
VANISHING CYCLES

DONU ARAPURA

Vanishing cycle sheaves and their corresponding D-modules form the basis for
Saito’s constructions described later.

1. Vanishing cycles

We will start with the classical picture. Suppose that f : X → C is a morphism
from a nonsingular variety. The fiber X0 = f−1(0) may be singular, but the nearby
fibers Xt, 0 < |t| < ε� 1 are not. The premiage of the ε-disk f−1∆ε retracts onto
X0, and f−1(∆ε − {0})→ ∆ε − {0} is a fiber bundle. Thus we have a monodromy
action by the (counterclockwise) generator T ∈ π1(C∗, t) on Hi(Xt). (From now
on, we will tend to treat algebraic varieties as an analytic spaces, and will no longer
be conscientious about making a distinction.) The image of the restriction map

Hi(X0) = Hi(f−1∆ε)→ Hi(Xt),

lies in the kernel of T − 1. The restriction is dual to the map in homology which is
induced by the (nonholomorphic) collapsing map of Xt onto X0; the cycles which
die in the process are the vanishing cycles.

Let us reformulate things in a more abstract way following [SGA7]. The nearby
cycle functor applied to F ∈ Db(X) is

RΨF = i∗Rp∗p∗F,
where C̃∗ is the universal cover of C∗ = C − {0}, and p : C̃∗ ×C X → X, i :
X0 = f−1(0) → X are the natural maps. The vanishing cycle functor RΦF is the
mapping cone of the adjunction morphism i∗F → RΨF , and hence it fits into a
distinguished triangle

i∗F → RΨF
can−→ RΦF → i∗F [1]

Both RΨF and RΦF are somewhat loosely refered to as sheaves of vanishing cycles.
These objects possess natural monodromy actions by T . If we give i∗F the trivial
T action, then the diagram with solid arrows commutes.

i∗F //

��

Rψ∗F
can //

T−1

��

Rφ∗F //

var

��

i∗F [1]

��
0 // Rψ∗F

= // Rψ∗F // 0

Thus we can deduce a morphism var, which completes this to a morphism of tri-
angles. In particular, T − 1 = var ◦ can. One can also show that can ◦ var = T − 1.

Given p ∈ X0, let Bε be an ε-ball in X centered at p. Then f−1(t)∩Bε is the so
called Milnor fiber. The stalks

Hi(RΨQ)p = Hi(f−1(t) ∩Bε,Q)
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Hi(RΦQ)p = H̃i(f−1(t) ∩Bε,Q)

give the (reduced) cohomology of the Milnor fiber. And

Hi(X0,RΨQ) = Hi(f−1(t),Q)

is, as the terminology suggests, the cohomology of the nearby fiber. We have a long
exact sequence

. . . Hi(X0,Q)→ Hi(Xt,Q)
can−→ Hi(X0,RΦQ)→ . . .

There is an étale version of this as well, where ∆ is replaced by the spectrum of
a Henselian DVR.

2. Vanishing cycles and perverse sheaves

The following is a key ingredient in the whole story [BBD]:

Theorem 2.1 (Gabber). If L is perverse, then so are RΨL[−1] and RΦL[−1].

We concentrate on the first statement which can be reduced to several separate
assertions.

Theorem 2.2. RΨ preserves constructibility.

Given a triangulated functor F : D1 → D2 between triangulated categories
equipped with t-structures, F is called left t-exact (respectively right t-exact, or

t-exact) if F preserves D≥0
i (respectively D≤0

i , or both). For example, if j (respec-
tively i) is the inclusion of a Zariski open (respectively closed) set, then j∗ is t-exact
(respectively right t-exact) for the perverse t-structure more or less by definition.

Theorem 2.3. Given an open immersion j, Rj∗ is left t-exact. It is t-exact if j is
also affine, e.g. the inclusion of the complement of a divisor.

