M) = Hn/(q)⊗Rees(M,F ).
So in some sense Ch(M,F ) is the classical limit of M as q → 0.

Theorem 1.16. Ch(M,F ) is independent of the filtration. Thus we can, and will,
drop F from the notation.

Example 1.17. In the previous examples, we see that
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(1) The annihilator of Gr(Dn) is 0, so that Ch(Dn) = C2n.
(2) Taking Rn = Dn/

∑
Dn∂i, yields Gr(Rn) = C[x1, . . . xn]. Its annihilator

is the ideal (ξ1, . . . ξn). Therefore Ch(Rn) = Cn × 0
(3) Let M = R1[x−1], where we x = x1. Then 1, x−1 generate M . Let

FkM = Fk · 1 + Fk · x−1 = C[x]x−k−1

This gives a good filtration. A simple computation shows that

Gr(M) ∼= C[x, ξ]/(ξ)⊕ C[x, ξ]/(x)

So Ch(M) = V (xξ) is a union of the axes.

Theorem 1.18 (Bernstein’s inequality). For any nonzero finitely generated Dn-
module, we have dimCh(M) ≥ n.

There are a number of ways to prove this. Perhaps the most conceptual, though
not the easiest, way is to deduce it from the involutivity of the annihilator [Ga].
This means that this ideal is closed under the Poisson bracket induced from the
symplectic structure of C2n = T ∗Cn. This implies that the tangent space of any
smooth point p ∈ Ch(M) satisfies T⊥p ⊆ Tp, and the inequality follows. Note that
the C∗-action of lemma 1.15 is precisely the natural action on the fibers of the
cotangent bundle.

We say that finitely generated Dn-module M is holonomic if dimCh(M) = n or
if M = 0. Thanks to Bernstein’s inequality, this is equivalent to dimCh(M) ≤ n.
For example Rn and R1[x−1] are holonomic, but Dn isn’t.

Proposition 1.19. The class of holonomic modules is closed under submodules,
quotients and extensions. Therefore the full subcategory of holonomic modules is
Abelian.

Proof. One checks that Ch(M2) = Ch(M1) ∪ Ch(M3) for any exact sequence 0→
M1 →M2 →M3 → 0. �

From the symplectic viewpoint, holonomic modules are precisely the ones with
Lagrangian characteristic varieties. There is also a homological characterization of
such modules.

Theorem 1.20. A finitely generated Dn-module is holonomic if and only if Exti(M,Dn) =
0 for i 6= n. If M is holonomic, then the module Extn(M,Dn) is a finitely generated
holonomic right Dn-module. The contravariant functor M 7→ FlipR→LExtn(M,Dn)
is an involution on the category of holonomic modules.

Corollary 1.21. Holonomic modules are artinian (which means the descending
chain condition holds).

Sketch. Any descending chain in M gets flipped around to an ascending chain in
N = Extn(M,Dn). Dn is known to be right (and left) noetherian, so the same
goes for N . �

It will follow that holonomic modules can built up from simple holonomic mod-
ules.
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1.22. Inverse and direct image. Suppose that X = Cn with coordinates xi and
Y = Cm with coordinates yj . Consider a map F : X → Y given by

F (x1, . . . xn) = (F1(x1, . . . xn), . . .)

where the Fi are polynomials. Let OX = C[x1, . . . xn], and OY = C[y1, . . . yn], and
let DX and DY denote the corresponding Weyl algebras. (To avoid confusion, I
will label the derivatives ∂xi

etc.) Then F determines an algebra homomorphism

OY → OX

f 7→ f ◦ F
Given a left DY -module M , we define a left DX module F ∗M , called the inverse
image, as follows. First define

F ∗M = OX ⊗OY
M

as an OX -module. We now define an action of the derivatives by the chain rule

∂xi(f ⊗m) =
∂f

∂xi
⊗m+

∑
j

f
∂Fj
∂xi
⊗ ∂yjm

Lemma 1.23. This formula determines a DX-module structure on F ∗M

Example 1.24. Let X = Cn with coordinates x1, . . . xn, Y = Cn−1 with coordi-
nates x1, . . . xn−1. Let p(x1, . . . xn) = (x1, . . . xn−1). Then

p∗M = C[xn]⊗C M

Given f(xn) ⊗ m, xn and ∂n acts in the usual way through the first factor, and
remaining generators of DX act through the second.

There is a second description that is useful. Define

DX→Y = F ∗DY = OX ⊗OY
DY

This has the structure of a left DX -module as above, as well as a right DY -module
structure, where DY acts by right multiplication on itself in the above formula.
These two actions commute, so they determine a so called bimodule structure. If
we flip both of these actions, we get left DY right DX bimodule

DY←X = FlipL→RDX
FlipR→LDY

(DX→Y ).

Lemma 1.25. f F ∗M = DX→Y ⊗DY
M

Proof.

F ∗M = OX ⊗OYM = (OX ⊗OY
DY )⊗DY

M = DX→Y ⊗DY
M

�

Given a left DX -module N , the direct image

F∗N = DY←X ⊗DX
N

is a left DY -module. This operation is sometimes denoted with an integral sign to
suggest the analogy with integration along the fibers.
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Example 1.26. Let X = Cn with coordinates x1 . . . xn, Y = Cn+1 with coordi-
nates x1, . . . xn+1 and suppose i(x1, . . .) = (x1, . . . xn, 0). We have i∗M = MN, a
countable direct sum. Here x1, ∂1, x2, . . . ∂n acts as componentwise using the given
DX-module structure, xn+1 acts by 0, ∂n+1 acts as the shift operator

(m1,m2, . . .) 7→ (0,m1,m2, . . .)

Thus it is more suggestive to write

i∗M =
⊕
j

∂jn+1M

These operations are compatible with composition, as one would hope.

Theorem 1.27. If F : X → Y and G : Y → Z are polynomial maps of affine
spaces, then for any DZ-module M and DX-module M , we have

(1) (G ◦ F )∗M ∼= F ∗G∗M
(2) (G ◦ F )∗N ∼= G∗F∗N .

Theorem 1.28. These operations preserve finite generation and holonomicity.

Since any map can be factored as an embedding followed by a projection, it
suffices by the theorem 1.27 to check these two cases. This theorem provides many
additional examples of holonomic modules.

1.29. Differential operators on affine varieties. Let X be a nonsingular affine
variety over C. This is a complex manifold which can be described as the set of
solutions to a system of polynomial equations in some Cn. We write O(X) for ring
regular (= polynomial) functions on X. This is a finitely generated commutative
algebra. A differential operator of order ≤ k on X is a C-linear endomorphism T
of O(X) such that

[. . . [[T, f0], f1] . . . fk] = 0

for all fi ∈ O(X). Let Diffk(X) denote the space of these operators. We define

DX =
⋃

Diffk(X)

Lemma 1.30. DX becomes a ring under composition such that DiffkDiffm ⊂
Diffk+m.

We note the following characterization (c.f. [K2, lemma 1.7]) which sometimes
useful.

Proposition 1.31. DX is a quotient of the univeral enveloping algebra of the
Lie algebra of vector fields DerC(O(X)) by the relations [ξ, f ] = ξ(f) for all ξ ∈
DerC(O(X)) and f ∈ O(X).

When X = Cn, (DX ,Diff•) = (Dn, F•). Everything that we have done so far
generalizes to the setting of affine varieties. For example

Theorem 1.32. The associated graded with respect to Diff• is isomorphic to the
ring of regular functions on the cotangent bundle T ∗X.

We can define left/right D-modules as before. All of the previous examples
generalize. We give a new example.
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Example 1.33. Let f ∈ Rn, and let X be complement of the zero set of f in Cn.
This is an affine variety with coordinate ring R = Rn[ 1f ]. Let A =

∑
Aidxi be an

r × r matrix of 1-forms with coefficients in R satisfying the integrability condition
[Ai, Aj ] = 0. Then M = Rr carries a left DX-module structure with

∂iv =
∂v

∂xi
+Aiv; v ∈M

Note that this construction is equivalent to defining an integrable connection on
M . There are nontrivial examples only when X is non-simply connected, and in
particular none unless f 6= 1.