Proof. The first statement is completely formal. If F ∈ pD≥0, we have to show
that G = pτ<0Rj∗F = 0 Since j∗G ∈ pD≤0 by the previous discussion, we have

Hom(G,G) = Hom(G,Rj∗F) = Hom(j∗G,F) = 0

This yields the vanishing of G.
The second statement is deeper and follows from Artin’s vanishing theorem for

affine schemes. See [BBD, 4.1.3]. �

It is convenient to set pψfL = pψL = RΨL[−1] and pφfL = pφL = RΦL[−1].

Theorem 2.4. pψ is right t-exact with respect to the perverse t-structure.

Proof. Let F ∈ pD≤0, we have to prove that pψF ∈ pD≤0, or equivalently that
RψF ∈ pD≤−1 . We give a proof, based on [R], under the special case that the
monodromy acts quasi-unipotently on F . This assumption will hold in all the
examples that we care about. After taking a ramified covering of ∆, we can assume
that the monodromy is in fact unipotent. Let us suppose that f : X → ∆ is given by
the restriction of an algebraic family X∗ → C over a curve. Let j : X∗ −X0 → X ′

denote the inclusion. Then there is a distinguished triangle

(1) i∗Rj∗j∗F → RψF T−1−→ RψF →
[R, (4)]. By the results discussed above, Rj∗ and j∗ are t-exact and i∗ right t-exact.
Therefore from (1) we obtain

pHi(RψF)
T−1−→ pHi(RψF)→ pHi(i∗Rj∗j∗F) = 0
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when i ≥ 0. Since T − 1 is surjective and nilpotent, by assumption, pHi(RψF)
must vanish. Thus RψF ∈ pD≤−1.

�

Proposition 2.5. For any F ∈ Db
c(X), pψ(DF) ∼= D pψF

Proof of theorem 2.1. If F is perverse, then so is DF . Therefore pψF and D pψF
both lie in pD≤0.

�

2.1. Perverse Sheaves on a polydisk. Let ∆ be a disk with the standard co-
ordinate function t, and inclusion j : ∆ − {0} = ∆∗ → ∆. For simplicity assume
1 ∈ ∆∗. Consider a perverse sheaf F on ∆ which is locally constant on ∆∗. Then
we can form the diagram

pψtF
can // pφtFvar
oo

Note that the objects in the diagram are perverse sheaves on {0} i.e. vector spaces.
This leads to the following elementary description of the category due to Deligne
and Verdier (c.f. [V, sect 4]).

Proposition 2.6. The category of perverse sheaves (with quasi-unipotent mon-
odromy) on the disk ∆ which are locally constant on ∆∗ is equivalent to the category
of quivers (diagrams of vector spaces) of the form

ψ
c //

φ
v
oo

where I+c◦v and I+v◦c are invertible (with eigenvalues which are roots of unity).

It is instructive to consider some basic examples. We see immediately that

0
//
Voo

corresponds to the sky scraper sheaf V0.
Let L be a local system L on ∆∗ with monodromy given by T : L1 → L1. Then

the perverse sheaf j∗L[1] corresponds to

L1

c // L1

ker(T−I)v
oo

where c is the projection, v is induced by T − I. Thus a quiver

ψ
c //

φ
v
oo

with c surjective arises from j∗L[1], where L1 = ψ with T = I + v ◦ c.
The above description can be extended to polydisks ∆n [GGM]. For simplicity,

we spell this out only for n = 2. Let ti denote the coordinates. Then we can attach
to any perverse sheaf F , four vector spaces V11 = pψt1

pψt2F , V12 = pψt1
pφt2F ...

along with maps induced by can and var.

Theorem 2.7. The category of perverse sheaves on the polydisk ∆2 which are
constructible for the stratification ∆2 ⊃ ∆× {0} ∪ {0} ×∆ ⊃ {(0, 0)} is equivalent
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to the category of quivers of the form

V11
//

��

V12
oo

��
V21

OO

//
V22

oo

OO

It will be useful to characterize the subset of intersection cohomology complexes
among all the perverse ones. In the one dimensional case these are just sky scraper
sheaves V0 in which case φ = ker(v), or sheaves of the form j∗L[1] for which
φ = image(c). In general, we have:

Lemma 2.8. A quiver corresponds to a direct sum of intersection cohomology
complexes if and only if

φ = image(c)⊕ ker(v)

holds for every subdiagram of the form

ψ
c //

φ
v
oo

3. Kashiwara-Malgrange filtration

By the Riemann-Hilbert correspondence, the previous picture for perverse sheaves
should be translatable into D-module language. Suppose that M is a regular holo-
nomic D-module on the disk ∆ which is a connection on ∆∗. We will try to build
the quiver associated to DR(M) directly from M . The nearby cycles ψ can be

identified with the solutions of the space of multivalued solutions Hom(M,O(∆̃∗)).

We claim that the vanishing cycles φ would be Hom(M,O(∆̃∗)/O(∆)), which gives
rise to c : ψ → φ. Since monodromy T acts trivially on O(∆), we get an induced
map v : φ → ψ, with T − I = v ◦ c. To get a better sense of these constructions,
and to check they are correct, let us calculate these when M is simple. There are
3 cases:

(1) M = O∆, we see obtain

ψ = C
0 //

φ = 0
0
oo

(2) Let a ∈ C∗, r = 1
2πi log a, and M = O∆[z−1] with ∂ · 1 = r

z . Then we have

ψ = C
1 //

φ = C
a−1
oo

(3) M = DR(O[z−1]/O) = C0. Then we have

ψ = 0
0 //

φ = C
0

oo

From now on assume in addition that DR(M) has quasi unipotent monodromy.
Then M is built from simple modules as above with r ∈ Q. The quiver associated
to DR(M) can be decomposed as a direct sum⊕

λ

ψλ � φλ
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where ψλ, φλ are the generalized eigenspaces of T . On the D-module side, we
consider the generalized eigenspaces

Mα =
⋃
k

ker(z∂ − α)k, α ∈ C

We will see in a moment that these zero unless α is rational. Then we define the
Kashiwara-Malgrange filtration by

V αM =
⊕
β≥α

Mβ , α, β ∈ Q

V >αM =
⊕
β>α

Mβ , α, β ∈ Q

so that
Mα = GrαVM := V αM/V >αM

Proposition 3.1. For a D-module satisfying the previous assumptions

(1) zMα ⊆Mα+1 and ∂Mα ⊆Mα−1

(2) α 6= −1 the previous inclusions are equalities.
(3) Mα is finite dimensional, and is nonzero only when α ∈ Q.
(4) V αM is a decreasing filtration which is exhaustive, i.e. ∪V αM = M .
(5) φ(DRM)1 = M−1, ψ(DRM)1 = M0.
(6) If λ = exp(2πiα) with α ∈ (−1, 0), then ψ(DRM)λ ∼= φ(DRM)λ = Mα.

Proof. Suppose for simplicity that m ∈Mα is an eigenvalue for z∂. Then z∂(zm) =
zm+ z(z∂m) = (α+ 1)zm. The other cases of (1) are similar.

For the remaining statements, we can reduce to the case of M simple. Then we
can check case by case:

(1) M = O∆, Mα = Czα if α ∈ N, and the others are zero. We have ψ = C,
φ = 0.

(2) M = O∆[z−1] with ∂ · 1 = r
z , Mα+r = Czα if α ∈ Z, and the others are

zero. We have ψ = C, φ = C.
(3) M = DR(O[z−1]/O), Mα = Cz−1 if α = −1, and the others are zero. We

have ψ = 0, φ = C
�

In view of the proposition, we define

ψM =
⊕

0≤α<1

Mα ∼=
⊕

−1<α≤0

Mα

φM =
⊕

−1≤α<0

Mα

These are isomorphic to the corresponding vector spaces associated to DR(M).
The map

can : ψM → φM

is given ∂. The variation map is a bit more complicated to express directly. It is
simpler to modify the variation map to a map V ar : φ → ψ such that V ar ◦ can
and can ◦ V ar are given by 1/2πi times the logarithm of the unipotent part of T .
It is clear that var can be written as a function of can and V ar. The modified map

V ar : φM → ψM
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is simply given by multiplication by z.
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