The “flipping” operation for affine varieties is more subtle than before. Let ωX
denote the canonical module or equivalently the module of algebraic n-forms, where
n = dimX. This has right DX module structure dual to left module structure on
O(X). Heuristically, this can be undertood by the equation∫

X

(αP )f =

∫
X

α(Pf)

where α is an n-form, P a differential operator, and f a function and X is replaced
by a compact manifold. A rigorous definition can be given via the Lie derivative
L. Given a vector field ξ and an element of α ∈ ωX ,

Lξω(ξ1, . . . ξn) = ξ(ω(ξ1, . . . ξn)) +
∑

ω(ξ1, . . . [ξ, ξi], . . . ξn)

Then ω · ξ = −Lξα can be shown to extend to a right action of the whole ring DX

with the help of proposition 1.31. Under this action, the difference (αP )f −α(Pf)
can be shown to be exact, and so above integral formula would follow.

Lemma 1.34. If M is a left DX-module, then FlipL→R(M) = ωX⊗O(X)M carries
a natural right DX-module structure. This operation induces an equivalence between
the categories of left and right DX-modules; its inverse is FlipR→L(N) = ω−1X ⊗N .

Note that ωCn ∼= Rn, which was why we could ignore it.
The notions of characteristic variety and holonomocity can be defined as before.

The characteristic variety of example 1.33 is X embedded in T ∗X as the zero
section. Therefore it is holonomic.

Given a morphism of affine varieties F : X → Y , we can define bimodules DX→Y ,
DY←X , and inverse and direct images as before.

1.35. Non-affine varieties. Now we want to generalize to the case where X is a
nonsingular non-affine variety, for example projective space Pn. First, recall that in
its modern formulation a variety consists of a space X with a Zariski topology and
a sheaf of commutative rings OX , such that for any open set OX(U) is the space
of regular functions [Ha]. By definition, X possesses an open covering by affine
varieties. Our first task is to extend DX to this world:

Lemma 1.36. There exists a unique sheaf of noncommutative rings DX on X such
that for any affine open U , DX(U) is the ring of differential operators on U .

We can define a filtration by subsheaves FpDX ⊂ DX as above. The previous
result globalizes easily to:

Theorem 1.37. The associated graded is isomorphic to π∗OT∗X where π : T ∗X →
X is the cotangent bundle.
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A left or right DX -module is sheaf of left or right modules over DX . For example,
OX (resp. ωX) has a natural left (resp. right) DX -module structure. DX has both.
We have an analogue of lemma 1.34 in this setting, so we can always switch from
right to left.

We will be primarily interested in the modules which are coherent (i.e. locally
finitely generated) over DX . The notion of good filtration for a DX -module M
can be extended to this setting. The associated graded Gr(M) defines a sheaf over
the cotangent bundle, and the characteristic variety Ch(M) is its support. This
depends only on M as before and is C∗-invariant. We have Bernstein’s inequality
dimCh(M) ≥ dimX, and M is holonomic if equality holds. We again have:

Proposition 1.38. The full subcategory of holomonic modules is an artinian Abelian
category.

Given a morphism of varieties F : X → Y , we define

DX→Y = OX ⊗F−1OY
F−1DY

where F−1 is the inverse image in the category of sheaves [Ha]. This is a left DX

right F−1DY bimodule. We define a right DX left F−1DY bimodule by flipping
both actions:

DY←X = FlipL→RDX
FlipR→LF−1DY

(DX→Y )

As an OX -module, it this is isomorphic to ωX ⊗DX→Y ⊗ F ∗ω−1Y .
Given a left DY -module M , we can define the naive1 inverse image as the DX -

module:

F ∗nM = DX→Y ⊗F−1DY
F−1M

For a left DX -module N , the naive direct image as the DY -module

Fn∗ N = F∗(DY←X ⊗DX
N)

where F∗ on the right is the sheaf theoretic direct image.
The above definitions proceed in complete analogy with the affine case. The

bad news is that the naive direct image is somewhat pathological. For example,
the composition rule (theorem 1.27) may fail. The solution is to work in the set-
ting of derived categories. Let Db(DX) denote the bounded derived category of
quasicoherent left DX -modules. We can define the inverse image

F ∗ : Db(DY )→ Db(DX)

by

F ∗M• = DX→Y ⊗L
F−1DY

F−1M•

and the direct image F∗ : Db(DX)→ Db(DY ) by

F∗N
• = RF∗(DY←X ⊗L

DX
N•)

This is sometimes denote by an integral symbol. These behave well under composi-
tion. At the end of the day, we can compose these operations with Hi to get actual
D-modules. There are cases where this can be made explicit. For F a closed im-
mersion, F∗ coincides with F+ described earlier. For F is a smooth and projective
or relative dimension n, we have

DY←X ∼= (DX → Ω1
X/Y ⊗OX

DX → Ω2
X/Y ⊗OX

DX . . .)[n]

1This is nonstandard terminology.



2. D-MODULES AND RIEMANN-HILBERT 9

The right side is the relative de Rham complex associated to DX . From this, we
obtain that

F∗N = RF∗(N → Ω1
X/Y ⊗OX

N → . . .)[n]

is the complex associated to the relative de Rham cohomology of N .

1.39. Connections. Let E be a vector bundle on a nonsingular variety X, i.e. a
locally free OX -module. A DX -module structure on E is the same thing as an
integrable connection on E, which is given locally as in example 1.33. Globally,
this is a C-linear map from the tangent sheaf

∇ : TX → End(E)

such that ∇(v) is a derivation and such that ∇ preserves Lie bracket

∇([e1, e2]) = [∇(e1),∇(e2)]

Equivalently, it is given by a C-linear map

∇ : E → Ω1
X ⊗ E

satisfying the Leibnitz rule and the having curvature ∇2 = 0.
From, the local description, it is easy to see that the characteristic variety of an

integrable connection is the zero section of T ∗X. Thus it is holonomic. Conversely,

Proposition 1.40. M is a vector bundle with integrable connection if and only if
its characteristic variety is the zero section of T ∗X

Corollary 1.41. If M is a holonomic module, there exists an open dense set U ⊆ X
such that M |U is an integrable connection.

Proof. We can assume that the support of M is X, otherwise the statement is
trivially true. Then the map Ch(M)→ X is generically finite, and therefore finite
over some open U ⊂ X. Since Ch(M) ∩ T ∗U is C∗ invariant, it must be the zero
section. �

Given a morphism F : X → Y and an integrable connection (E,∇) on Y .
The pullback of the associated DY -module coincides with the pullback F ∗E in
the category of O-modules with its induced connection. If (E′,∇′) is an integrable
connection on X, then the pushforward of the associated DX -module does not come
from a connection in general.

We finally discuss the notion of regular singularities which is a growth condition
at infinity. The classical condition is the following.

Example 1.42. Let A be an r × r matrix of rational 1-forms on P1. Let U be the
complement of the poles in P1 of the entries of A, and let j : U → P1 the inclusion.
Then we can define a DU -module structure on M = OrU by

∂v =
dv

dx
+Av

M is holomonic. The DX-module j∗M has regular singularities if and if the dif-
ferential equation ∂v = 0 has regular singularities in the classical sense; this is the
case if the poles of A are simple.
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In general, we have the following extension due to Deligne. A vector bundle
(E,∇) with a connection on a smooth variety X has regular singularities if there
exists a nonsingular compactification X̄, with D = X̄ − X a divisor with normal
crossings, such that (E,∇) extends to a vector bundle with a map

∇̄ : Ē → Ω1
X(logD)⊗ Ē

The notion of regular singularities can be extended to arbitrary holonomic DX -
modules. If M is a simple holonomic module with support Z, then M |Z is gener-
ically given by an integrable connection as above. Say that M has regular singu-
larities if this connection is regular. In general, M has regular singularities if each
of its simple subquotients have regular singularities. This notion behaves well with
respect to the operations defined earlier. See [B, Bo, K2] for details.

1.43. Riemann-Hilbert correspondence. In the 19th century Riemann com-
pletely analyzed the hypergeometric equation in terms of its monodromy. Hilbert,
in his 21st problem, proposed that a similar analysis should be carried out for more
general differential equations. Here I want to explain a very nice interpretation and
solution in D-module language due to Kashiwara-Kawai and Mebkhout.

Fix a smooth variety X over C. We can treat X as a complex manifold, and we
denote this by Xan. Most algebraic objects give rise to corresponding analytic ones,
usually marked by “an”. In particular, DXan -module is the sheaf of holomorphic
differential operators. Any DX -module gives rise to a DXan -module.

Let ΩpXan denote the sheaf of holomorphic p-forms on Xan. Recall that we have
a complex, Ω•Xan , called the de Rham complex, which is quasi-isomorphic to the
constant sheaf CXan . We can modify this to allow coefficients in any DXan-module
M :

DR(M)• = Ω•Xan ⊗OXan M [dimX]

(The symbol [n] mean shift the complex n places to the left). The differential is
given in local coordinates by

d(dxi1 ∧ . . . ∧ dxip ⊗m) =
∑
j

dxj ∧ dxi1 ∧ . . . dxip ⊗ ∂jm

We can define a complex

. . . DX ⊗OX
∧2TX → DX ⊗OX

TX → DX

with differentials dual to DR(DX)• under the identification

Homright-DX -modHom(ΩpX ⊗OX
DX , DX) ∼= DX ⊗OX

∧pTX
The complex DXan⊗OXan∧•TXan gives a locally free resolution of OXan . This comes
down to the fact that it becomes a Koszul complex after taking the associated
graded with respect to F . Therefore

DR(M)• ∼= Hom(DXan ⊗OXan ∧•TXan ,M) ∼= RHom(OXan ,M)

We can extend the definition of DR to the derived category Db(DX) by using the
last formula.

We can now give classical version of the Riemann-Hilbert correspondence.

Proposition 1.44. If E is a holomorphic vector bundle with an integrable connec-
tion ∇, DR(E)[−dimX] is a locally constant sheaf of finite dimensional C-vector
spaces. The functor E 7→ DR(E)[−dimX] induces an equivalence of categories
between these categories.
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Sketch.
DR(E)[−dimX] = E

∇→ Ω1
Xan ⊗ E ∇→ . . .

gives a resolution of ker∇, which is locally constant. Conversely, given a locally
constant sheaf L, OXan ⊗ L can be equipped with an integrable connection such L
is the kernel. �

By imposing regularity assumptions, Deligne [De] was able to make this corre-
spondence algebraic.

Theorem 1.45 (Deligne). There is an equivalence of categories between the cate-
gory of locally constant sheaves C-vector spaces on Xan and algebraic vector bundles
equipped with regular integrable connections.

The point is that regularity ensures that the holomorphic data extends to a
compactification, where GAGA applies. For general D-modules, we impose holo-
nomicity as well. DR(M) will no longer be a locally constant sheaf in general,
but rather a complex with constructible cohomology. So it is natural to formulate
the general result as an equivalence of derived categories. On one side, we have
Db
rh(DX) ⊂ Db(DX) the subcategory of the derived category of left modules with

regular holonomic cohomology. On the other side, we have the constructible derived
category.

Theorem 1.46 (Kashiwara, Mebkhout). The de Rham functor DR induces an
equivalence of categories between Db

rh(DX) and Db
c(X,C). Moreover the inverse

and direct images constructions are compatible under this correspondence.

There is one more aspect of this, which is worth noting. The duality M 7→
FlipR→LExtn(M,Dn) constructed earlier can be generalized naturally to this set-
ting to

M 7→ FlipR→LRHom(M,DX).

This corresponds to the Verdier dual. The Riemann-Hilbert correspondence is
sometimes phrased using the sheaf of “solutions”

Sol(M) = RHom(M,OXan)

This formulation is equivalent, because Sol corresponds to DR of the dual module.
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